Основные направления исследований лаборатории катализаторов глубокого окисления и группы каталитических превращений оксидов углерода в области получения и использования водорода

<u>Симонов М.Н.*</u>, Арапова М.В., Беспалко Ю.Н., Валеев К.Р., Еремеев Н.Ф., Минюкова Т.П., Павлова С.Н., Скрябин П.И., Смаль Е.А., Тихов С.Ф., Федорова В.Е., Садыков В.А. smike@catalysis.ru

Институт катализа им. Г.К. Борескова СО РАН

Реакции получения водорода из водородсодержащих углеродных топлив Исследования гранулированных катализаторов в разбавленных смесях

Институт катализа им. Г.К. Борескова СО РАН

http://catalysis.ru

2

Структурированные катализаторы получения водорода в реакции паровой конверсии этанола

Керамометаллические катализаторы – новое поколение катализаторов паровой конверсии СО для получения водорода в компактных реакторах

Высокая плотность, развитая макропористая система обеспечивают высокую активность керамометаллических катализаторов при более высокой теплопроводности. Керамометаллы можно изготавливать в виде сложных форм, интегрировать с металлическими конструкциями [ACS Omega. 2020. V.5. N32. P.19928]

Институт катализа им. Г.К. Борескова СО РАН

Протонпроводящие многослойные каталитические мембраны

Преимущества:

- 100 % селективность по водороду
- Низкая стоимость материалов, замена металлических аналогов из Pt, Pd

Паровая конверсия этанола

Достигнута скорость потока протонов через мембрану – **2–5** мл H₂/(см²мин), что пригодно для коммерческого применения

Пористый каталитический слой 5 wt.% Ni+1 wt. % Ru/Sm_{0.15}Pr_{0.15}Ce_{0.35}Zr_{0.3}O_{2-δ}

Пористый и газоплотный функциональный слой нанокомпозита Nd_{5.5}W_{0.5}Mo_{0.5}O_{11,25} +NiCu

тонкий **Ni-Al** прессованный <u>слой</u>

-**Ni/Al** макропристая пеноподложка

шайба из
 нержавеющей
 стали

- Создание нанокомпозита приводит к значительному повышению электронной проводимости конечного материала
- Восстановление в среде
 водорода позволяет получить
 нанокомпозит именно со
 сплавом, при этом
 практически отсутствует
 деградация вольфраматов
- Разработана уникальная методика синтеза сплава CuNi с размером частиц ~15 нм

Твердооксидные топливные элементы с нанокомпозитными катодами

Допированные Sr ферриты-никелаты La – распространенные материалы катодов ТОТЭ с высокими значениями удельной мощности, однако, они не устойчивы к карбонизации и взаимодействуют с электролитом с образованием плохо проводящих фаз. Использование материалов без Sr может повысить стабильность катодного материала.

Анод – Ni/Zr_{0,84}Y_{0,16}O₂ Электролит – Zr_{0,84}Y_{0,16}O₂ Защитный слой – Се_{0,9}Y_{0,1}O₂ • LaNi_{0,6}Fe_{0,4}O₃+Ce_{0,8}Sm_{0,2}O₂ • Pt (образец сравнения)

Катод:

- LaNi_{0,6}Fe_{0,4}O₃+Bi_{1,6}Er_{0,4}O₃

полуэлементы Ni/YSZ|YSZ|YDC получены Анодные В рамках сотрудничества с Центром Энергетических Исследований (Нидерланды).

Микроструктурные исследования методом сканирующей электронной микроскопии поперечного среза с элементным анализом показали оптимальную текстуру функциональных слоев катодов.

Разработка композитных катодов и исследование в режиме ТОТЭ были проведены в ИВТЭ УрО РАН — Богданович Н.М., Пикалова Е.Ю., Шубин К.С., под руководством Бронина Д.И.

Институт катализа им. Г.К. Борескова СО РАН

Твердооксидные топливные элементы с нанокомпозитными катодами

Максимальная мощность ТОТЭ с нанокомпозитными катодами **многократно превышает** мощность аналогичных ячеек с Pt катодами.

Это может объясняться оптимальной микроструктурой, а также тем, что в катодах на основе смешанных проводников с высокой ионной компонентой реакция восстановления кислорода проходит по всей границе катод – воздух, а не ограничена трехфазной границей катод – электролит – воздух.

Разработка композитных катодов и исследование в режиме ТОТЭ были проведены в ИВТЭ УрО РАН — Богданович Н.М., Пикалова Е.Ю., Шубин К.С., под руководством Бронина Д.И.

Институт катализа им. Г.К. Борескова СО РАН