ОТЗЫВ

на автореферат диссертации Н.В. Варламовой «Разработка методов получения меченных технецием-99m наноколоидных препаратов для диагностики сторожевых лимфоузлов», представленной на соискание ученой степени доктора технических наук по специальности 05.11.17 — приборы, системы и изделия медицинского назначения

Актуальность темы. Общепризнанным методом диагностики состояния сторожевых лимфоузлов, расположенных по направлению лимфотока из зоны расположения опухолевого очага, считают статическую сцинтиграфию и ее дальнейшее развитие — интраоперационную радиометрию сторожевых лимфоузлов с малоинвазивным удалением пораженных лимфоузлов по результатам радиометрии и последующим срочным гистологическим исследованием. Основное условие успешности такой диагностики — использование высококачественных наноколлоидов с прочной радиоактивной меткой на наночастицах. Импортные наборы для синтеза радиоактивных наноколлоидов в России недоступны, а существующие технологии получения отечественных аналогов отличаются чрезмерной сложностью и малой доступностью для рядовых онкологических диспансеров и больниц.

В связи с этим разработка отечественного радиоактивного наноколлоида для диагностики сторожевых лимфоузлов, отвечающего целому ряду жестких клинических требований, является не просто важной, а чрезвычайно актуальной ввиду большого количества больных раком молочной железы, которым необходимы указанные диагностические исследования.

Анализ содержания автореферата.

Во введении автор анализирует степень актуальности выбранной темы. Объективно оценена степень проработанности данной проблемы как за рубежом, так и в России. При этом автор приводит перечень государственных проектов и грантов. в рамках которых была выполнена диссертационная работа, что еще раз подтверждает ее высокую востребованность на уровне всего отечественного здравоохранения.

В автореферате четко сформулированы основная цель работы и задачи, решение которых необходимо для достижения поставленной цели. По разделам введения, посвященным изложению научной новизны проведенной работы, замечания практически отсутствуют. Представленные здесь оценки этой характеристики своего научного труда отличаются объективностью и полнотой. Замечания по методам исследования и положениям, выносимым на защиту, также отсутствуют.

Необходимо отметить, что апробация выполненной работы была произведена на целом ряде международных научных форумов, в основном, на международных конгрессах и конференциях по радиофармацевтике, радиохимии и медицинской физике, и это косвенно подтверждает высокий научно-методический уровень диссертации в целом.

С целью повышения экономической эффективности, улучшения специфичности и упрощения технологий синтеза радиофармпрепаратов для визуализации сторожевых лимфоузлов автор вполне обоснованно ставит задачу разработки подобных радиофармпрепаратов на основе модифицированных гидрофобными группами молекул ДТПА и магнитоуправляемых коллоидов Fe@C, а также разработки технологии синтеза наиболее перспективного радиофармпрепарата на основе 99m Tc- Al_2O_3 -наноколлоида. Правильность такой постановки задачи обусловлена его более низкой токсичностью, чем у сульфидов и фторидов рения, в сочетании с его доступностью и низкой стоимостью. При этом указывается, что все эти достоинства можно реализовать в клинической практике только путем решения задачи обеспечения устойчивой адсорбции радиоактивной метки 99m Tc на наноразмерном гамма-оксиде Al_2O_3 .

Далее рассмотрены методики и оборудование, использованные автором для проведения исследований. Кратко охарактеризованы оборудование, материалы, методики и технологии, применение которых обеспечило исчерпывающее решение всех

поставленных в диссертации задач. Судя по данному разделу диссертации, необходимо констатировать ее высокий научно-методический уровень в целом, что обусловлено использованием самых современных и наиболее эффективных средств и методов синтеза и контроля качества радиофармпрепаратов.

Третья глава является наиболее важной частью работы, поскольку в ней отражены те результаты разработки технологий получения наноразмерных коллоидов, меченных 99m Тс. которые и обусловливают научную новизну работы на мировом уровне. Сначала автор показывает три основные концепции синтеза радиоактивных наноколлоидов и потом поочередно описывает предложенные технологии реализации этих концепций. В рамках третьей концепции синтеза наноколлоидов атомы радионуклида ^{99m}Тс предлагается адсорбировать на порошке оксида алюминия. С целью повышения эффективности такого подхода была исследована возможность использования в качестве носителя радиоактивной метки 99mTc порошков низкотемпературной (кубической) модификации гамма-оксида алюминия. Тем самым была остроумно решена сложная задача обеспечения устойчивого закрепления радиоактивной метки на поверхности коллоидных наночастиц. В эксперименте на лабораторных животных было показано, что уровень накопления радиофармпрепарата в сторожевых лимфатических узлах находится на уровне 7 – 9 % от общей введенной активности, что гарантирует их надежную сцинтиграфическую визуализацию. Полученный результат превосходит стандартные требования к подобным препаратам (0,5 - 1,7 %). Представленный в третьей главе материал свидетельствует о высокой профессиональной квалификации потенциале автора в области радиофармацевтики, радиохимии и медицинских нанотехнологий. Замечания по данному разделу отсутствуют.

