Выводы:	Национальный исследовательский Томский политехнический университет Отделение естественных наук ШБИП
	Отчет по лабораторной работе МодК – 05
	СЛОЖЕНИЕ КОЛЕБАНИЙ. БИЕНИЯ
	Студент(ка) гр
	ДОПУСК ДАННЫЕ РЕЗУЛЬТАТЫ
	дата, подпись преподавателя дата, подпись преподавателя дата, подпись преподавателя
	<u>Цель работы:</u> изучение особенностей движения тела, участвующего в двух одинаково направленных колебательных дви жениях. Определение частоты собственных колебаний маятника и амплитуд складываемых колебаний из биений. <u>Краткое теоретическое содержание работы:</u>
	Под <i>сложением колебаний</i> понимают
	Рассмотрим сложение двух одинаково направленных колебани $x_1 = A_1 \cos(\omega_1 t + \varphi_1)$ и $x_2 = A_2 \cos(\omega_2 t + \varphi_2)$ с амплитудами A_1 и A_2 , частотами ω_1 и ω_2 , начальными фазами φ_1 и φ_2 . Фаза и амплитуда результирующего движения равны:
	$\operatorname{tg}\Phi(t)=$
	$A^2 =$
	Гармонические колебания называются когерентными, если
2	© TПУ, 2022

Это возможно, если
Гармонические колебания называются <i>некогерентными</i> , если
Это возможно, если
Биениями называется
В этом случае результирующее колебание можно записать в виде:
x =
$A^2 =$
Частота колебаний Ω≈
Частоот биения называют
Наблюдая биения, можно определить наибольшую $A_{ m max}$ и наимен

Наблюдая биения, можно определить наибольшую A_{\max} и наименьшую A_{\min} амплитуду результирующих колебаний. Отсюда легко определить амплитуды складываемых колебаний

Если частота ω_2 одного из складываемых колебаний известна, измерив наибольшую A_{\max} и наименьшую A_{\min} амплитуды и частоту Ω суммарных колебаний можно определить параметры складываемых колебаний — амплитуды A_1 , A_2 и неизвестную частоту ω_1 по формуле:

Время N колебаний t , с	Собственная частота маятника ω_1 , рад/с	Относительная погрешность δω ₁	Абсолютная погрешность $\Delta\omega_1$

• Среднее значение погрешность $\Delta \omega_{1o\partial H}$ однократных измерений частоты собственных колебаний ω_1 :

$$\Delta\omega_{1o\partial\mu} = \frac{1}{n}\sum_{i=1}^{n}\Delta\omega_{1i} =$$

Случайная ошибка Δω_{1сл}:

 $\Delta\omega_{1c\pi}=t_{\alpha n}\cdot\sigma_{3}=$ где коэффициент Стьюдента $t_{\alpha n}=$ _____; доверительная вероятность $\alpha=0,99.$

• Погрешность $\Delta\omega_{1cp}$ частоты собственных колебаний:

$$\Delta\omega_{1cp} = \sqrt{(\Delta\omega_{1c\pi})^2 + (\Delta\omega_{1o\partial H})^2} =$$

Окончательный результат:

$$A_1 = A_{1cp} \pm \Delta A_1 =$$
 _____ \pm ____ см; $A_2 = A_{2cp} \pm \Delta A_2 =$ _____ \pm ____ см; $\omega_1 = \omega_{1cp} \pm \Delta \omega_{1cp} =$ _____ \pm ____ рад/с.

Теоретическое значение

 $\omega_1 =$ _____ рад/с.

$$\sigma_3 = \sqrt{\frac{\sum_{i=1}^n (\omega_{1cp} - \omega_{1i})^2}{n(n-1)}} =$$

n – количество значений в таблице 3, удовлетворяющих критерию биений.

• Относительная погрешность $\delta\omega_1$ однократного измерения частоты собственных колебаний ω_1 (вычисляется для каждого опыта отдельно):

$$\delta\omega_1 = \sqrt{\left(\frac{\Delta t}{t}\right)^2 + (3\delta_1)^2 + (2\delta_2)^2}$$
$$\Delta t = \alpha \cdot \Delta t_{np} = 9.9 \cdot 10^{-3} c,$$

где доверительная вероятность $\alpha = 0.99$; цена деления прибора $\Delta t_{np} = 1$ мс.

