INDEX
Numbers and Sets
Complex Numbers
Exponentiation
Algebraic Transformations
Algebraic Equations and Inequalities
Functions
Basic Formulas
Graphics of Basic Functions
Discrete Algebra
Ship 2

Binomial Theorem

Sigma-Notations

Arithmetic Progressions

Geometric Progressions

Binomial Theorem

Pascal's Triangle

Evaluation of Sums of the Form
1k + 2k + ... + nk

1 + 2 + ... + n

1² + 2² + ... + n²

1³ + 2³ + ... + n³

Mathematical Induction Principle

Basic Conceptions

Constituents of the Induction Principle

Model Examples
  Example 1
  Example 2
  Example 3
  Example 4
  Example 5
  Example 6


Constituents of the Mathematical Induction Principle
Key Topics Remaining:   Model Examples

The procedure of proving the validity of a proposition  Pn  for all integers  nk  includes the following three stages.

  1.  Formulation of the of the induction basis.
     Example: There exists an integer  k  such that the statement  Pk  is true.

  2.  Formulation of the induction hypothesis.
     Example: The statement  Pn  holds true for some integer  nk.

  3. The induction step.
    Example: If the statement  Pn  implies  Pn+1 (provided that  nk) then  Pn  is true for all integers  nk.

However, if the statement  Pn  is false and  Pn  implies  Pn+1, then one can conclude that  Pn  is false for all integers  nk  but we can say nothing about the validity of  Pn  for  n > k.


Previous Topic   Next Topic