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The classical problem of a single consensus ranking determination for m rankings of n
alternatives has a potential of wide applications in information technologies, and particu-
larly in measurement and instrumentation. The Kemeny rule is one of deeply justified ways
to solve the problem allowing to find such a linear order (Kemeny ranking) of alternatives
that a distance (defined in terms of a number of pair-wise disagreements between rank-
ings) from it to the initial rankings is minimal. But the approach can result in considerably
more than one optimal solutions what can reduce its applicability. By computational
experiments outcomes, the paper demonstrates that a set of Kemeny rankings cardinality
can be extremely large in small size cases (m = 4,n = 15 . . .20) and, consequently, special
efforts to build an appropriate convoluting solution are needed. Application of the model
to one of practical metrological problems, such as interlaboratory comparisons, is proposed
and examined.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction property, then the relation between the two symbols cor-
In a series of earlier papers [1–6] by the author it was
shown that a consideration of an ordinal scale measure-
ment should involve notations of preference (particularly,
in form of ranking or weak order) and consensus binary
relations. In doing so, a measurement result on the ordinal
scale should be the entire ranking of n objects and the
ranking is one of elements of the weak order space. From
the Representational Measurement Theory point of view,
the preference aggregation problem could be seen as a par-
ticular case of the general conjoint measurement problem,
see, for example [7,8]. This way of thinking is in accordance
to the definition by Finkelstein [9–11]: ‘‘Measurement is,
in the wide sense, an objective, empirical process of estab-
lishing a correspondence between properties of objects
and events of the real world and a set of symbols and rela-
tions. The correspondence is such, that when a symbol is
assigned to a manifestation of the property and another
symbol is assigned to another manifestation of the same
responds to a relation between the two manifestations of
the property’’.

A single consensus ranking determination for m rank-
ings (voters), possibly including ties, of n alternatives
(candidates) is a classical problem that has been inten-
sively investigated firstly as a Voting Problem in the
framework of Social Choice Theory since the late XVIII
century.

Condorcet in 1785, see [12], proposed a very natural
rule for the consensus ranking determination: if some
alternative obtains a majority of votes in pair-wise con-
tests against every other alternative, the alternative is cho-
sen as the winner in the consensus ranking. The Condorcet
approach is widely recognized as the best rule for the con-
sensus ranking determination, however, the binary rela-
tion defined by the Condorcet rule is not necessarily
transitive, i.e. it can be for some consensus ranking b that
ai � aj and aj � ak while ak � ai; ai, aj, ak e b. This Condorcet
paradox may occur rather frequently, for example its
chances are higher than 50% at 3 6m 61 and
2 6 n 6 10, if m is even; presence of ties reduces the prob-
ability, see, e.g. [13].
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The Kemeny rule [14] is considered to be a reasonable
way to get over the difficulty as it allows to find such a lin-
ear order (Kemeny ranking) b of alternatives that a dis-
tance (defined in terms of a number of pair-wise
disagreements between rankings) from b to the initial
rankings is minimal. But, in turn, the approach has two
drawbacks:

� The Kemeny Ranking Problem (KRP) had been proven to
be NP-hard [12,15–17].
� It may have considerably more than one optimal

solutions.

The former is not so disturbing since, for reasonable
problem sizes (up to n < 30 . . .50), there are exact algo-
rithms for them to be effectively applied, see, for example
[6,12,16–19]. Strangely enough, the latter blemish has
been given short shrift by researchers despite its impor-
tance for the problem applicability. In fact, multiple opti-
mal solutions may rank the alternatives in significantly
different ways what can absolutely destroy a positive ef-
fect of a potential problem application.

Currently, the model has numerous interpretations and
(or a potential for) applications in different domains, such
as information retrieval, collaborative filtering [15], multi-
agent choice and multisensor fusion [15,20], hemometrics
[21], digital image processing and pattern recognition
[22,23], quality assessment and management [24], sport
competitions judging [16,17], multiple criteria (or group)
decision making [25], etc. However, the model being singu-
larly fertile of deep measurement theoretical ideas does
not have applications in real metrological practice.

The aim of this paper is first to demonstrate that a set of
Kemeny rankings cardinality can be extremely large even
in cases where m = 4 and n = 15 . . .20, and, consequently,
special efforts to build some appropriate convoluting solu-
tion are needed. Second, it will be shown how the KRP-
based model could be potentially applied to the interlabo-
ratory comparisons problem. Interlaboratory comparisons
need a reference value of the measurand to be assigned.
It is necessary to have some procedure that allows to
determine the reference value at a maximum number of
participating laboratories results to be included into the
determination and, at the same time, unreliable laboratory
results must be disregarded.