Значения времени взять из табл. 3 для $\delta < 0,1$. Значения $\delta \omega_1$ записать в табл. 4.

• Абсолютная погрешность $\Delta \omega_1$ однократных измерений частоты собственных колебаний ω_1 (вычисляется для каждого опыта отдельно):

$$\Delta\omega_1 = \omega_1 \cdot \delta\omega_1$$

Таблица 4. Расчет погрешности частоты собственных колебаний

Время N колебаний t , c	Собственная частота маятника ω_1 , рад/с	Относительная погрешность δω ₁	Абсолютная погрешность $\Delta\omega_1$

Эксперимент

В данной работе с помощью средств компьютерной графики моделируется процесс сложения двух гармонических колебаний: собственных колебаний пружинного маятника по закону $x_1 = A_1 \cos(\omega_1 t)$ и гармонических колебаний внешней силы по закону $x_2 = A_2 \cos(\omega_2 t)$ ($A_1 > A_2$). Оба колебания совершаются в одном направлении. Сопротивление среды отсутствует. Сила тяжести и все компенсирующие ее силы направлены перпендикулярно направлению движения маятника и не оказывает влияния на движение.

Начальные данные

Маятник	т, кг	<i>k</i> , Н/м	Частота собственных колебаний пружинного маятника	Теоретическое значение ω_1 , рад/с
<u>№</u>			$\omega_1 = $ (формула)	

ЭТАП 1. Определение диапазона биений

Таблица 1. Анализ характера результирующего движения по графикам

В области частот 0-10 рад/с внешней силы получены графики зависимости координаты результирующего движения тела от времени. Их можно отнести к следующим видам движения:

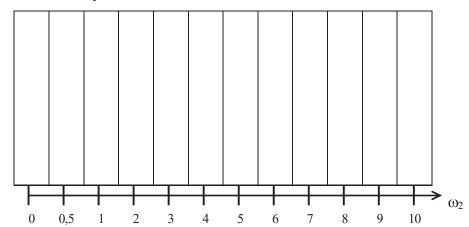


Таблица 2. Диапазон частот для различных видов результирующего движения

(по результатам таблицы 1 с учетом уточнения границ диапазона биений)

Диапазон частот ∞2	Начало	Конец
внешней силы	диапазона, рад/с	диапазона, рад/с
Колебания с переменным		
положением равновесия		
Негармонические		
колебания		
БИЕНИЯ		
Негармонические		
колебания		
Колебания с переменным		_
положением равновесия		

Характерные графики различных видов движения:

Колеба	ния с переменным положением равновесия
	$\uparrow x$
при	
	\rightarrow
$\omega_2 = $ рад/с	· ·
	БИЕНИЯ
	$\uparrow x$
при	
	t
$\omega_2 = $ рад/с	
	II
	Негармонические колебания
	^ <i>x</i>
ПОИ	
при	
тон/о	1
$\omega_2 = $ рад/с	
i	

Обработка результатов:

• Среднеквадратичное отклонение амплитуд A_1 и A_2 :

$$\sigma_1 = \sqrt{\frac{\sum_{i=1}^{n} (A_{1cp} - A_{1i})^2}{n(n-1)}} =$$

n – количество значений в таблице 3.

$$\sigma_2 = \sqrt{\frac{\sum_{i=1}^{n} (A_{2cp} - A_{2i})^2}{n(n-1)}} =$$

n – количество значений в таблице 3.

• Случайная ошибка ΔA_{1cn} , ΔA_{2cn} и ошибка однократного измерения ΔA_o :

$$\Delta A_{1cn} = t_{\alpha n} \cdot \sigma_1 =$$

$$\Delta A_{2cn} = t_{\alpha n} \cdot \sigma_2 =$$

$$\Delta A_o = \alpha \cdot \Delta x_{np} =$$

где коэффициент Стьюдента $t_{\alpha n} = _$ _____; доверительная вероятность $\alpha = 0.99$; цена деления прибора $\Delta x_{nn} = _$ см.

