INDEX
Numbers and Sets
Complex Numbers
Exponentiation
Algebraic Transformations
Algebraic Equations and Inequalities
Functions
Basic Formulas
Graphics of Basic Functions
Discrete Algebra
Ship 2

Binomial Theorem

Sigma-Notations

Arithmetic Progressions

Geometric Progressions

Binomial Theorem

Pascal's Triangle

Evaluation of Sums of the Form
1k + 2k + ... + nk

1 + 2 + ... + n

1² + 2² + ... + n²

1³ + 2³ + ... + n³

Mathematical Induction Principle

Basic Conceptions

Constituents of the Induction Principle

Model Examples
  Example 1
  Example 2
  Example 3
  Example 4
  Example 5
  Example 6


Mathematical Induction Principle:
Example 1
Key Topics Remaining:   Examples  2,   3,   4,   5,   6, 

Problem.  Prove that  2n > n  for all positive integers  n.

Proof.  Let  Pn  be the proofable statement:

 Pn :    2n > n.
  1. Induction basis:  Since  21 = 2 > 1, the statement  P1  is certainly true.

  2. Induction hypothesis: Assume that the proofable inequality holds true for some integer  n > 1.

  3. Induction step: We have to prove that inequality
    2n > n
    implies inequality
    2n+1 > n + 1.
Really,

2n+1 = 2·2n > 2·n = n + nn + 1.

Therefore, the statement  Pn  is true for any integers  n ≥ 1.
Previous Topic   Next Topic