Discrete Algebra |
Sigma-Notations Arithmetic Progressions Geometric Progressions Binomial Theorem Pascal's Triangle
1 + 2 + ... + n 1² + 2² + ... + n² 1³ + 2³ + ... + n³
Basic Conceptions Constituents of the Induction Principle Model Examples Example 1 Example 2 Example 3 Example 4 Example 5 Example 6 |
Problem. Prove that 2n > n for all positive integers n. Proof. Let Pn be the proofable statement: Pn : 2n
> n.
Really,
2n+1 = 2·2n > 2·n = n + n ≥ n + 1. Therefore, the statement Pn is true for any integers n ≥ 1. |