На правах рукописи

Жирнов Анатолий Алексеевич

ПРОГРАММНЫЙ КОМПЛЕКС РАСЧЁТА ДИСПЕРСНОСТИ ЧАСТИЦ В МЕТОДАХ КОНТРОЛЯ ОБРАЗОВАНИЯ И РАСПРОСТРАНЕНИЯ АЭРОЗОЛЬНЫХ СРЕД

Специальность 05.11.13 – Приборы и методы контроля природной среды, веществ, материалов и изделий

ΑΒΤΟΡΕΦΕΡΑΤ

диссертации на соискание ученой степени

кандидата технических наук

Работа Федеральном выполнена В государственном бюджетном учреждении науки Институте проблем химико-энергетических технологий Сибирского отделения Российской академии наук (ИПХЭТ СО РАН), в Лаборатории физики преобразования энергии высокоэнергетических материалов.

Научный руководитель:	доктор физико-математических наук, доцент, Кудряшова Ольга Борисовна
Официальные оппоненты:	Крайнов Алексей Юрьевич, доктор физико-математических наук, доцент, Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский Томский государственный университет», кафедра математической физики, доцент
	Голых Роман Николаевич, кандидат технических наук, ООО «Центр ультразвуковых технологий» г. Бийск, инженер
Ведущая организация	Федеральноегосударственноебюджетноеобразовательноеучреждениевысшегоучреждениевысшегообразования«Томскийгосударственныйуниверситетсистемуправленияирадиоэлектроники»

Зашита состоится «02» октября 2018 г. в 15:00 на заселании диссертационного совета Д 212.269.09 при ФГАОУ ВО «Национальный исследовательский Томский политехнический университет» по адресу: 634028, г. Томск, ул. Савиных 7, ауд. 215.

С диссертацией можно ознакомиться в библиотеке ФГАОУ ВО «Национальный исследовательский Томский политехнический университет» по адресу: 634028, г. Томск, Белинского, 55 И сайте: ул. на http://portal.tpu.ru/council/916/worklist

»_____2018 г. Автореферат разослан «

Учёный секретарь диссертационного совета,

кандидат технических наук, доцент Шевелева Елена Александровна

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность темы диссертации.

С развитием технологического прогресса происходит усовершенствование технологий производства. Появление новых веществ требует контроля, как при их производстве, так и при воздействии на окружающую среду, человека и т.п. Особый интерес для исследования представляют собой дисперсные системы. Размеры частиц вещества в таких системах могут быть различны, от нескольких нанометров до сотен микрометров.

Изучение образования и распространения аэрозолей можно использовать в жизнедеятельности различных сферах человека, таких как: медицина, пожаротушение, экологический мониторинг, контроль производства, адекватная оценка обстановки в случае нештатных ситуаций на производстве. Необходимы приборы, позволяющие осуществлять мониторинг дисперсных метолы и характеристик и концентрации аэрозолей в быстроменяющейся обстановке. Реализация таких методов на практике, как правило, связана с необходимостью проведения больших объемов вычислений; усовершенствование расчетных программ остается актуальной задачей в развитии методов измерений дисперсных систем.

Степень разработанности темы.

Бесконтактные оптические методы контроля аэрозолей являются перспективным направлением в исследовании аэрозолей в тех случаях, когда необходимо исключить возмущения, вносимые в исследуемую среду. В настоящее время для контроля дисперсных сред разработан ряд оптических методов. Каждый из них применим для определения параметров аэрозолей в заданном диапазоне размеров частиц.

В данной работе рассматриваются два основных оптических метода для исследования физических свойств аэрозолей, каждый из которых имеет пределы применимости по размерам частиц: метод малоуглового рассеяния и метод спектральной прозрачности. Первый метод позволяет контролировать дисперсные характеристики аэрозоля с размерами частиц (1-100) мкм, второй – в диапазоне (30-6000) нм.

Модификация данных оптических методов контроля связана с особенностями математической обработкой данных. Обычно для описания дисперсности аэрозоля используется аналитическая функция распределения частиц по размерам, имеющая два параметра – гамма распределение. В более общем случае функция распределения частиц по размерам имеет произвольный вид с заданным конечным числом параметров N. Объем вычислений возрастает в геометрической прогрессии с ростом числа искомых параметров функции что является проблемой реализации методов распределения, оптических измерений. В связи с этим необходимо использовать технологии параллельных вычислений.

Повышение информативности об исследуемом аэрозоле, связанное с расширением диапазона размеров частиц аэрозоля и поиском решения в виде многопараметрической функции, является перспективным направлением в исследовании аэрозолей.

Объект исследования

Оптические методы контроля аэрозолей.

Предмет исследования

Параллельные алгоритмы, автоматизация и оптимизация в оптических методах контроля аэрозолей.

Цели работы и задачи.

Совершенствование оптических методов контроля дисперсных характеристик аэрозоля за счет повышения информативности результатов при обработке экспериментальных данных, полученных различными методами, в широком диапазоне размеров частиц.