The paper is organized as follows. In Section 2, after the
KRP statement, an exact algorithm to find all Kemeny rank-
ings for the given preference profile is briefly described.
Some intriguing outcomes of computational experiments
supporting the declared paper objective are reported and
discussed. It is shown in Section 3 that a procedure of inter-
laboratory comparison can be implemented using the pref-
erence aggregation approach. Section 3 also provides a
probabilistic way to justify the value m of the comparison
participating laboratories.

2. Kemeny ranking problem formulation and solution

This section results were first published in the confer-
ence paper [26]. In this section we will use the following
symbols:
A
 {a1,a2, . . . ,an}: a set of n alternatives

K
 {k1,k2, . . . ,km}: a set of m rankings (preference

profile)

R
 [rij]: an (n � n) ranking matrix

P
 [pij]: an (n � n) profile matrix

d(kk,kl)
 a distance between two rankings kk and kl
D(k,K)
 a distance between arbitrary ranking k and
profile K (Kemeny distance)
P
 a set of all n! linear (strict) order relations �
on A
b
 Kemeny ranking (consensus relation), b e P

B
 fb1; b2; . . . ; bNkem

g: a set of Kemeny rankings,
B �P
Nkem
 number of Kemeny rankings for the given
profile K
Dleast
 a least distance from K to some linear order

Nn
 {1,2, . . . ,n}: first n natural numbers

S
 {s1,s2, . . . ,sK}: a partial solution (leader) of the

KRP

K
 0, . . . ,n � 1: a level of a search tree

Nnds
 a total number of the search tree nodes

generated

T
 ft1; t2; . . . ; tK�ng ¼ Nn n S: a complement of S

Dlow
 an estimate of Kemeny distance for the

ranking with leader S (lower bound)

Du
 a minimal value of Kemeny distance for

generated to the moment complete solutions
(upper bound)
2.1. Problem statement

Suppose we have m rankings provided by m experts
(voters, focus groups, criteria, etc.) on set A of n alternatives
(candidates). Then the preference profile K consists of m
rankings (weak orders) k = {a1 � a2 � . . . � as � at -
� . . . � an}, each may include a strict preference relation �
and an indifference relation (or tie) �.

The ranking k can be represented by the ranking matrix
R, rows and columns of which are labeled by the alterna-
tives’ numbers and rij = 1 if ai � aj; rij = 0 if ai � aj; rij = �1
if ai � aj. Then the symmetric difference distance function
[14] between two rankings kk and kl is defined by formula

dðkk; klÞ ¼
X
i<j

jrk
ij � rl

ijj; ð1Þ

where only elements of the upper triangle submatrix, rij,
i < j, are summed up.

Then a distance between arbitrary ranking k and profile
K can be defined as follows:

Dðk;KÞ ¼
Xm

k¼1

dðk; kkÞ ¼
X
i<j

Xm

k¼1

jrk
ij � rijj ¼

X
i<j

Xm

k¼1

dk
ij; ð2Þ

Supposing rij = 1 for all i < j that corresponds to the natural
linear order a1 � a2 � . . . � an, it is clear that for any
k = 1, . . . ,m we have dk

ij ¼ j1� 1j ¼ 0 if ak
i � ak

j ; dk
ij ¼

j0� 1j ¼ 1 if ak
i � ak

j and dk
ij ¼ j � 1� 1j ¼ 2 if ak

i � ak
j .

Then the profile matrix P can be defined where
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pij ¼
Xm

k¼1

dk
ij; i; j ¼ 1; . . . ;n; ð3Þ

and the KRP is formulated as follows:

b ¼ arg min
k2P

Dðk;KÞ ¼ arg min
k2P

X
i<j

pij: ð4Þ

Every permutation of alternatives of A corresponds to
transposition of the profile matrix rows and columns.
Hence, the problem (4) means the determination of such
a transposition of profile matrix rows and columns that
the sum of elements of its upper triangle submatrix is
minimal.

2.2. KRP solution algorithm

The algorithm described in this paragraph is a version of
that proposed in [6], which used the recursive B&B tech-
nique and was intended to find only a first one of all possi-
ble Kemeny rankings. As opposed to that, this version finds
all possible Kemeny rankings for the given profile.

