INDEX
Numbers and Sets
Complex Numbers
Exponentiation
Algebraic Transformations
Algebraic Equations and Inequalities
Discrete Algebra
Basic Formulas
Graphics of Basic Functions
Functions
Ship 2

Basic Conceptions

Cartesian Coordinate System

Domain and Range

Inverse Functions

Even-Odd Symmetry of Functions

Periodicity of Functions

Exponential and Logarithmic Functions

Exponential Functions

Logarithmic Functions
  Natural Logarithms

Sets and Intervals

Hyperbolic Functions


Logarithmic Functions
Key Topics Remaining:  Natural Logarithms

The operation of taking the logarithm is the inverse operation of exponentiation.
It gives the solution of the equation

ax = b
with respect to  x:
x = log a b.

Thus, for any positive numbers  a  and  b  ( a ≠ 1 ),

if     ax = b     then     x = log a b,     and vice versa.

This means that

and
.

A logarithmic function

y = log a x
is the inverse function of  y = ax :
log a ax = x      and      .

The domain of a logarithmic function is the set of positive real numbers.
The range of a logarithmic function is the set of all real numbers.

Note that the domain of an exponential function is the range of a logarithmic function, and the range of an exponential function is the domain of a logarithmic function.

The function  log a x  is referred to as  log x.


Properties of logarithmic function.

  1.   log a x = log a z  if and only if  x = z.

  2.   If  a > 1  then the logarithmic functions are monotone increasing functions.
    That is,   log a x  >  log a z   for   x > z.

  3.   If  0 < a < 1  then the logarithmic functions are monotone decreasing functions.
    That is,   log a x  <  log a z   for   x > z.

  4.   If  a > 1  and  x  → + ∞  then  log a x  →  + ∞.
      If  a > 1  and  x  →  0  then  log a x  →  – ∞.

  5.   If  0 < a < 1  and  x  → + ∞  then   log a x  →  – ∞.
      If  0 < a < 1  and  x  →  0  then  log a x  →  + ∞.

  6.   A graph of a logarithmic function includes the point  ( 1, 0 ).

Transformations of logarithmic functions are based on Logarithmic Identities.


Previous Topic   Next Topic