Для выполнения поставленной цели требуется решить следующие <u>основные</u> <u>задачи</u>:

1. анализ известных оптических методов контроля дисперсных характеристик аэрозолей и выбор перспективных;

2. разработка алгоритмов обработки информации для выбранных оптических методов;

3. разработка параллельных алгоритмов для ускорения обработки экспериментальных данных;

4. разработка алгоритма представления функции распределения частиц по размерам в виде многопараметрической функции (для повышения точности полученных результатов);

5. разработка алгоритма совместной обработки результатов эксперимента, полученных выбранными оптическими методами;

6. реализация разработанных алгоритмов в виде программного комплекса, обеспечивающего обработку информации выбранными оптическими методами.

Научная новизна работы.

Разработка нового подхода к совместной обработке исходных данных, полученных с применением двух оптических методов по определению параметров частиц аэрозоля, позволяющей увеличить контролируемый диапазон размеров частиц и скорости обработки результатов, в частности:

– предложен новый подход к решению обратной задачи оптики аэрозолей с получением результата в виде многопараметрической функции частиц по размерам, взаимосвязано учитывающий данные о рассеянии аэрозолем излучения на малых углах и ослабления на разных длинах волн;

 – разработан универсальный алгоритм сращивания функций распределения частиц по размерам, полученных с помощью различных оптических методов, при наличии общего диапазона размеров измеряемых частиц;

– разработаны новые методы математической обработки результатов оптических измерений, в частности, в плане оптимизации и параллельных алгоритмов;

– предложен новый подход прямого поиска решения в задачах оптики аэрозолей с сохранением параметров функций распределения в оперативнозапоминающее устройство (ОЗУ) компьютера, что позволяет резко (до десятков тысяч раз) ускорить обработку исходных данных.

Практическая значимость работы.

Практическая значимость работы заключается в разработке комплекса программ, который будет являться одним из этапов в создании измерительных комплексов и в частности:

– создание комплекса программ для полной автоматизации расчётов при использовании установок контроля по методу малоуглового рассеяния и методу спектральной прозрачности с большим временным разрешением (50 Гц);

– возможность изучения испарения, коагуляции и осаждения аэрозолей и суспензий в быстроменяющейся обстановке в лабораторной практике (соответственно частоте регистрации данных);

 получение решения для распределения частиц по размерам в виде многопараметрической функции для реального представления состояния дисперсной среды;

– предложен новый подход прямого поиска функции распределения с сохранением исходных данных и расчётных параметров распределения в оперативно-запоминающее устройство (ОЗУ) компьютера;

– совместная обработка исходных данных, полученных выбранными оптическими методами по определению размеров частиц аэрозоля, позволяющая расширить диапазон контролируемых частиц и повысить информативность измерений исследуемых дисперсных сред;

– применение разработанного программного обеспечения в лабораторных исследованиях, возможность применения в составе промышленных приборов.

Методология работы и методы исследований.

Оптические методы контроля дисперсных сред.

Математические методы программирования и тестирование программного кода.

Статистические методы для подтверждения адекватности разработанных математических методов.

Сравнение результатов эксперимента, полученных разными методами.

Численный эксперимент.

Положения, выносимые на защиту.

1. новый подход и алгоритм совместной обработки результатов измерений, полученных с помощью оптических методов;

2. метод поиска функции распределения частиц по размерам в виде произвольной многопараметрической функции;

3. методика обработки исходных данных, полученных с использованием двух установок, реализующих выбранные оптические методы контроля дисперсных характеристик аэрозолей;

4. параллельные алгоритмы и методы оптимизации алгоритмов в оптических методах контроля дисперсных сред.

<u>Достоверность.</u>

Проведены эксперименты на двух модельных средах, которые сравнивались с другим наиболее близким средством измерения (оптический анализатор частиц Spraytec компании «Malvern Instruments») и проверялись методами математической статистики.

<u>Апробация работы.</u>

Основные положения диссертационной работы апробированы на 2-х международных конференциях с публикациями материалов – International Conference on Atmospheric Dust - Dust 2014, 1 по 6 июня 2014г., Италия, Castellaneta Marina; V Международная молодежная научная конференция «Актуальные проблемы современной механики сплошных сред и небесной механики» 25-27 ноября 2015г., г. Томск; и 8 всероссийских конференциях – III

Всероссийская научно-практическая конференция молодых ученых И специалистов «Материалы и технологии XXI века» 18-20 сентября 2013г., г. Бийск; Всероссийская конференция «Информационные технологии в науке, экономике и образовании» 18 декабря 2013г., г. Бийск – г. Кизляр; XXI Рабочая группа «Аэрозоли Сибири» 25-28 ноября 2014г., г. Томск, ИОА СО РАН; V Всероссийская научно-техническая конференция молодых учёных «Перспективы создания и применения конденсированных высокоэнергетических материалов» 11-12 сентября 2014г., г. Бийск; Молодежная конкурс-конференция «Фотоника и оптические технологии 2014» 14-16 апреля 2014г., г. Новосибирск; XXII Рабочая группа «Аэрозоли Сибири» 24-27 ноября 2015г., г. Томск; VI Всероссийская научно-техническая конференция молодых ученых «Перспективы создания и применения конденсированных высокоэнергетических материалов» 15-16 сентября 2016г., г. Бийск; V Всероссийская научная молодежная школаконференция «Химия под знаком сигма: исследования, инновации, технологии» 15-20 мая 2016г., г. Омск.