Characteristic parameter of the matrix P is a least dis-
tance Dleast from its preference profile K to some linear or-
der. The parameter is calculated by summing up lesser
elements of each pair (pij,pji), that is

Dleast ¼
X
i<j

minðpij;pjiÞ: ð5Þ

It is clear that if all initial rankings are consistent and,
hence, matrix P is transitive, i.e. pik 6 pki if pij 6 pji and pjk -
6 pkj, i – j – k = 1, . . . ,n, then the condition

Dðb;KÞ ¼ Dleast; ð6Þ

is valid and Dleast becomes an accessible value. An inverse
proposition is also satisfied. If matrix P is intransitive, then
D(b,K)> Dleast and Dleast is inaccessible.

The algorithm investigates a tree-structured solutions
space. Each node of the solution tree is in one-to-one cor-
respondence with a set S, which is considered to be a rep-
resentative (or leader) of all solutions containing it as a
leading part. The tree root is the leader of absolutely all
feasible solutions and for it S = £. At the next (first) tree le-
vel there are n leaders of cardinality 1. Each of the leaders
has n � 1 successors of cardinality 2 at the second level.
Generally, each of Kth level leaders has n � K successors
of cardinality |S| = K + 1, K = 0, . . . ,n � 1. If |S| < n � 1 then
an appropriate solution S is to be called current partial solu-
tion. Given |S| = n � 1 the set S is to be a current complete
solution as, in this case, it defines an order of all elements
of A.

As a leader is build up of elements of Nn, for any leader S
there exists its complement T ¼ S ¼ Nn n S. Each leader S is
build up by means of concatenation of its predecessor and
first in order element tl of T, i.e. S = {s1, . . .,sK�1, sK = tl}, and
at the same time tl is removed from T.

Each leader (partial solution) has appropriate estimate
Dlow of a distance from profile K to the optimal linear order
b, which is called a low bound. A minimal value of a dis-
tance function for generated to the moment complete solu-
tions is termed an upper bound Du.
Leader S defines a position of the matrix P rows and col-
umns with indexes s1, . . . ,sK�1. Corresponding sum of ele-
ments of upper triangle submatrix of P is

D ¼
X

i ¼ 1; . . . ;K � 1
j ¼ iþ 1; . . . ;K � 1

psisj
þ

X
i;j¼1;...;n�K

ptitj
: ð7Þ

Taking into account expanding the leader due to con-
catenation with element tl gives

De ¼ Dþ
X

i¼1;...;n�K

psK ti
: ð8Þ

Finally, for the rest of matrix defined by elements of T,
we use the same principle as for determination of the least
distance (5). Then we have

Dlow ¼ De þ
X

i ¼ 1; . . . ;n� K
j ¼ iþ 1; . . . ;n� K

minðptitj
; ptjti
Þ: ð9Þ

A leader is considered to be promising in case where the
condition Dlow 6 Du is satisfied. If Dlow > Du (notice that
due to (9) Dlow is the least possible value for the given lea-
der S) then it is clear that all solutions including this leader
are hopeless, i.e. cannot be optimal.

The algorithm presented in Fig. 1 contains two stages:

� initialization, where all necessary variables acquire ini-
tial values and the parameter Dleast is calculated, and
� call of recursive procedure LEADER (K,D) that contains

the main cycle by l, where l is a leader number at Kth
level. At each cycle step the current partial solution S
is generated that defines a new position of the matrix
P rows and columns, for which De and Dlow are
calculated.

If Dlow 6 Du and K < n � 1 then the procedure LEADER
(K + 1, De) is called in order to check the next level of the
search tree; this way branching is realized. After the cur-
rent solution becomes complete one, it is memorized as a
pair b1 = S and Du = Dlow. If Dlow > Du then the correspond-
ing leader and all its successors are considered to be hope-
less and they are pruned. The search is continued until all
hopeless solutions will be pruned. After the first optimal
solution b1 is found, the search is continued until all Nkem

possible solutions with the same Du will be determined.
The algorithm is an exact one as it checks all the feasible
incomplete solutions.

