INDEX
Complex Numbers
Exponentiation
Algebraic Transformations
Algebraic Equations and Inequalities
Functions
Discrete Algebra
Basic Formulas
Graphics of Basic Functions
Numbers and Sets
Balloon

Introduction

About Algebra

Arithmetic Operations

Addition and Subtraction

Multiplication and Division

Criterions for Divisibility

Real Number System

Types of Numbers

Geometric Interpretation of Real Numbers

Irrational Number

Properties of Real Numbers

Fractions
Proportions

Property of Equal Proportions

Absolute Values

Graphical Illustrations

Sets and Intervals

Sets

Subsets

Operations with Sets

Intervals



Properties of Real Numbers
Key Topics Remaining: Fractions » Absolute Values » Sets » Intervals

Most mathematical manipulations are based on the following properties of real numbers.

N Properties Comments
1
  If
a = b
  then
b = a.
The property states equal rights for both sides of an equality.
2
  If
 a = c   and   b = c 
  then
 a = b .
If two numbers are equal to the same number, then they are equal to each other.
3
  If
 a = b 
  then
 a + c = b + c .
The property allows to add any number to both sides of the equality.
4
  If
 a = b 
  then
 a c = b c .
An equality holds true, if to multiply its both sides by any non-zero number.
5
  If
 a = b 
  then
 f  (a)  = (b).
If some operation with respect to a number  a  gives a unique result  f (a), then   a = b  implies  f (a) =  f (b) .
6
 a + b = b + a ,
 a b = b a .
Elements of a sum can be added in any order.
Elements of a product can be multiplied in any order.
7
 a + ( b + c ) = 
 = ( a + b ) +  ,
 a ( b c ) =  ( a b ) c .
Elements of a sum can be combibed in groups.
Factors can be combined in groups.
8
 a  + (– a ) = a  – a = 0
For any real number  a, there exists the additive inverse number  (– a such that by which the given number is added to produce zero.
9
 a  (1 / a ) =  a / a  = 1
For any non-real number  a, there exists the reciprocal (or multiplicative inverse) number  (1 / a)  such that by which the given number is multiplied to produce unity.
10
If    a b = 
then   a = 0 ,
or     b  = 0 ,
or   a = b  = 0 .
If a factored expression equals zero, then at least one of the factors is equal to zero.
11
If   a > b 
and   c > 0 ,
then   a c > b c .
The property allows to multiply both sides of an inequality by any positive number.
12
If   a > b 
and  c < 0 ,
then   a c < b c .
If the sides of an inequality are multiplied by a negative number, then the sign of inequality must be reversed.


Examples
Previous Topic   Next Topic