Личный вклад автора.

Автором лично получены все основные результаты теоретических и экспериментальных исследований, осуществлена обработка исходных данных и интерпретация полученных данных. Разработан программный код для параллельной обработки теоретических расчётов. Реализованы алгоритмы в виде автоматизирующие обработку исходной информации, алгоритмы программ. решения для распределения частиц по размерам получения В виде многопараметрической функции, алгоритмы совместной обработки исходных данных, полученных с помощью двух оптических методов.

<u>Публикации.</u>

Основные материалы диссертации изложены в 18 научных работах, в том числе в 6 статьях в журналах, рекомендованных ВАК. Получены 2 свидетельства о государственной регистрации программы для ЭВМ.

Структура и объем диссертационной работы.

Диссертационная работа состоит из содержания, введения, четырёх глав, заключения, списка сокращений и условных обозначений, списка терминов, списка использованной литературы, включающего 102 источника и 18 приложений. Работа содержит 155 страниц текста, 34 рисунка, 26 таблиц.

СОДЕРЖАНИЕ РАБОТЫ

Во введении раскрыта актуальность темы диссертации, оценена степень разработанности, а также сформулированы цели и задачи, показана научная новизна, теоретическая и практическая значимость, определены методы исследования, сформулированы положения, выносимые на защиту, приведены сведения об апробации работы и публикациях, личном вкладе автора, объёме и структуре диссертации, а также дано краткое изложение материала по главам.

В первой главе охарактеризованы преимущества и недостатки контактных и бесконтактных методов анализа дисперсных систем. Охарактеризованы оптические методы анализа и контроля, основанные на эффектах взаимодействия вещества с электромагнитным излучением. Описаны основные параметры дисперсных сред, рассматриваются современные методы контроля дисперсных систем, а также приборы на их основе. Выбраны и охарактеризованы оптические методы и установки для контроля быстро-эволюционирующих аэрозолей, созданных: ударно-волновым методом с применением высокоэнергетических материалов, пневматическим методом, ультразвуковым методом. Описаны типы, технологии параллельных вычислений. В рамках специфики задачи выбрана технология параллельных вычислений для ускорения процесса расчёта.

Во второй главе описываются два основных оптических метода контроля аэрозольных сред, процесс автоматизации обработки исходных данных. Разработан и реализован алгоритм обработки исходных данных с помощью многопараметрической функции распределения, а также алгоритм совместной обработки исходных данных. Предложены модельные среды для проведения экспериментальных исследований с целью проверки разработанных алгоритмов и программ на основании математических расчётов.

Метод спектральной прозрачности (МСП) основывается на регистрации ослабления зондирующего излучения на разных длинах волн. В реализации данного метода применяется известное значение счётной концентрации частиц в единице объема, получение которой на практике составляет значительную трудность. Турбидиметрический высокоселективный метод (ТВСМ), реализованный в виде установке ТИПАС-1, не требует значения счётной концентрации частиц; этого удалось достигнуть путём математического преобразования основной формулы МСП.

Для расчёта в турбидиметрическом высокоселективном методе, рисунок 1, используются основные формулы (1-3).

1 – сферическое зеркало; 2 – галогенная лампа; 3 – система линз; 4 – диафрагмы; 5 – светозащитный тубус; 6 – световод; 7 – приёмник излучения; 8 – исследуемая среда

Рисунок 1 – Принципиальная схема установки ТИПАС-1

$$k_{\lambda_{i}}^{\text{reop}} = \frac{\tau_{\lambda_{i}}^{\text{reop}}}{\tau_{\lambda_{i}}^{\text{reop}}} = \frac{\int_{D_{\min}}^{D_{\max}} Q\left(\frac{\pi D}{\lambda_{i}}, m(\lambda_{i})\right) D^{2} f(D) dD}{\int_{D_{\min}}^{D_{\max}} Q\left(\frac{\pi D}{\lambda_{i}}, m(\lambda_{i})\right) D^{2} f(D) dD}$$
(1)

$$k_{\lambda_i}^{\scriptscriptstyle \mathsf{3KCII}} = \frac{\tau_{\lambda_i}^{\scriptscriptstyle \mathsf{3KCII}}}{\tau_{\lambda_i}^{\scriptscriptstyle \mathsf{3KCII}}} \tag{2}$$

$$\Omega = \min_{\alpha, b} \left\{ \sum_{i=1}^{N} \left| k_{\lambda_i}^{\text{эксп}} - k_{\lambda_i}^{\text{теор}} \right| \right\},$$
(3)

где: $k_{\lambda_i}^{\text{эксп}}$, $k_{\lambda_i}^{\text{теор}}$ – экспериментальные и теоретически рассчитанные отношения оптических плотностей; $\tau_{\lambda_i}^{\text{теор}}$ и $\tau_{\lambda_i}^{\text{эксп}} = \ln \frac{I_0(\lambda_i)}{I(\lambda_i)}$, экспериментальные и теоретически

рассчитанные значения оптической плотности; $Q\left(\frac{\pi D}{\lambda_i}, m(\lambda_i)\right)$ – фактор эффективности ослабления; $m(\lambda_i)$ – комплексный показатель преломления на *i*-ой длине волны; D – диаметр частиц; $f(D) = aD^{\alpha} \exp^{-bD}$, где: α и *b* параметры

распределения; а – нормирующий множитель, Ω – минимизируемый функционал. В модифицированном методе малоуглового рассеяния (МММУ), рисунок 2, используются основные формулы (4-5).