2.3. Computational experiment

The algorithm described was implemented in C++ lan-
guage in the Microsoft Visual Studio development environ-
ment. The initial profile matrices were calculated by
rankings obtained by uniting pseudo-random strict orders
and ties generated separately on the basis of the C++ li-
brary function randomize(). Strict orders represented
by Nn permutations were generated on the basis of the uni-
form distribution of integers in a specified range 1, . . . ,n.
Thereby, in our experimentation, we stick to the so called
impartial culture condition implying just the uniform



Fig. 1. The recursive B&B algorithm for all Kemeny rankings
determination.
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distribution of choices what is recognized to be a worst
case for modeling preference profiles [13]. Ties were
produced in similar way, and some additional measures
were taken to reduce their density in each ranking. The
function randomize() accepts some integer number, so
called starting point, that served as an identifier of the
generated profile (an corresponding individual KRP). Thus,
using number of rankings m, number of ranking elements n
and the starting point, anytime one can restore the
particular individual profile.

This way, 3600 profiles were generated with different
values of m = 4 . . .15 and n = 10, 15, 20, each served as in-
put for the B&B algorithm. The detailed analysis of the
experiment outcomes should be a subject of separate con-
sideration. In this text, for the sake of conciseness, it can be
reported that in most of the runnings, the algorithm out-
puts included relatively small number of optimal solu-
tions: from 2 to 100. Relatively seldom (in nearly 10% of
cases) Nkem was equal to several hundreds. However, in ap-
prox. 5% of cases, there were outstanding solution numbers
approaching to one million and even more. Absolute record
was 11,279,826 solutions for parameters m = 4, n = 20,
starting point = 79, no ties.

One of the typical cases is shown in Table 1. The prefer-
ence profile (which, in accordance to condition (6), is tran-
sitive as D(b,K) = Dleast = 472), consisting of four rankings
of 20 alternatives, having totally six ties, has 447,614
Kemeny rankings. The first seven optimal solutions for
the profile are shown in Table 2. Notice that the B&B
algorithm provided considerable reducing the solutions
search space since it checked only 6,356,082 nodes
while the cardinality of space of linear order relations is
20! = 2,432,902,008,176,640,000.

After removing all six ties the same profile brought to
almost doubling of Nkem that became equal to 811,918,
D(b,K) = Dleast = 476, Nnds = 10,440,879.

Two example profiles above were found to be transitive
and, nevertheless, resulted in the paramount number of
solutions, evidently due to essential inconsistency between
initial rankings. It is interesting to study a case of intransi-
tive profile. Corresponding example is shown in Tables 3
and 4. One can see that the set of solutions comprises a cy-
cle (shown by gray background in Table 4) indicative of
Condorcet paradox. However, the second optimal ranking
saves the situation, and the final optimal solution could
be {1,4,9,3,8,2,10,6,5,7}.

The last example has been obtained not from pseudo-
random generation and from an application the KRP to
analysis of uncertainty intervals provided by m laborato-
ries for some reference value of a measurand, see Section 3.
In corresponding profile, each ranking includes one pair of
alternatives with the strict order relation and n � 2 pairs
with the tie. Thus, Profile 3 presented by Table 5 has a high
density of ties and rather minor differences in rankings, i.e.,
the condition of impartial culture is not valid here. This
profile brought to 1440 optimal solutions, though they
were all similar in positions of first through eighth places,
namely: {10,11,9,8,12,2,3,1, . . .}.

3. Application to interlaboratory comparisons

When organizing interlaboratory comparisons for profi-
ciency testing (see, for example [27]) the main task con-
sists usually in determination of the reference value xref

and its uncertainty range. Let the participating in compar-
isons laboratories be measuring nominally the same quan-
tity Y, that is

Y ¼ Xi; i ¼ 1; . . . ;m; ð9Þ

where Xi is the quantity measured by the ith laboratory
and m is a number of laboratories participating in a com-
parison. The aim of the comparisons is to determine an
estimate y of Y and the associated uncertainty u(y) in terms
of estimates xi of the Xi provided by the laboratories and
their associated standard uncertainties u(xi).

The estimate y is typically calculated as a weighted
mean by formula

y ¼
Xm0
i¼1

xi

uðxiÞ2
Xm0
i¼1

1

uðxiÞ2

,
; ð10Þ

and corresponding uncertainty is

uðyÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Xm0
i¼1

1

uðxiÞ2

,vuut ; ð11Þ

where m0 is the number of laboratories, results of which
deem to be reliable.

