A	.								вре						
=															
A	n														
Δu	+2														
"															
						П				Т		Т	Т	Т	
						П					П		Т	Т	
						П					П				
						\Box					П	T			
П						\Box				\top	П	寸	\top	\top	П
П	\neg					\Box	\top				П	\top			
П			\vdash	\top		\Box				\top	П	T	\top		
П						\Box		П		\top	Н	\top	\top	\top	П
Н	\neg		\vdash	\top		\vdash	_				H	\pm	+		
Н	\dashv		\vdash	+		+				+	H	\pm	+	+	Н
\Box			\vdash			+				+	Н	\pm	+	+	T
			\vdash			+				+	\vdash	\pm	+	+	1/
_	w 4														
m_1		Г													
m ₁ :	обход														
m ₁ :															
m ₁ : нес	обход _{k2} =														
m ₁ : нес	обход _{k2} =														
m ₁ : нес	обход _{k2} =														
m ₁ : нес	обход _{k2} =														
m ₁ : нес	обход _{k2} =														
m ₁ : нес	обход _{k2} =														
m ₁ : нес	обход _{k2} =														
m ₁ : нес	обход _{k2} =														
m ₁ : нес	обход _{k2} =														
m ₁ : нес	обход _{k2} =														
m ₁ : нес	обход _{k2} =														
, нес	обход _{k2} =														
m ₁ : нес	обход _{k2} =														
m ₁ : нес	обход _{k2} =														
m ₁ : нес	обход _{k2} =														

12

Национальный исследовательский Томский политехнический университет Отделение естественных наук ШБИП

Отчет по лабораторной работе МодК – 08

ПРУЖИННЫЙ МАЯТНИК на наклонной плоскости

	• • • • •	Фамилия И.О.	
Ī	ДОПУСК	ДАННЫЕ	РЕЗУЛЬТАТЫ
ſ			
	дата, подпись преподавателя	дата, подпись преподавателя	дата, подпись преподавателя

Студент(ка)

Цель работы: изучение особенностей затухания колебаний пружинного маятника за счет трения скольжения на наклонной плоскости. Определение модуля силы трения и работы силы трения скольжения. Исследование зависимости декремента затухания от времени и физических характеристик маятника.

гр.

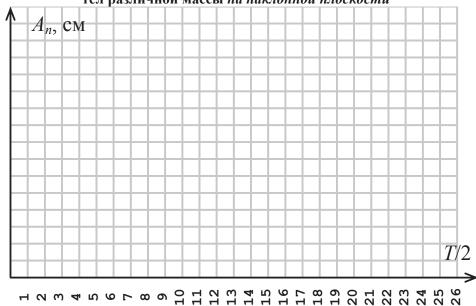
Краткое теоретическое содержание работы

Пружинный маятник –
Силы, действующие на пружинный маятник на наклонной плоскости
Начало координат совмещено с точкой
Дифференциальное уравнение одномерных колебаний пружинного маятника на наклонной плоскости:
@ THV 2022

© TПУ, 2022

МодК – 08

где т—	, k –
μ –	_, α –
Решение (зависимость координ	наты тела от времени):
x(t) =	при $(n-1)T/2 \le t \le nT/2, n = 1, 2, 3$
где $A_n =$	
$\Delta A =$	
$X_{0\pm} = \begin{cases} X_{0+} = \\ X_{0-} = \end{cases}$	n — нечетное, n — четное,
$\Delta X_0 =$	
Работа силы трения:	
из определения работы $A_{mp} =$	
где S-	
из закона сохранения энергии A_0 где A_0 –	$A_{mp} = \underbrace{\qquad \qquad }_{, x_K - } \underbrace{\qquad \qquad }_{}$
Δh –	


Рабочие формулы

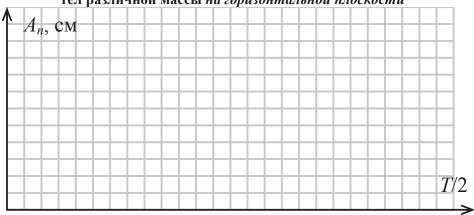
Амплитуда A_n и положение равновесия $X_{0\pm}$ для n-го полупериода колебаний пружинного маятника на наклонной плоскости

$$A_n = X_{0\pm} =$$
 где X_{\max} и X_{\min} — _____ Косинус угла наклона α плоскости длиной L и высотой H (из прямо-угольного треугольника):

$$\sin \alpha = \frac{H}{L} \qquad \Rightarrow \qquad \cos \alpha =$$

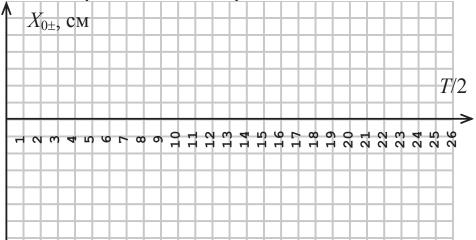
Зависимость АМПЛИТУДЫ от времени колебаний тел различной массы на наклонной плоскости