Рисунок 2 – Принципиальная схема установки ЛИД-2М

$$I(y_{i}) = \frac{\pi SC_{n}}{4} \int_{0}^{z} [I_{0}(x)B(x,y_{i})F(x)]dx$$
(4)

$$\Omega = \min_{\alpha, b} \left\{ \sum_{i=1}^{n} \left| I_{\text{эксп}}(y_i) - I_{\text{теор}}(y_i) \right| \right\},$$
(5)

где: $I_o(x) = I_0 \exp^{-C_n x Q_{\text{осл}}}$ – интенсивность падающего излучения на элементарный объем dv в точке P; $B(x, y_i) = \exp\left[-C_n Q_{\text{осл}} \frac{z-x}{\cos \theta(x, y_i)}\right]$ – множитель, учитывающий по закону Бугера ослабление рассеянного излучения;

$$F(x) = \int_{0}^{\infty} Q_{\text{paccessHus}}(D, \theta(x)) D^{2} f(D) dD, Q_{\text{paccessHus}}(\rho, \theta) = \frac{\rho^{2}}{4\pi} \cdot \left[\frac{2J_{1}(\theta\rho)}{\theta\rho}\right] - \text{paccessHube}$$

излучение от одной частицы для области малых углов θ ; $J_1(\theta \rho) - \phi$ ункция Бесселя первого рода первого порядка; $\theta(x, y_i) = arctg\left(\frac{y_i}{l_2 - x}\right) - вычисление угла рассеяния;$

 $\rho = \frac{\pi D}{\lambda}$ – параметр Ми; D – диаметр частиц; λ – длина волны зондирующего излучения; z – длина оптического пути; l_1 – расстояние от лазера до первой границы слоя рассеяния; l_2 – расстояние от границы рассеяния до фотоприемника; C_n – счётная концентрация частиц; S – площадь поперечного сечения луча лазера;

В выбранных модификациях основных оптических методов происходит поиск функции распределения частиц по размерам в виде функции гаммараспределения. Решение сводится к перебору параметров распределения и поиску минимума отклонения теоретически рассчитанных данных от исходных (3), (5).

Для автоматизации обработки исходных данных в модифицированном ММУ был разработан алгоритм, регистрирующий модулированный сигнал фона без рассеяния (рисунок 3) и сигнала при рассеянии (рисунок 4). Входной информацией

служат значения интенсивности во времени для всех каналов рассеяния, включая прямой канал на ослабление.

 Рисунок 3 – Модулированный сигнал с
 АЦП без рассеяния лазерного излучения аэрозолем (ось абсцисс – время, с; ось ординат – напряжение, В)

Рисунок 4 – Модулированный сигнал с АЦП при рассеянии лазерного излучения аэрозолем (ось абсцисс – время, с; ось ординат – напряжение, В)

Реализация алгоритма представляет собой:

- учет коэффициентов усиления и калибровки.
- определение базового фона при отсутствии рассеяния (участок сигнала до момента начала эксперимента), для этого определяем средние минимальные и максимальные значения и определяем разницу между ними;
- сигнал после момента начала эксперимента разбивается на временные диапазоны и для каждого диапазона получаем усредненные значения разности средних значений минимумов и максимумов;

Этот алгоритм позволяет получить исходные значения индикатрис рассеяния, $I_{3xen}(y_i)$ во времени.

Для ускорения расчётов теоретических индикатрис рассеяния, $I_{\text{теор}}(y_i)$, в МММУ был разработан параллельный алгоритм на технологии Nvidia CUDA (рисунок 5).

Рисунок 5 – Блок-схема параллельного алгоритма на технологии Nvidia CUDA

В ходе тестирования многочисленных вариантов распараллеливания наиболее эффективным оказался вариант, когда каждой нити (потоку) поручено вычислить значение фактора эффективности рассеяния в основной формуле метода. Этот алгоритм позволил ускорить расчёты до 5 раз для одной точки по времени.

Для автоматизации обработки исходных данных в ТВСМ был разработан алгоритм, который определяет экспериментальные отношения оптических плотностей (2) (рисунок 7), входными данными для которого являются: $I_0(\lambda_i)$ – спектр излучения прошедшего через дисперсионную среду при отсутствии в ней дисперсной фазы; $I(\lambda_i)$ – спектр излучения прошедшего через дисперсионную среду при наличии в ней дисперсной фазы (рисунок 6).

Рисунок 6 - Спектры пропускания оптического излучения

Рисунок 7 – Блок-схема программы многофайловой обработки и подготовки исходных данных

Теоретический расчёт по ТВСМ является продолжительным по времени (~5 минут для одной точки по времени), поэтому с целью увеличения эффективности алгоритма была произведена оптимизация:

- изменение количества и типов переменных;

- оптимизация количества используемых длин волн;
- расчёт фактора эффективности ослабления излучения до начала основных вычислений;
- расчёт всех параметров функций распределения только один раз;
- подбор оптимального шага интегрирования;
- настройка оптимальных режимов работы компилятора и компоновщика IDE (интегрированная среда разработки).

