

Нанокомпозитные протонпроводящие материалы для создания эффективных каталитических мембранных реакторов: структурные и транспортные характеристики

Скрябин П.И., Беспалко Ю.Н., Еремеев Н.Ф., Садыков В.А.

Новосибирск, 2020

Протонная проводимость

Требования:

- Высокая проводимость
- Химическая устойчивость к парам воды и СО₂, CO, H₂S
- Механическая устойчивость
- Спекаемость
- Высокая подвижность кислорода и протонов в объёме и на поверхности оксида

Решение: - создание нанокомпозитных материалов

Внедрение протонов (система Крегера-Винка):

- $H_2O_{(g)} + V_0^{\cdot \cdot} + O_0^X \leftrightarrow 20H_0^{\cdot}$
- $H_{2(q)} + 2O_0^X \leftrightarrow 2OH_0^{\cdot} + 2e^{-1}$

Применение:

- Мембраны, селективно пропускающие водород для мембранных реакторов
- Протон-проводящие топливные элементы •

Институт катализа им. Г.К. Борескова СО РАН

Подходы к выбору материалов

Создание нанокомпозитов со сплавом никеля-меди приводит в повышению общей проводимости материала за счет увеличения электронной проводимости

Институт катализа им. Г.К. Борескова СО РАН

http://catalysis.ru

3

Получение сложных оксидов и сплава NiCu

Институт катализа им. Г.К. Борескова СО РАН

http://catalysis.ru

1300 °C

- Nd_{5.5}WO_{11.25-8}

4

Получение нанокомпозитов

Механохимическая активация и горячее прессование в среде Ar T = 1100°C, 50 MPa

- NiO

⊕ – CuO

 \varnothing –NiCu Δ - Nd₂O₂(гекс.)

f - Nd₅₅Mo₀₅W₀₅O₁₁₂₅

Ni Cu O

Композит

Nd Mo W O

Nd_{5.5}Mo_{0.5}W_{0.5}O_{11.25}

50

2 Θ [^⁰]

60

70

30

40

Карта элементов: Синий: Nd+W Красный: Ni Зеленый: Cu

3.18Å

2.02Å

20 nm

3.27A

http://catalysis.ru

Раттісle diameter, µт Институт катализа им. Г.К. Борескова СО РАН

3.20Å

Проводимость и кислородная подвижность *T*, °C

Образец	Атмосфера	Температурный	Е _а , кДж/моль	Проводимость при
		диапазон, ⁰С		740ºС, См/см
Nd _{5,5} WO _{11,25}	сухая	370-560	120±3	2·10 ⁻⁵
		560-740	80±2	
	влажная	370-560	124±4	7·10 ⁻⁵
		560-740	79±3	
(Nd _{5/6} La _{1/6}) _{5,5} WO _{11,25}	сухая	280-470	78±3	2.10-4
		470-740	108±4	
	влажная	220-470	73±3	3.10-4
		470-790	84±3	
Nd _{5,5} W _{0,5} Mo _{0,5} O _{11,25}	сухая	280-470	61±4	5.10-4
		470-740	82±3	
	влажная	180-440	54±3	8·10 ⁻⁴
		440-800	79±4	
0,72 T 0,70 0,68 0,66 0,64	-10- -12- -14- -14- -16- -10- -14- -14- -10- -10- -12- -10- -12- -10- -12- -12		NO ₁₁₂₈₄ La ₁₀) ₄₅ WO ₁₁₂₈₄ V _{0.5} MO _{0.6} O ₁₁₂₈₄ () () () () () () () () () () () () ()	Nd _{5.5} WO _{11,255}

2,2

1.2

1,4

1,6

1000/T, 1/K

1,8

2,0

2,2

Институт катализа им. Г.К. Борескова СО РАН

1,0

0,8

15

10

t, [мин]

0,62

0,60 -

slow

middle

1,2

1,4

1,6

1000/T, 1/K

1,8

2,0

6

Создание и тестирование мембраны

http://catalysis.ru

Результаты тестирования

Показана высокая селективность мембраны. Достигнута скорость потока протонов через мембрану – 2-5 мл H₂/(см²мин), что пригодно для коммерческого применения

Данные РФА (а) и ИК-спектроскопии (б) показывают незначительные изменения структуры после тестов, в отличие от известных ранее материалов (в).

900

Институт катализа им. Г.К. Борескова СО РАН

http://catalysis.ru

Выводы

- 1. Разными методами синтезированы однофазные образцы вольфраматов неодима, в том числе допированные молибденом и лантаном со структурой флюорита. Установлено, что проведение мех. активация в течение 20 минут оптимально для формирования требуемой структуры.
- 2. Разработана методика синтеза сплава никеля-меди, которая позволяет получать порошок сплава, состоящий из практически сферических частиц со средним размером 15нм.
- Получены нанокомпозитные материалы на основе вольфраматов неодима со сплавом никеля-меди. Данные РФА и энергодисперсионной спектроскопии подтверждают формирование композита без образования новых фаз.
- 4. Охарактеризованы транспортные свойства полученных материалов. Показана высокая подвижность атомов кислорода как в объеме так и на поверхности. Для оксидов показано наличие трех каналов для диффузии атомов кислорода в объеме. Частичное замещение W на Mo приводит к изменению величины проводимости, кроме того, значения проводимости для полученных композитов значительно увеличиваются.
- 5. Полученные материалы использовались для создания тестовой мембраны для исследования в реакции паровой конверсии этанола. Показана высокая селективность мембраны по водороду, достигнута скорость потока протонов через мембрану до 2-5мл/(см²мин), что превосходит приводимые в литературе значения и представляет интерес с точки зрения практического применения. После проведения тестов деградации материалов мембран не наблюдается.

Институт катализа им. Г.К. Борескова СО РАН