Зависимости ПОЛОЖЕНИЯ РАВНОВЕСИЯ от времени колебаний



Зависимость координаты тела от времени

для тела большой массы на горизонтальной плоскости и для тела малой массы на наклонной плоскости x, см



Зависимость АМПЛИТУДЫ от времени колебаний тел различной массы на горизонтальной плоскости

Зависимость ПОЛОЖЕНИЯ РАВНОВЕСИЯ от времени колебаний

тел различной массы на горизонтальной плоскости

10

Эксперимент

В данной работе с помощью средств компьютерной графики моделируется движение пружинного маятника на деревянной наклонной плоскости. Трение в системе представлено только силой трения скольжения тела о наклонную плоскость. Остальные виды трения отсутствуют.

Начальные данные

Вариант №

Наклонная	плоскость	Тело		
Материал	Длина <i>L</i> , см	Материал	Коэффициент	
дерево		1	трения µ	
дерево				

 $g = 981 \text{ cm/c}^2$

	ысота накло плоскости <i>Е</i>				$M_{L^2-H^2}/L_{L^2-H^2}$	чение)
Масса тела <i>т</i> , г	Коэффициент жесткости пружины k, Н/м	Теоретическое значение периода колебаний T_{TEOP} , с	Количество колебаний N (вдвое меньше, чем количество полупериодов)	Время <i>t</i> , с	Экспериментальное значение периода колебаний T_{\Im} , с	Относительная погрешность периода. %

n (№ полупериода)		інаты тела _п , см	Положение равновесия $X_{0\pm},$ см	V зменение положения равновесия ΔX_0 , см	Длина пути <i>s</i> _n , см	Амплитуда A_n , см	Vзменение амплитуды ΔA , см	Декремент A_n/A_{n+2}
0	max	$A_0 = 40$						
1	min							
2	max							
3	min							
4	max							
5	min							
6	max							
								2

n	χ_{j}	ı, CM	Х₀±, см	ΔX_0 , cm	S_n , CM	A_n , cm	ΔA , cm	A_n/A_{n+2}
7	min							
8	max							
9	min							
10	max							
11	min							
12	max							
13	min							
14	max							
15	min							
16	max							
17	min							
18	max							
19	min							
20	max							
21	min							
22	max							
	нечная ината \mathcal{X}_K							
коорд		•	<u>।</u> начение:					
Модуль силы трения:				*			**	

Модуль работы силы трения

I	из от	пределе	ния работы		из закона сохра	анения энергии	ная Ть,
	Полный п см	уть S ,	Модуль ра Н∙м	аботы,	***Изменение высоты Δh между начальным и конечным положением тела, СМ	Модуль работы, Н∙м	относительн погрешност %

*** $\Delta h = \Delta x \cdot H/L$, где $\Delta x = |A_0 - x_K|$.

Высота наклонной	Модуль силы трения (теоретическое значение)
плоскости H , см	$ F_{mp} = \mu mg\sqrt{L^2 - H^2}/L$

10		OM	V	AV ou	c CM	A_n , cm	ΔA , cm	A_n/A_{n+2}
11		, CM	<i>X</i> _{0±} , см	ΔX_0 , cm	S_n , CM	A_n , CM	ΔA, CM	A_{n}/A_{n+2}
	mın							
12	max							
13	min							
14	max							
15	min							
16	max							
17	min							
18	max							
19	min							
20	max							
21	min							
22	max							
23	min							
24	max							
25	min							
26	max							
27	min							
28	max							
29	min							
30	max							
31	min							
Ко	нечная							
коорд	ината \mathcal{X}_K							
L	C	реднее з	начение:					
	Мод	уль силь	трения:	*			**	
		-	-		-1.1	/2	** F	1-1/2

 $* |F_{mp}| = k\Delta X_0/2 \qquad ** |F_{mp}| = k\Delta A/2$

Модуль работы силы трения

из определе	ения работы	из закона сохра	ная ть,	
Полный путь S , см	Модуль работы, Н∙м	***Изменение высоты Δh между начальным и конечным положением тела, СМ	Модуль работы, Н∙м	относительн погрешност %