Оптимизация позволила ускорить вычисления до десяти раз для одной экспериментальной точки (около 30 с).

Реализованные алгоритмы автоматизации и оптимизации расчётов для основных оптических методов позволили сделать время расчётов независимым от количества точек на временной шкале (~30 с для аналитической функции распределения, ~ 5 минут для многопараметрической функции) (рисунок 8).

Рисунок 8 – Графики зависимостей времени расчётов от количества исходных точек

В работе рассматривается вариант поиска решения для функции распределения частиц по размерам в виде многопараметрической функции (6):

$$f(D) = \begin{cases} A_{1} \mod D \le D_{1}; \\ A_{2} \mod D_{1} < D \le D_{2}; \\ A_{3} \mod D_{2} < D \le D_{3}; \\ A_{i} \mod D_{i-1} < D \le D_{i}; \\ \cdots \\ 1 - \sum_{i}^{N} A_{i} \mod D > D_{N}, \end{cases}$$
(6)

где A₁, ..., A_i – параметры гистограммы; N – число столбцов (параметров).

Помимо представления функции распределения частиц по размерам многопараметрической функцией есть и вторая цель. Совместная обработка данных, полученных с помощью рассматриваемых методов позволит взаимосвязано учитывать исходные данные об оптических свойствах дисперсных сред и существенно расширит методологию интерпретации получаемых данных.

Представление в обоих методах аналитической гамма-функции многопараметрической позволяет произвести совместную обработку результатов

измерений. Это становится возможным благодаря наличию общей области определения параметров от ~ 1 мкм до 6 мкм. Гистограмму распределения при одновременном использовании двух методов схематически можно представить как на рисунке 9.

Рисунок 9 – Схематическое представление гистограммы распределения при совместном использовании методов

объединённой Алгоритм расчёта многопараметрической функцией с обработкой строится на предположении одинаковой концентрации в общей области определения параметров и представлен в блок-схеме на рисунке 10, где: C_{T2} – массовая концентрация для ТВСМ в общей области; C_{V2} – массовая концентрация для МММУ; *g*^{TI} – массовая многопараметрическая функция для ТВСМ в диапазоне от 30 нм до 1 мкм; g_{T2}- массовая многопараметрическая TBCM В 1 мкм функция диапазоне ОТ ДО 6 мкм; g_{y_2} массовая многопараметрическая функция МММУ в диапазоне от 1 мкм до 6 мкм; gy3 массовая многопараметрическая функция МММУ в диапазоне от 6 мкм до 100 мкм; Сті – массовая концентрация частиц ТВСМ в диапазоне от 30 нм до 1 мкм; Суз – массовая концентрация частиц МММУ в диапазоне от 1 мкм до 100 мкм; $C_{T} = C_{T1} + C_{T2}$ – массовая концентрация TBCM от 30 нм до 6 мкм; $C_{y} = C_{y2} + C_{y3} -$ массовая концентрация МММУ от 1 мкм до 100 мкм; G(D) – результирующая многопараметрическая функция для объединённого диапазона; D₃₂ – средний объёмно-поверхностный диаметр чистиц; SSA – удельная площадь поверхность частиц; С_т – итоговая массовая концентрация частиц в единице объёма.

Входными данными для алгоритма служат массовые функции, полученные при обработке отдельно каждым методом, а также значения массовых концентраций.

При выборе модельной среды необходимо учитывать следующие требования: области определения частиц двух методов должны пересекаться (иметь общий диапазон); концентрация частиц должна лежать в диапазоне чувствительности. Если размер частиц выходит за границы метода, то эти частицы не учитываются при обработке исходных данных. В связи с этим было принято решение использовать мелкодисперсные аэрозоли оксида алюминия Al_2O_3 и оксида титана TiO_2 , которые распылялись ударно-волновым методом.

12

Рисунок 10 – Блок-схема программы совместной обработки результатов эксперимента

В третьей главе экспериментально установлены диапазоны оптической плотности для МММУ и ТВСМ, в которых возможна совместная и раздельная обработка результатов измерений, а также диапазон длин волн, который следует использовать в ТВСМ. Проведены эксперименты на модельных средах в установках ЛИД-2М и ТИПАС-1, решение обратной задачи было получено в виде функции гамма-распределения и в виде многопараметрической функции. Проведены модельные эксперименты на оптическом анализаторе Spraytec компании «Malvern Instruments», результаты которого сравнивались с 70-ти параметрической функцией, полученной в результате совместной обработки исходных данных.

Для проверки разработанного подхода многопараметрической функции (6) в установках ЛИД-2М и ТИПАС-1 были проведены модельные эксперименты с аэрозолем *Al*₂*O*₃, который распылялся с помощью ударно-волнового метода в камере объёмом 1 м³. Решения искались в виде унимодальной и

многопараметрической функций, после чего сравнивались между собой. В МММУ использовалась 50-ти параметрическая функция распределения, а в ТВСМ – 60-ти параметрическая функция.

