

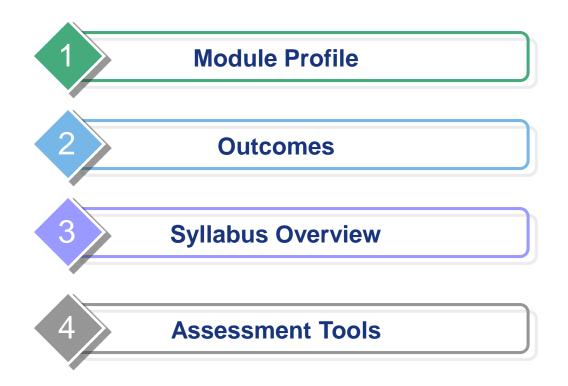




### Delivering the Module "Natural Resources for Chemical Industry" through the Medium of English

Olga S. Kukurina, Associate Professor, PhD

Department of Technology of Organic Substances and Polymer Materials


Evgeniia O. Frantcuzskaia, Senior Teacher

Department of Methods of Teaching Foreign Languages





### Outline







### **Professional Training in Chemical Technology in English**

| Field of the primary curriculum | Chemical Technology                                                                |  |
|---------------------------------|------------------------------------------------------------------------------------|--|
| Training programs               | Chemical Technology of Organic Substances<br>Technology and Processing of Polymers |  |
| Degree                          | Bachelor                                                                           |  |
| Year                            | 3 (5/6 semesters)                                                                  |  |
| 5 semester                      | Introduction to Chemical Engineering                                               |  |
| 6 semester                      | Natural Resources for Chemical Industry                                            |  |
| Types of academic activities:   |                                                                                    |  |
| Seminars, hours                 | 32/ <mark>32</mark>                                                                |  |
| Self-guided work, hours         | 32/32                                                                              |  |
| Type of interim attestation     | Test                                                                               |  |





### **Cross-discipline interaction**



Corequisites

Technology of Raw Hydrocarbons Processing Chemical Engineering Industrial Chemistry





# Module mastering goals

- forming the professionally oriented English communicative skills, to integrate into the international environment and use the language as a tool of business, professional and intercultural communication
- A developing an understanding of how raw hydrocarbons may be treated and used for chemical industry for all types of natural hydrocarbon resources





# Outcomes

|         | Knowledge                                                                                                                                                       | Skills                                                                                                                                           | Experience                                                                                                             |
|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|
| Content | To <b>categorize</b> the main<br><b>raw hydrocarbons</b> and<br>compare various<br>processing routes                                                            | To <b>evaluate</b> the process <b>parameters</b> and <b>refine methods</b> for raw materials treatment                                           | To <b>implement</b> maths<br>for evaluating process<br>parameters and<br>designing chemical<br>equipment               |
| English | To know <b>the peculiarities</b><br>of international <b>technical</b><br>and <b>scientific papers</b> ,<br><b>engineering</b><br><b>documentation</b> structure | To <b>demonstrate</b><br><b>socializing skills</b> in<br>international medium,<br>to translate and<br>represent reports orally<br>and in writing | To <b>apply</b><br><b>collaborative</b><br><b>approaches</b> in<br>research, developing<br>and designing<br>activities |





## **Content of English module**

| N⁰  | Sections                                               | Types of academic activity:                                        |         |            |                                       |  |
|-----|--------------------------------------------------------|--------------------------------------------------------------------|---------|------------|---------------------------------------|--|
| IN≌ |                                                        | Reading                                                            | Writing | Listening* | Speaking                              |  |
| 1   | Energy Sources (renewable and non-renewable) (4 hours) | [1]                                                                |         |            |                                       |  |
| 2   | Lignocellulose-Based Chemical Products (2 hours)       | [2]                                                                |         |            |                                       |  |
| 3   | Starch Applications (4 hours)                          | [3]                                                                |         |            |                                       |  |
| 4   | Coal and Peat (4 hours)                                | [4]                                                                |         |            | Describing schemes                    |  |
|     | Conference week                                        | Essay: "Perspectives of non-conventional fuel sources"             |         |            |                                       |  |
| 5   | Natural Gas Processing (4 hours)                       | [5]                                                                |         |            |                                       |  |
| 6   | Oil-Refining (6 hours)                                 | [6]                                                                |         |            | Debates<br>"The oil origin<br>theory" |  |
| 7   | Water Systems in Industrial Plants (4 hours)           | [7]                                                                |         |            |                                       |  |
|     | Test<br>Oral presentation of the project               | Project work<br>"Manufacture of the xylenes (or another chemical)" |         |            |                                       |  |
|     |                                                        | <u>*https://www.coursera.org</u>                                   |         |            |                                       |  |
|     |                                                        | <u>*https://www.edx.org</u>                                        |         |            |                                       |  |