*** $\Delta h = \Delta x \cdot H/L$, где $\Delta x = |A_0 - x_K|$.

Модуль работы силы трения

10 max

из определе	ения работы	из закона сохра	анения энергии	ная ть,
Полный путь S , см	Модуль работы, Н∙м	***Изменение высоты Δh между начальным и конечным положением тела, СМ	Модуль работы, Н·м	относительн погрешност %

*** $\Delta h = \Delta x \cdot H/L$, где $\Delta x = |A_0 - x_K|$.

I	Высота наклонной					Модуль силы трения (теоретическое значение)							
	плоскости Н, см				$ F_{mp} = \mu mg\sqrt{L^2 - H^2}/L$								
			I		T .		ı		ı			_	
Масса тела	же	ффициент сткости /жины <i>k</i> , Н/м	$\frac{1}{1}$ гкости периода $\frac{1}{1}$ колебани		Количес колебан N (вдвое менчем колич полуперис	ний пьше, ество		мя <i>t</i> , с		периментальна значение периода пебаний $T_{\mathcal{P}}$		сител ешно иода.	
					1								
и (№ полупериода)	x_n , см		$^{\rm B}$ Положение равновесия $X_{0\pm},{ m cm}$		Изменение положения равновесия ΔX_0 , см		Длина пути s_n , см	Амплитуда A_n , см		Изменение амплитуды Δ4, см		Декремент A_n/A_{n+2}	
0	max	$A_0 = 40$	0										
1	min												
2	max												
3	min												
4	max												
5	min												
6	max												
7	min				_								
8	max												
9	min												

Масса тела	Коэффициент жесткости пружины k , $H/м$	Теоретическое значение периода колебаний T_{TEOP} , с	Количество колебаний N (вдвое меньше, чем количество полупериодов)	Время <i>t</i> , с	Экспериментальное значение периода колебаний T_{\ni} , с	сител ешнс иола.

и (№ полупериода)	Координаты тела x_n , см		Положение равновесия $X_{0\pm}$, см	Изменение положения равновесия ΔX_0 , см	Длина пути <i>s</i> _n , см	Амплитуда Ап, см	Изменение амплитуды Δ4, см	Декремент A_n/A_{n+2}
0	max	$A_0 = 40$						
1	min							
2	max							
3	min							
4	max							
5	min							
6	max							
7	min							
8	max							
9	min							
10	max							
11	min							
12	max							
13	min							
14	max							
15	min							
16	max							
17	min							
18	max							
19	min							

n	X_{t}	ı, CM	Х₀±, см	ΔX_0 , cm	S_n , CM	A_n , cm	ΔA , cm	A_n/A_{n+2}
20	max							
21	min							
22	max							
23	min							
Ко	нечная							
коорд	координата \mathcal{X}_K							
	Среднее значение:							
Модуль силы трения:			*			**		

Модуль работы силы трения

The second secon										
из определе	ения работы	из закона сохра	анения энергии	ная гъ,						
Полный путь S, см	Модуль работы, Н∙м	***Изменение высоты Δh между начальным и конечным положением тела, СМ	Модуль работы, Н∙м	относительная погрешность,						

*** $\Delta h = \Delta x \cdot H/L$, где $\Delta x = |A_0 - x_K|$.

	ысота накло плоскости <i>Н</i>		-	Модуль силы трения (теоретическое значение) $ F_{mp} = \mu mg \sqrt{L^2 - H^2}/L$					
Масса тела <i>т</i> , г	Коэффициент жесткости пружины k , H/M	Теоретическ значение периода колебани T_{TEOP} , с	а <i>N</i> ий (вдвое меньше,	Время <i>t</i> , с	Экспериментальное значение периода колебаний T_{\Im} , с	Относительная погрешность	периода, %		

и (№ полупериода)	Координаты тела x_n , см $\max A_0 = 40$		Положение равновесия $X_{0\pm},$ см	Изменение положения равновесия ΔX_0 , см	Длина пути s", см	Амплитуда A_n , см	Изменение амплитуды Δ4, см	Декремент A_{n}/A_{n+2}
0	max	$A_0 = 40$						
1	min							

n	χ_{r}	, CM	Х₀±, см	ΔX_0 , cm	S_n , CM	A_n , cm	ΔA , cm	A_n/A_{n+2}
2	max							
3	min							
4	max							
5	min							
6	max							
7	min							
8	max							
9	min							
10	max							
11	min							
12	max							
13	min							
14	max							
15	min							
16	max							
17	min							
18	max							
19	min							
20	max							
21	min							
22	max							
23	min							
24	max							
25	min							
26	max							
27	min							
	нечная							
коорд	ината x_K	nелнее 21	<u> </u> начение:					
				*			**	
	тугод	уль силь	трения:		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			1 4 4/2