It is follows from expressions (10) and (11) that a pro-
cedure of determination of the reference value must



Table 1
Profile 1 at m = 4, n = 20 and six ties.

1 11 4 14 10 8 5 �12 16 9 2 �15 6 18 13 20 17 19 7 3
20 9 3 1 17 6 8 14 13 7 2 15 4 18 16 12 5 11 10 19
18 14 20 16 �9 3 7 �4 11 15 8 10 17 19 �13 2 5 1 6 12

8 2 13 1 17 14 4 15 20 12 9 7 18 19 5 �3 10 6 11 16

Dleast = 472 D(b,K) = 472 Nkem = 447,614 Nnds = 6,356,082

Table 2
A fragment of the optimal solutions set for Profile 1.

1 8 14 4 20 9 2 13 15 17 7 12 18 3 5 11 10 6 16 19
1 8 14 4 20 9 2 13 15 17 7 12 18 3 5 11 10 16 6 19
1 8 14 4 20 9 2 13 15 17 7 12 18 3 5 11 10 16 19 6
1 8 14 4 20 9 2 13 15 17 7 12 18 3 5 11 16 10 6 19
1 8 14 4 20 9 2 13 15 17 7 12 18 3 5 11 16 10 19 6
1 8 14 4 20 9 2 13 15 17 7 12 18 3 5 16 11 10 6 19
1 8 14 4 20 9 2 13 15 17 7 12 18 3 5 16 11 10 19 6

Table 3
Profile 2 at m = 5, n = 10, no ties.

1 9 6 4 8 3 2 5 10 7
2 8 4 1 6 3 9 5 7 10
4 9 5 2 3 10 1 8 7 6
3 10 8 1 4 9 6 7 2 5
9 3 1 10 8 4 7 2 6 5

Dleast = 120 D(b,K) = 128 Nkem = 4 Nnds = 1376

Table 4
The optimal solutions set for Profile 2.
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provide a highest possible consistency of the participating
laboratories measurement results xi, that is to allow shap-
ing a subset of maximal possible power m0 of laboratories
providing reliable results (so called largest consistent subset,
LCS). Therewith, this procedure must facilitate identifying
unreliable results and subsequent elimination of corre-
sponding laboratories from the set of comparison partici-
pants. This decision takes place, if the following condition
is valid:

En ¼
jxi � xref jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

uðxiÞ2 þ uðyÞ2
q > 1: ð12Þ

Different ways of the problem solving are described in
many publications. For example, in [28] statistical criteria
testing the consistency assumption are analyzed in con-
junction with full enumeration when building the LCS(s).
In paper [29] an algebraic approach has been proposed giv-
ing the procedure LCS determination of polynomial com-
plexity. In [30], it was proposed to consider the
uncertainty range u(xi) as the rectangular distribution
and to deem that each participant gives one vote to each
value within its uncertainty range and no votes for values
outside this range. This produces a robust algorithm that is
insensitive to outliers, i.e. results with the uncertainty con-
siderably lower than those of other participants. Examples
of this approach successful application have been de-
scribed in [31].

Below we consider how the problem could be solved in
terms of preference aggregation. This proposal was firstly
described in the conference paper [32].
3.1. Transformation of laboratories uncertainty ranges to
rankings

Designate the uncertainty range [�u(xi),u(xi)] obtained
by ith laboratory through Ii. Define the range of actual val-
ues of measured quantity as algebraic union of the uncer-
tainty ranges obtained by each laboratory:

U ¼ [m
i¼1½�uðxiÞ;uðxiÞ	 ¼ [m

i¼1Ii: ð13Þ

Let us partition this range into equal intervals in such a
way that their number ensures enough accuracy of the
measured quantity values representation. Then we have
n values of the measured quantity {a1,a2, . . . ,an} = A, corre-
sponding to the interval bounds that will play part of alter-
natives in the consensus ranking determination problem;
see Fig. 2 where a range of actual values is divided into
11 equal intervals, bounds of which corresponds to 12
alternatives. The laboratories will play part of m voters in
the problem.

Let us compose the preference profile K which will con-
sist of rankings describing the uncertainty ranges of each
laboratory. Each kth rankings is the union of binary rela-
tions of strict order and equivalence possessing the follow-
ing properties:

ai � aj; if ai 2 Ik and aj R Ik;

ai � aj; if ai; aj 2 Ik or ai; aj R Ik;
ð14Þ

whence it follows that each ranking includes one pair of
alternatives with the strict order relation and n � 2 pairs
with the equivalence relation.