## **Resources for reading**

[1] F. Orecchini, V. Naso / Energy Systems in the Era of Energy Vectors, Green Energy and Technology // Chapter 2. Energy Resources. – Springer-Verlag London Limited 2012.– 72 p.

[2] Ed de Jong, Richard J.A. Gosselink / Bioenergy Research: Advances and Applications // Chapter 17. Lignocellulose-Based Chemical Products. – 37 p.

[3] Bronwyn G. Laycock, Peter J. Halley / Starch Polymers // Chapter 14. Starch Applications: State of Market and New Trends. – Elsevier.– 2014. – 39 p.

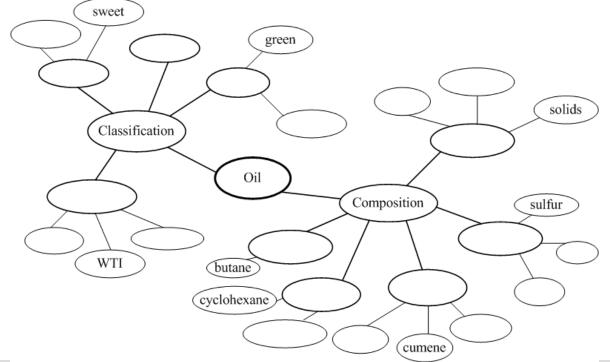
[4] M. Hook / Encyclopedia of Sustainability Science and Technology edited by Robert A. Meyers. // Chapter 9. Coal and Peat: Global Resources and Future Supply.– Springer Science+Business Media New York. – 2013.– 31 p.

[5] T.K. Ghosh, M.A. Prelas / Energy Resources and Systems: Volume 1:
Fundamentals and Non-Renewable Resources // Chapter 7. Natural gas. – Springer
Science + Business Media B.V. 2009. – 101 p.

[6] Kukurina O.S., Rozanova Ya.V. English for Specific Purposes. Oil-Refining. – Tomsk: TPU Publishing House, 2013. – 101 p.

[7] Jijnasa Panigrahi, Sharad C. Sharma / Industrial Wastewater Treatment, Recycling, and Reuse. – Elsevier Ltd. 2014. – 25 p.






### **Reading Tasks**

# Filling gaps

Mind mapping

### Answering questions techniques







# Speaking

 Monologues (various processes, equipment and schemes descriptions)

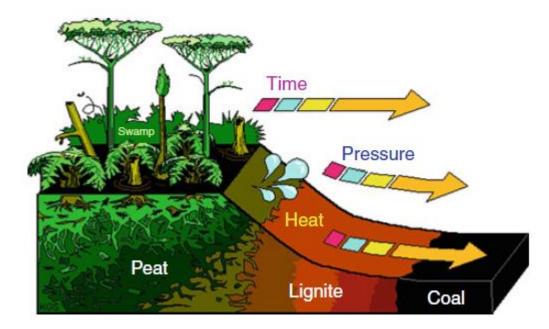
# Dialogues (collaborative tasks, discussions)

Group interaction (debates)





