Среда	1	2	Собственная частота ω_0 ,		
	Ω_{pes} , рад/с	Ω_{pes} , рад/с	рад/с		
Теоретиче- ское значение					
Эксперимен- тальное зна-			*		
чение					

^{*} из графика зависимости начальной фазы установившихся колебаний от частоты вынуждающей силы.

Выводы:		 	

Национальный исследовательский Томский политехнический университет Отделение естественных наук ШБИП

Отчет по лабораторной работе МодК – 03 ВЫНУЖДЕННЫЕ КОЛЕБАНИЯ

311 ()=	Фамилия И.О.	
ДОПУСК	ДАННЫЕ	РЕЗУЛЬТАТЫ
дата, подпись преподавателя	дата, подпись преподавателя	дата, подпись преподавателя

гp.

Цель работы: изучение особенностей вынужденного колебательного движения. Построение резонансной кривой. Определение частоты резонанса.

Краткое теоретическое содержание работы

Стулент(ка)

Вынужденными колебаниями называют_____

Ели на тело, подвешенное на пружине, действуют *сила упругости*, *сила сопротивления среды* и *внешняя вынуждающая сила*, то согласно 2 закону Ньютона уравнение движения маятника примет вид:

Или в виде неоднородного дифференциального уравнения:

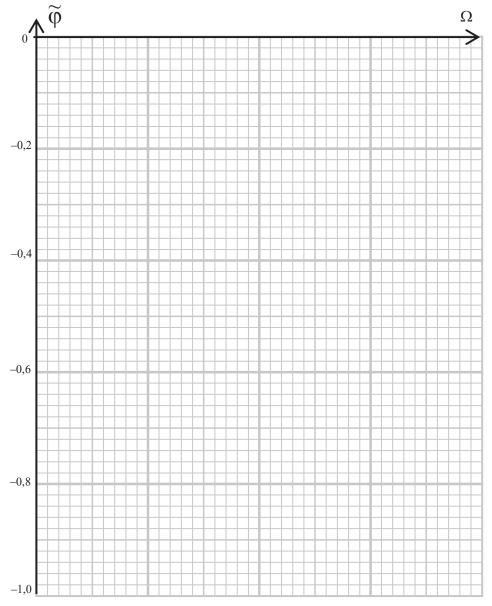
где
$$m-$$
 ; $\beta-$; $\beta-$

 Ω – частота, $T=\frac{2\pi}{\Omega}$ – период вынуждающей силы.

Полное решение этого уравнения вынужденных колебаний в зависимости от начальных условий примет вид:

$$x=$$
 где *амплитуда* $A=$

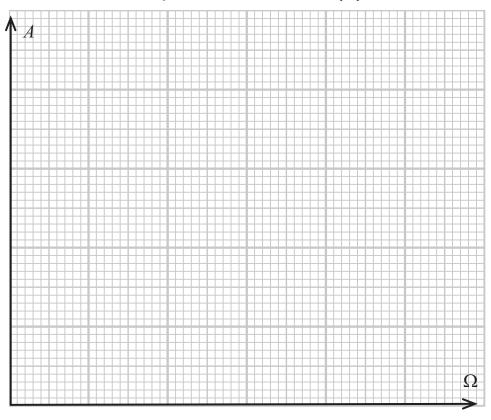
Мол K - 03


гельных движений:	
Вид колебательного движения в этом случае в	выглядит:
установившимися колебаниями называют	Отметьте на ри- сунке процесс установления коле- баний и уже уста- новившиеся колеба- ния и затухающие колебания, а так- же этапы колеба- тельного движения
Амплитуда установившихся колебаний описы	_
A = -	
2. Явление резонанса: Резонансом называют	

Зависимость амплитуды установившихся колебаний от частоты вынуждающей силы $A=A(\Omega)$ имеет максимум при значении резонансной частоты Ω_{pes} :

$$\Omega_{pes} =$$

Зависимость начальной фазы установившихся колебаний (разности фаз между затухающими и установившимися колебаниями) $\widetilde{\phi}$


в единицах π от частоты вынуждающей силы Ω

Из графиков: $\omega_0 =$

рад/с.

Зависимость амплитуды установившихся колебаний от частоты вынуждающей силы $A=A(\Omega)$

Из графиков: Ω_{pes} = Ω_{nes} =

рад/с (среда 1);

рад/с (среда 2).

3. Начальная фаза установившихся колебаний:

Начальная фаза установившихся колебаний характеризует	

Экспериментально фазу установившихся колебаний можно определить, измерив амплитуду A установившихся колебаний и координату маятника x(t) в заданный момент времени, тогда:

 $\varphi_{\vartheta} =$

 $\varphi_m =$

Эксперимент

В данной работе с помощью средств компьютерной графики моделируется процесс вынужденных колебаний пружинного маятника по закону $x = A_0 \mathrm{e}^{-\beta t} \mathrm{cos} \ \omega t + A \mathrm{cos} (\Omega t + \phi)$. Движение происходит **под действием силы упругости, силы сопротивления среды и внешней вынуждающей силы**, изменяющейся по гармоническому закону $F(t) = F_0 \mathrm{cos} \ \Omega t$. Сила тяжести и все компенсирующие ее силы направлены перпендикулярно направлению движения маятника (перпендикулярно плоскости экрана) и не оказывают влияния на движение.

Начальные данные

Вариант №

Длительность эксперимента t = с

Выбранная среда	Вязкость η, кг/(м·с)	Масса <i>т</i> , кг	Радиус R, м	Коэффициент жесткости k, H/м	*Теоретическое значение β_m, c^{-1}	Собственная ча- стота ω_0 , рад/с	** Резонансная частота Ω_{pes} ,
1.							
2.							

*
$$\beta_m = \frac{3\pi R}{m} \eta$$
; ** $\Omega_{pes} = \sqrt{\omega_0^2 - 2\beta^2}$

Результаты измерений для среды 2

				_
•	•	•	•	

⁻ длительность эксперимента

^{***} t — длительность эксперимента