На рисунке 11 мода аналитической функции (б) для Al_2O_3 для МММУ приходится в области на 4 мкм, а вид гистограмм (а) и (б) отличается существенно.

На рисунке 12 для сравнения приведены аналитическая функция распределения частиц по размерам и многопараметрическая функция для конечной точки регистрации процесса в эксперименте с *Al*₂*O*₃, где их виды близки.

Проверка разработанного подхода многопараметрической функции в ТВСМ осуществлялась аналогично тому, как это было сделано в МММУ. Обработка результатов эксперимента осуществлялась с помощью функции гаммараспределения частиц по размерам и 60-ти параметрической функции. На рисунке

Рисунок 13 – Многопараметрическая функция (а) и функция гаммараспределения частиц по размерам (б), представленные в виде гистограммы для t = 1.0 с

Рисунок 14 – Многопараметрическая функция (а) и функция гаммараспределения частиц по размерам (б), представленные в виде гистограммы

для *t* = 0,6 с

В проведённых экспериментах значения D_{32} близки между собой (разница не превышает 15%), однако вид распределения может значительно отличаться, а минимальные отклонения теоретических расчётов от исходных данных в случае обработки 50-ти параметрической функцией распределения для МММУ и 60-ти параметрической функцией для ТВСМ меньше, чем при обработки этих же экспериментальных данных функцией гамма-распределения.

Для проверки разработанного алгоритма совместной обработки исходных данных полученных МММУ и ТВСМ был проведён модельный эксперимент с аэрозолем Al_2O_3 , который распылялся с помощью ударно-волнового метода. В результате, для МММУ была получена многопараметрическая функция, рисунок 15 (а), а для ТВСМ была получена многопараметрическая функция, представленная на рисунке 15 (б).

15

На рисунке 16 представлена многопараметрическая функция, полученная реализованным алгоритмом совместной обработки исходных данных.

Рисунок 16 – Гистограмма распределения частиц по размерам, полученная совместной обработкой, *t* = 1,6 с

В полученной итоговой многопараметрической функции оттенками показаны диапазоны методов. Гистограмма на рисунке 16 отражает работоспособность реализованного алгоритма совместной обработки данных.

При использовании совместной обработки исходных данных с помощью 70ти параметрической функции результаты сравнивались с оптическим анализатором Spraytec («Malvern Instruments») по виду распределения и *D*₃₂.

Как показывают результаты расчётов при совместной обработке аэрозоля Al_2O_3 , полученного ударно-волновым методом, ни в одном случае функцию распределения не удается описать аналитической функцией гамма-распределения, однако есть моменты времени, в которых вид распределения очень близок к такой функции. На рисунке 17 представлены гистограммы распределения, полученные при совместной обработке исходных данных и с помощью оптического анализатора Spraytec. Значения D_{32} при совместной обработке составляет 9,26 мкм, а оптического анализатора 9,34 мкм. В результате расчётов установлено, что данные гистограммы совпадают на 77% по критерию r_{xy} , рассчитанному в четвертой главе.

Рисунок 17 – Многопараметрическая функция и гистограмма Spraytec компании «Malvern Instruments», t = 1,6 с

В четвёртой главе приводится попарный анализ D_{32} , полученный с помощью функции гамма-распределения и многопараметрической функции для аэрозоля Al_2O_3 и TiO_2 в каждый момент времени. Оценивается соответствие вида функции распределения, D_{32} между анализатором частиц Spraytec компании «Malvern Instruments» и разработанным методом совместной обработки. Оценка соответствия вида распределения производится путём сравнения абсолютной разности площадей в каждом диапазоне гистограммы по формуле (9).

$$r_{xy} = \left[1 - \frac{1}{2} \sum_{x,y=1}^{20} \left| f_x(D) - f_y(D) \right| \right] \cdot 100\%$$
(9)

где $f_x(D)$ – функция, полученная совместной обработкой; $f_y(D)$ – функция, полученная Spraytec компании «Malvern Instruments»; x – номер столбца, полученный совместной обработкой; y – номер столбца, полученный Spraytec компании «Malvern Instruments».

Сравнение D_{32} осуществлялось с помощью парного критерия Стьюдента для зависимых выборок (10).

$$t_{\text{pacyëthoe}} = \frac{\bar{x}}{\mu},\tag{10}$$

где $\bar{x} = \sum_{i,j=1}^{n} (x_i - x_j)/n$ – средняя разность выборки D_{32} ; $\sum_{i,j=1}^{n} (x_i - x_j)$ – сумма

разностей парных вариант D_{32} ; $\mu = \frac{\sigma}{\sqrt{n}}$ – стандартная ошибка среднего;

$$\sigma = \sqrt{\sum_{i,j=1}^{n} \left[\left(x_i - x_j \right) - \bar{x} \right]^2 / (n-1)}.$$

n – число парных наблюдений (здесь *n*=10 – анализируются 10 моментов времени).

В разделе изложена методика измерений, расчётов совместной и раздельной обработкой исходных данных.

В установке ЛИД-2М для аэрозоля Al_2O_3 , исходя из данных по среднему объёмно-поверхностному диаметру частиц D_{32} , получились следующие результаты, представленные в таблице 1.