• Погрешность измерения амплитуд ΔA_1 , ΔA_2 :

$$\Delta A_1 = \sqrt{(\Delta A_{1c\pi})^2 + (\Delta A_o)^2} =$$

$$\Delta A_2 = \sqrt{(\Delta A_{1c\pi})^2 + (\Delta A_o)^2} =$$

• Относительная погрешность $\delta_1, \, \delta_2$ амплитуд:

$$\delta_1 = \left(\frac{\Delta A_1}{A_{1cp}}\right) =$$

$$\delta_1 \cdot 100\% =$$

$$\delta_2 = \left(\frac{\Delta A_2}{A_{2cp}}\right) =$$

$$\delta_2 \cdot 100\% =$$

• Среднеквадратичное отклонение частоты собственных колебаний ω_1 (для тех опытов, для которых выполнен критерий биений)

δ , % $ \omega_2 - \omega_{1cp} $								
8, %								
8								
$ω_1$, pa χ /c								
A_2 , cm								
A_1 , cm A_2 , cm a_1 , a_2								
Amin, cM								
Amax, cm								
T, c $\Omega,$ $A_{\text{max}},$ $A_{\text{min}},$ $A_{\text{min}},$ $A_{\text{min}},$								
T, c								
t, c								
N								
$\mathbb{N}_{\mathbb{Q}}$ ω_2 , $\mathbf{pa}_{\mathbb{Q}}/\mathbf{c}$								
Ž	33	34	35	36	37	38	39	40

В таблице 3 выделите строки, для которых $\delta < 0,1$

	Средние значения***
Амплитуда собственных колебаний A_{1cp} , см	
Амплитуда внешней силы A_{2cp} , см	
Собственная частота маятника $\omega_{1\ cp},$ рад/с	

чение ω_1 считать, используя данные, для которых выполняется критерий биений $(\delta < 0,1)$. **** Средние значения A_1 и A_2 считать, используя данные всей таблицы 3. Среднее зна-

 ∞

MoдK-05

ЭТАП 2. Биения. Определение характеристик складываемых колебаний

Таблица 3. Частоты и амплитуды складываемых колебаний

$ \omega_2 - \omega_{1cp} $				
% ,йинэпо йисэтидУ				
б йинэиб йидэтидЖ****				
o/Hød				
, і шастота маятника ш _і ,				
***Собственная				
силы А ₂ , см				
йэншэна ядүтиппмА				
колебаний А ₁ , см				
сооственных				
ядутиппмА				
мэ "піт Ава Апана				
ввнапаминиМ				
амплитуда А _{тах} , см				
Максимальная				
о, рад/с				
** Частота колебаний				
o ,T				
*Период колебаний				
3				
4 йинвдэгоя V вмэq 4				
У йинкдэцо х				
Количество				
силы Ф2, рад/с				
йэншэна втотэвР				
Š	1	2	3	4

*** W1

← Начало таблицы

Чтобы определить период T надо время колебаний t разделить на количество колебаний N: T=t/N.

^{,**} Частота колебаний обратно пропорциональна периоду: $\Omega = 2\pi \ / \ T$

 $[\]begin{array}{l} *** \\ \omega_1 \approx 2\Omega \frac{A_{\max}}{A_{\max}+A_{\min}} - \omega_2 \frac{A_{\max}-A_{\min}}{A_{\max}+A_{\min}} (\text{или } \omega_1 \approx 2\Omega - \omega_2 \text{ при } \omega_2 - \omega_1 \rightarrow 0, \text{ когда } A_{\min} \text{ невозможно измерить}) \\ **** \\ \delta = \left| \Delta \omega \right| /\overline{\omega}, \text{ где } \Delta \omega = \omega_1 - \omega_2, \overline{\omega} = 0, \dots (\lambda_1 + \omega_2), \delta < 0, 1. \end{array}$

$\left \omega_2-\omega_{1cp}\right $														
8, %														
8														
ω_1 , $pa \pi/c$														
А2, см														
A_1 , cm A_2 , cm														
Amin, cM														
Amax, cM														
Ω, рад/с														
Т, с														
t, c														
N														
ω ₂ , рад/с														
Ž	8	9	7	~	6	10	11	12	13	14	15	16	17	18

$ \omega_2 - \omega_{1cp} $															
8, %															
8															
ω_1 , pa μ/c															
A_1 , cm A_2 , cm															
A_1 , cm															
Amin, cM															
Amax, cM															
Ω, paд/c															
Т, с															
t, c															
N															
ω ₂ , paμ/c															
Š	19	20	21	22	23	24	25	26	27	28	29	30	31	32	7

Продолжение таблицы \rightarrow

9

MoдK-05

← Начало таблицы

Продолжение таблицы \rightarrow