В четвертой главе описана разработка методов стандартизации и нормативной документации на производство препарата «Наноколлоид, 99m Tc-Al₂O₃». Выбор методов определения в составе лиофилизата основных его компонентов, а именно оксида алюминия, олова дихлорида дигидрата и аскорбиновой кислоты, в диссертации базируется не только на установившейся практике, но и на мировом опыте и на действующих в настоящее время отечественных нормативных документах. Автор указывает, что для качественного и количественного определения оксида алюминия, олова, и аскорбиновой кислоты использованы известные методики, в которые были внесены изменения с учетом концентраций данных компонентов в составе препарата и возможного взаимного влияния этих компонентов на результаты их определения. Для стандартизации состава нового $P\Phi\Pi$ была разработана оригинальная методика количественного определения желатина.

Замечания по заключению, где представлены выводы по работе в целом, отсутствуют.

<u>Достоинства и недостатки работы.</u> При анализе основного текста автореферата уже был отмечен ряд результатов, положений и выводов, которые следует считать имеющими высокое научное и практическое значение. Все они, безусловно, относятся к достоинствам работы.

Что касается недостатков диссертации, то следует указать следующие:

• При формулировке основной цели исследования автор допускает характерную для подавляющего большинства диссертантов методологическую ошибку, которая состоит в том, что предмет работы, а именно проведение тех или иных исследований и разработок, не может быть ее целью, это всего лишь инструмент для достижения цели. Такой целью должен быть только тот положительный эффект, который получает общество от проведения этих исследований и разработок. В случае данной диссертационной работы это — социальный и экономический эффект в виде повышения точности диагностики, результативности лечения и улучшения качества жизни онкологических больных на основе результатов проведенной разработки.

- При анализе области применения основных результатов работы автор помимо диагностики сторожевых лимфоузлов не рассматривает другие возможности клинического применения разработанного в рамках диссертации ^{99m}Tc-Al₂O₃- наноколлоида, для проведения таких исследований, как динамическая лимфосцинтиграфия, визуализация и оценка состояния ретикулоэндотелиальной системы, диагностика цирроза печени и спленомегалии.
- При разработке новых радиофармпрепаратов обычно оцениваются дозиметрические аспекты его клинического использования. В автореферате такая информация отсутствует, хотя, возможно, в основном тексте диссертации она приведена.
- Имеются стилистические и терминологические неточности: 1) стр. 12 «наиболее оптимальный вариант», таких не бывает, может быть только оптимальный вариант; 2) стр.37 «процент от введенной дозы», надо «процент от активности введенного радиофармпрепарата».

Однако эти недостатки не имеют принципиального характера и поэтому, безусловно, не влияют на положительную оценку проделанной работы в целом.

<u>Выводы.</u> В целом, по актуальности темы, научной новизне, научной и практической значимости, научно-методическому уровню, объёму и завершённости проведенной работы, степени обоснованности и достоверности основных результатов и выводов, качеству оформления, а также по опубликованию результатов и форме их представления, — автореферат диссертации Н.В. ВАРЛАМОВОЙ полностью соответствует требованиям, предъявляемым к докторским диссертациям.

Указанное соответствие отвечает требованиям п.9 Положения о присуждении ученых степеней, утвержденного Постановлением Правительства РФ «О порядке присуждения ученых степеней» № 842 от 24.09.2013 г. (в ред. Постановления Правительства РФ от 28.08. 2017 г. № 1024), а также п. 8 — 12 Порядка присуждения ученых степеней в Национальном исследовательском Томском политехническом университете. Как автор такой диссертации и как авторитетный специалист высокой профессиональной квалификации, Наталья Валерьевна ВАРЛАМОВА, несомненно, заслуживает присуждения учёной степени доктора технических наук по специальности 05.11.17 — приборы, системы и изделия медицинского назначения.

Президент Ассоциации медицинских физиков России, доктор технических наук, профессор, академик Международной инженерной академии

Наркевич

Борис Ярославович

Ассоциация медицинских физиков России (АМФР). Адрес: 115478 Москва, Каширское шоссе, д.23, НМИЦ онкологии им. Н.Н.Блохина Минздрава РФ, стр.2, зона Б, АМФР, Тел. (499) 324-6093, (499) 324-1054, (+7)9039764226. Сайт: http://www.amphr.ru/, E-mail: amphr.aamphr.ru narvik@wandex.ru

Я, Наркевич Борис Ярославович, согласен на обработку моих персональных данных в рамках процедуры защиты диссертационной работы, представленной Н.В. Варламовой.

Б.Я. Наркевич

Подпись Наркевича Бориса Ярославовича постоверяю Исполнительный директор Ассоциации медицинских физиков России

Кислякова Марина Васильевна

05 ноября 2019 г.