Таблица 1 – Анализ *D*₃₂ аэрозоля *Al*₂*O*₃, полученного ударно-волновым методом, на установке ЛИД-2М

t _{pacyëthoe}	t _{табличное}	Гамма-функция, D ₃₂ (среднее)	50-ти параметрическая функция, <i>D</i> ₃₂ (среднее)
-0,67	2,26	9,0	9,3

В установке ТИПАС-1 для аэрозоля Al_2O_3 , исходя из данных по D_{32} , получились результаты, приведённые в таблице 2.

Таблица 2 — Анализ D_{32} аэрозоля Al_2O_3 , полученного ударно-волновым методом, на установке ТИПАС-1

t _{расчётное}	t _{табличное}	Гамма-функция, D ₃₂ (среднее)	60-ти параметрическая функция, <i>D</i> ₃₂ (среднее)
0,87	2,26	2,2	2,2

Оценка итоговой обработки при использовании исходных данных с разных установок проводилась по D_{32} и виду функций распределения, значения которых сравнивались с результатами Spraytec компании «Malvern Instruments». В таблице 3 приведены результаты анализа для D_{32} .

Таблица 3 — Анализ D_{32} аэрозоля Al_2O_3 полученного с использованием совместного метода обработки и Spraytec компании «Malvern Instruments»

Al_2O_3			
t _{расчётное}	t _{табличное}		
-2,12	2,26		

В таблице 4 приводится сравнение видов гистограмм распределения на основании рассчитанного коэффициента (9).

Таблица 4 – Анализ видов гистограмм аэрозоля Al_2O_3 полученных с использованием совместного метода обработки и Spraytec («Malvern Instruments»)

Время, с	$r_{_{XY}}$	
0,3	82,95	
0,6	73, 58	
1,0	85,78	
1,3	71,30	
1,6	77,26	
2,0	72,14	
2,3	72,37	
2,6	83,16	
3,0	71,72	
3,3	70,87	

Как видно из таблиц 1, 2, 3 при попарном анализе D_{32} для всех экспериментов $t_{\text{расчётное}}$ находится между диапазонов $(-\infty; -t_{\text{табличное}}) \cup (t_{\text{табличное}}; +\infty), (t_{\text{табличное}} = 2,26),$ поэтому нулевая гипотеза $H_0: q_x = q_y$ о равенстве средних не отвергается на уровне значимости 0,05. Во всех расчётах коэффициент r_{xy} имеет тесноту связи от заметной до близкой к

функциональной, что даёт хорошее согласование по виду распределения реализованного алгоритма совместной обработки наиболее близкого приборааналога.

выводы

- 1. Проанализированы оптические методы контроля параметров дисперсных сред, проведён анализ существующих методов и приборов, в результате для исследования выбраны два основных оптических метода (ММУ и МСП).
- 2. Разработаны и реализованы универсальные алгоритмы обработки исходной информации об ослаблении зондирующего излучения дисперсной средой, полученной с помощью выбранных оптических методов.
- 3. Определены «узкие места» в расчётах для выбранных оптических методов, в результате чего было принято для повышения производительности: в модифицированном ММУ реализовать параллельный алгоритм; в ТВСМ применить методы оптимизации вычислительных процессов.
- 4. Разработан и реализован алгоритм для поиска решения в виде многопараметрической функции, что позволило в случае неустановившихся течений и быстроменяющейся обстановке образования и распространения аэрозолей определять вид функции распределения частиц по размерам и соответствующие параметры дисперсной среды.
- 5. Разработан и реализован алгоритм совместной обработки исходных данных, полученных с помощью выбранных оптических методов, позволяющий расширить диапазон по размеру частиц и повысить информативность об исследуемой дисперсной среде.
- 6. Реализован программный комплекс, который позволяет с большой скоростью (до 10000 точек за 5 минут) обрабатывать исходную информацию, полученную с помощью выбранных оптических методов контроля и получать функцию распределения частиц по размерам, в том числе, в виде многопараметрической функции.

ОСНОВНЫЕ ПУБЛИКАЦИИ ПО ТЕМЕ ДИССЕРТАЦИИ В изданиях, входящих в перечень ВАК

- 1. Жирнов, А.А. Разработка автоматизированного алгоритма обработки файлов эксперимента и его применение в модифицированном методе малоуглового рассеяния / А.А. Жирнов // Научно-технический вестник Поволжья. 2015. № 1 С. 85-88.
- 2. Жирнов, А.А. Параллельные вычисления в методе малоуглового рассеяния / А.А. Жирнов, И.Р. Ахмадеев, О.Б. Кудряшова // Вестник компьютерных и информационных технологий. 2015. № 8. С. 46-50.
- 3. Жирнов, А.А. Модификация турбидиметрического высокоселективного метода для измерения быстропротекающих процессов / А.А. Жирнов, С.С. Титов, О.Б. Кудряшова // Информационно-управляющие системы. 2016. № 3. С. 95-99.
- 4. Жирнов, А.А. Установка для исследования динамики среднего размера частиц субмикронных аэрозольных сред / Э.А. Мецлер, С.С. Титов, А.А. Жирнов, А.А. Павленко // Датчики и системы. 2016. № 11. С. 52-58.
- 5. Жирнов, А.А. Границы применимости высокоселективного турбидиметрического метода / А.А. Жирнов, Э.А. Мецлер, С.С. Титов, А.А.