# Speaking



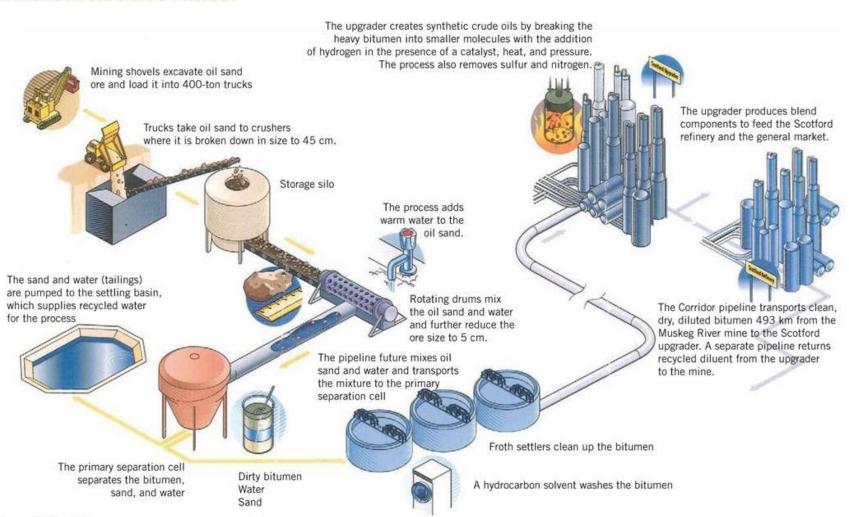


Figure 1. Principle mechanism of the formation of coal and peat [4]

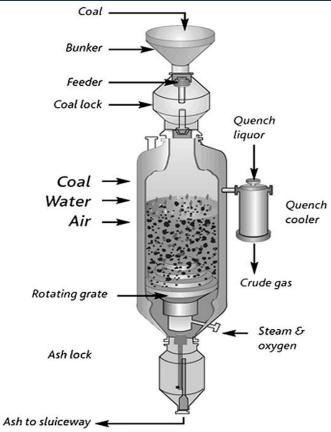






FIG. 3




Source: Shell Canada Energy

[http://leadenergy.org/wp-content/uploads/2011/02/Athabasca-Diagram2.jpg]





# Speaking



Gas 15 Pa Slag

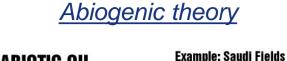
Feedstock

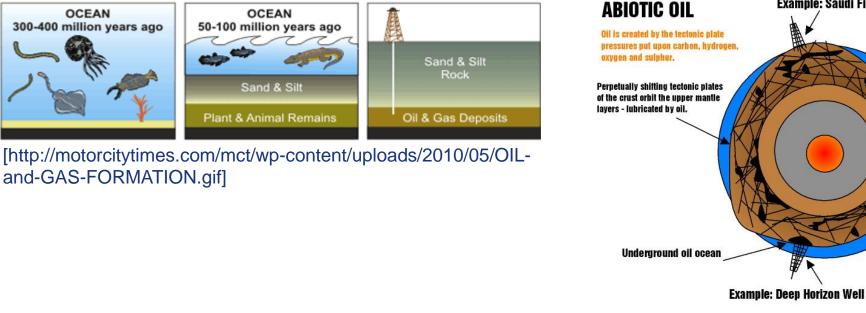
Figure 2. The Sasol-Lurgi gasifier.

Figure 3. The BGL gasifier.

[David A. Bell, Brain F. Towler, Maohong Fan. Coal Gasification and Its Application // Elsevier, 2011]







### Speaking



### Debates "THE OIL ORIGIN THEORY"

Biogenic theory





[http://rachels-carson-of-today.blogspot.ru/2012/09/the-abiotic-origin-of-petroleum-fueling.html]

Answer the question: "What kind of theory has the right to exist?"





### Writing

- Two major written assignments:
  - Essay, Summary, Review
  - Project work (chemicals production design)







### Glossary / Technical Terminology

"Skeleton" of bachelor academic activity

### Game Tasks







### **Assessment Tools**

### Assessment

Guideline, be valid and reliable, transparent and efficient

### Formative

Reading questions Evaluation of each seminar work Writing a mid-term essay Summative

CH<sub>3</sub>

Case study: Manufacture of Xylenes

Assignment

- 1. Draw a PFD
- 2. Perform material balances
- 3. Perform energy balances
- 4. Design the reactor
- 5. Determine the ROI

for this project

40 credits

PFD – process flow diagram ROI – return on investment

60 credits





### Conclusion

 Practically, students achieve the assigned outcomes, in common, they are able to represent their activity results, to analyze various chemical techniques, but find writing challenging.

 It is necessary to design assessment tools and set of criteria to evaluate students' performance and their personal achievements during the semester.





# Thank You !

kukurina@tpu.ru