INDEX
Numbers and Sets
Complex Numbers
Exponentiation
Algebraic Transformations
Algebraic Equations and Inequalities
Discrete Algebra
Basic Formulas
Graphics of Basic Functions
Functions
Ship 2

Basic Conceptions

Cartesian Coordinate System

Domain and Range

Inverse Functions

Even-Odd Symmetry of Functions

Periodicity of Functions

Exponential and Logarithmic Functions

Exponential Functions

Logarithmic Functions
  Natural Logarithms

Sets and Intervals

Hyperbolic Functions


Exponential Functions
Key Topics Remaining:  Logarithmic Functions » Natural Logarithms

Exponential functions are functions of the form

y = ax

where the base  a  is a positive number and  a ≠ 1.

The domain of an exponential function is the set of real numbers.
The range of an exponential function is the set of positive real numbers.

Exponential functions have the following properties.

  1.   ax > 0 for any real numbers  x.

  2.   ax = az  if and only if  x = z.

  3.   If  a > 1  then exponential functions are monotone increasing functions and so  ax > az  for  x > z.

  4.   If  0 < a < 1  then exponential functions are monotone decreasing functions and so  ax < az  for  x > z.

  5.   If  a > 1  and  x  → + ∞  then  ax  →  + ∞.
      If  a > 1  and  x  → – ∞  then  ax  →  0.

  6.   If  0 < a < 1  and  x  → + ∞  then  ax  →  0.
      If  0 < a < 1  and  x  → – ∞  then  ax  →  + ∞.

  7.   A graph of any exponential function lies above the  x-axis and includes the point  ( 0, 1 ).

  8.   Graphs of functions  y = ax  and  y = ax  are mirror reflections of each other with respect to the  y-axis.

   

Transformations of exponential functions are based on Exponential Identities.


Previous Topic   Next Topic