Павленко, О.Б. Кудряшова // Ползуновский вестник. – 2016. – Т. 1, № 4. – С. 55-58.

6. Жирнов, А.А. Особенности измерений ослабления лазерного излучения в оптически плотных субмикронных дисперсных средах / Э.А. Мецлер, С.С. Титов, А.А. Жирнов, А.А. Павленко, В.А. Архипов // Ползуновский вестник. – 2016. – Т. 1, № 4. – С. 49-54.

Патенты и свидетельства

- 1. Жирнов, А.А. Определение параметров распределения частиц дисперсной среды по размерам в модифицированном методе малоуглового рассеяния. Свидетельство о государственной регистрации программы для ЭВМ № 2016615899, заявка № 2016613349, дата рег. 02.06.2016 г. / Кудряшова О.Б., Жирнов А.А.
- 2. Жирнов, А.А. Программа для расчета коэффициента спектральной прозрачности. Свидетельство о государственной регистрации программы для ЭВМ № 2016661974, заявка № 2016619571, дата рег. 26.10.2016 г. / Кудряшова О.Б., Жирнов А.А.

В других научных изданиях

- 1. Жирнов А.А. Программный комплекс расчёта параметров конденсированных частиц в методах диагностики процессов образования и распространения аэрозольных сред / Жирнов А.А., Павленко А.А., Кудряшова О.Б. // Материалы и технологии XXI века: доклады III Всероссийской научно-практической конференции молодых ученых и специалистов. Бийск, 2013. С. 19-23.
- А.А. Численный метод и решении 2. Жирнов алгоритм В залачи восстановления функции распределения частиц аэрозоля по размерам / Жирнов А.А., Кудряшова О.Б. // Актуальные проблемы современной сплошных небесной механики сред И механики: материалы V Международной молодежной научной конференции. - Томск, 2015. - С. 72-73.
- Жирнов А.А. Модифицированный метод малоуглового рассеяния: проблемы и пути решения / Жирнов А.А., Ахмадеев И.Р., Павленко А.А., Кудряшова О.Б. // Информационные технологии в науке, экономике и образовании: материалы Всероссийской научно-практической конференции. – Бийск – Кизляр, 2013. – С. 45-47.
- 4. Жирнов А.А. Многопараметрическая функция распределения частиц по размерам в турбидиметрическом высокоселективном методе / Жирнов А.А., Титов С.С., Кудряшова О.Б. // Аэрозоли Сибири: тезисы докладов XXII Рабочей группы. Томск, 2015. С. 64.
- 5. Жирнов А.А. Автоматизация определения дисперсных характеристик аэрозоля в оптических измерениях / Жирнов А.А., Титов С.С., Кудряшова О.Б. // Аэрозоли Сибири: тезисы докладов XXI Рабочей группы. Томск, 2014. С. 81.
- 6. Жирнов А.А. Автоматизация обработки результатов метода малоуглового рассеяния / Жирнов А.А., Ахмадеев И.Р., Кудряшова О.Б. // Перспективы создания и применения конденсированных высокоэнергетических материалов: доклады V Всероссийской научно-технической конференции молодых ученых. Бийск, 2014. С. 194-198.

- 7. Жирнов A.A. Автоматизация И оптимизация турбидиметрического высокоселективного метода для определения дисперсных характеристик аэрозольных сред / Жирнов А.А., Титов С.С., Кудряшова О.Б. // Перспективы создания И применения конденсированных высокоэнергетических материалов: материалы докладов VI Всероссийской научно-технической конференции молодых ученых. – Бийск, 2016. – С. 188-192.
- Жирнов А.А. Optical methods and algorithms for determination of fine aerosol parameters / Титов С.С., Павленко А.А. Архипов В.А., Бондарчук С.С., Ахмадеев И.Р., Мецлер Э.А., Жирнов А.А. // Dust 2014: Book of Abstracts International Conference on Atmospheric Dust. – Италия, 2014. – С. 417.
- 9. Жирнов А.А. Бесконтактные дистанционные методы определения параметров гетерогенных сред / Титов С.С., Павленко А.А., Архипов В.А., Ахмадеев И.Р., Бондарчук С.С., Мецлер Э.А., Жирнов А.А. // Химия под знаком сигма: исследования, инновации, технологии: сборник тезисов V Всероссийской научной молодежной школы-конференции. – Омск, 2016. – С. 75-76.
- 10. Жирнов А.А. Алгоритм автоматизированной обработки модулированных сигналов, регистрируемых в оптических методах измерения / Жирнов А.А., Кудряшова О.Б. // Фотоника и оптические технологии: материалы Молодежной конкурс-конференции. Новосибирск, 2014. С. 52.

Подписано в печать 05.06.2018г.

Формат А5. Бумага офсетная. Печать лазерная. Тираж 120 экз. Заказ №05/06/18 отпечатано в типографии «Аквамарин» 634050, г. Томск, Московский тракт 2г. Т. 933-529