Table 5
Profile 3 at m = 10, n = 13, 120 ties.

10 �11 1 �2 �3 �4 �5 �6 �7 �8 �9 �12 �13
10 1 �2 �3 �4 �5 �6 �7 �8 �9 �11 �12 �13
10 �11 1 �2 �3 �4 �5 �6 �7 �8 �9 �12 �13

9 �10 �11 1 �2 �3 �4 �5 �6 �7 �8 �12 �13
8 �9 �10 �11 12 �1 �2 �3 �4 �5 �6 �7 �13
8 �9 �10 1 �2 �3 �4 �5 �6 �7 �11 �12 �13

11 �12 1 �2 �3 �4 �5 �6 �7 �8 �9 �10 �13
9 �10 �11 1 �2 �3 �4 �5 �6 �7 �8 �12 �13
2 �3 1 �4 �5 �6 �7 �8 �9 �10 �11 �12 �13
8 �9 1 �2 �3 �4 �5 �6 �7 �10 �11 �12 �13

Dleast = 568 D(b,K) = 568 Nkem = 1440 Nnds = 83,237

2932 S.V. Muravyov / Measurement 46 (2013) 2927–2935
Then, for an example of Fig. 2, we have ranking k1 of val-
ues for participating laboratory 1 as follows:

a8 � a9 � a1 � a2 � a3 � a4 � a5 � a6 � a7 � a10 � a11

� a12:

For ranking k2:

a3 � a4 � a5 � a6 � a7 � a8 � a9 � a10 � a11 � a1 � a2

� a12;

and so on.
More obvious representation of the rankings can be as

follows:

f8;9g�f1;2;3;4;5;6;7;10;11;12g;f3;4;5;6;7;8;9;10;11g�f1;2;12g;

and so on.
Having constructed a preference profile containing

measurement results of the all comparison participating
laboratories, a consensus ranking can be found for it in
the way described in Section 2. A winning alternative of
the consensus ranking will be selected as the reference va-
lue xref.

3.2. An example

Consider how the proposed procedure works by an
example taken from [30] that represents some model data
where results of a reference object length measurements
λ1 λ2 λ3 λ4 λ5 λ5

a1

a 2

a 3

a 4

a 5

a 6

a 7

a 8

a 9

a 10

a 11

a 12

Fig. 2. An example of the range of actual values consisting of 11 equal
intervals with corresponding 12 alternatives.
made by nine laboratories are shown in Fig. 3. The range
of actual length values is reduced to Table 6.

Rankings corresponding to uncertainty ranges of the
nine laboratories produce the preference profile as follows:

k1 : a8�a9�a1�a2�a3�a4�a5�a6�a7�a10�a11�a12

k2 : a3�a4�a5�a6�a7�a8�a9�a10�a11�a1�a2�a12

k3 : a8�a9�a1�a2�a3�a4�a5�a6�a7�a10�a11�a12

k4 : a6�a7�a8�a1�a2�a3�a4�a5�a9�a10�a11�a12

k5 : a2�a3�a4�a5�a6�a7�a8�a9�a10�a1�a11�a12

k6 : a4�a5�a6�a7�a8�a9�a10�a11�a1�a2�a3�a12

k7 : a8�a9�a1�a2�a3�a4�a5�a6�a7�a10�a11�a12

k8 : a6�a7�a8�a9�a10�a1�a2�a3�a4�a5�a11�a12

k9 : a3�a4�a5�a6�a7�a8�a9�a10�a1�a2�a11�a12:

For the given profile, the branch and bound algorithm
found the following eight (that is Nkem = 8) optimal solu-
tions of equal worth:

a8�a9�a6�a7�a10�a4�a5�a3�a11�a2�a1�a12

a8�a9�a6�a7�a10�a4�a5�a3�a11�a2�a12�a1

a8�a9�a6�a7�a10�a5�a4�a3�a11�a2�a1�a12

a8�a9�a6�a7�a10�a5�a4�a3�a11�a2�a12�a1

a8�a9�a7�a6�a10�a4�a5�a3�a11�a2�a1�a12

a8�a9�a7�a6�a10�a4�a5�a3�a11�a2�a12�a1

a8�a9�a7�a6�a10�a5�a4�a3�a11�a2�a1�a12

Thus, we have a set of multiple optimal solutions
b = {b1,b2, . . . ,b8} and must convolute them into a single
one. Fortunately, in this case, the problem can be resolved
on the basis of simple rational considerations. As, in the
obtained solutions, the relations a4 � a5 and a5 � a4 occur
the same number of times we conclude that a5 � a4. Simi-
lar considerations give a6 � a7 and a1 � a12. Then the final
consensus relation is

bfinal ¼ fa8 � a9 � a6 � a7 � a10 � a4 � a5 � a3 � a11 � a2

� a1 � a12g:

The winner is the alternative a8 which corresponds to
the value 1.77395 inches (red1 line in Fig. 3). It is selected
as the reference value. It is clear from Fig. 3 that this value
provides maximal consistency of the laboratory results in
such a way that all results are consistent in this particular



1.77375

1.77380

1.77385

1.77390

1.77395

1.77400

1.77405
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1.77415

1.77420

1.77425

1.77430
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Fig. 3. Measurement results of nine laboratories for proficiency testing [30].

Table 6
Twelve alternatives of the actual length values range, inches.

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12

1.77430 1.77425 1.77420 1.77415 1.77410 1.77405 1.77400 1.77395 1.77390 1.77385 1.77380 1.77375
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case. This result coincides with the outcome of Nielsen’s
analysis implemented by him using so called ‘‘Value Voted
Most Likely To Be Correct’’ algorithm [30].

Experimental verification of the approach described
above has been also carried out for other interlaboratory
comparison data given in publications [27,29,31]. The ob-
tained experimental outcomes confirm its correctness;
for more examples, see [32].
Fig. 4. Probability P depending on m for different values of p, see
expression (15).
3.3. Reasonable number of participating laboratories

When planning interlaboratory comparisons, it is nec-
essary to assign a number m of participating laboratories.
In this section, we are trying to apply simple probabilistic
considerations to estimation of an upper bound for the
number m, see also [24].

Let p be the probability of detecting the reference value
by a single laboratory (we will call it elementary probabil-
ity). Then the probability P of that the reference value is de-
tected by m laboratories is defined as follows:

P ¼ 1� ð1� pÞm: ð15Þ

Clearly, the number of laboratories can be easily ob-
tained from the formula (15), i.e.

m ¼ lnð1� PÞ
lnð1� pÞ : ð16Þ

The graph plotted by formula (15) (see Fig. 4) shows
that there is some critical value mc of m such that any
m > mc does not give an essential increase of number of
attributes found. For example, at p = 0.6, there is no neces-
sity to have more than five sensors as these five sensors
have detected practically all attributes.
Let us now investigate how the probability P will in-
crease after adding one more laboratory to the comparison
participants. The following formula shows how many
times the probability P(m + 1) = P1 is greater than the prob-
ability P(m) = P:
P1

P
¼ 1� ð1� pÞmþ1

1� ð1� pÞm
¼ 1þ pð1� pÞ

1� ð1� pÞm
: ð17Þ

It can be seen from Fig. 5 that the increase of partici-
pants number by one results in a minor gain of the proba-
bility P. This gain becomes especially insignificant for all
numbers m > mc = 4. And the more probability p the more
this insignificance is.

It is worth to estimate this gain in explicit and more
general form. Let a be the relative probability growth



Fig. 5. The ratio P1/P depending on m for different values of p, see
expression (17).

Fig. 6. Graphs (for p = 0.05, 0.5 and 0.8) of the relative probability growth
a depending on number of additional laboratories k for different numbers
m, see expression (20).
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resulting from inclusion of k additional laboratories into
the group of m comparison participants, i.e.

a ¼ Pðmþ kÞ � PðmÞ
PðmÞ ¼ Pk � P

P
; ð18Þ

where

Pk ¼ 1� ð1� pÞmð1� pÞk; ð19Þ

From (15), (20), and (21) we have

a ¼ ð1� pÞm 1� ð1� pÞk

1� ð1� pÞm
: ð20Þ

Calculations of a are graphically presented in Fig. 6.
As Fig. 6 indicate an essential gain of the probability of

detecting the reference value due to attraction of addi-
tional k participants exists only if the elementary probabil-
ity p is low (see Fig. 6, p = 0.05). In this case, the
dependency a(k) has almost linear character. However, al-
ready at m = 7, doubling of chances to find the reference
value (a = 100%) happens only at k = 10.

At p = 0.5, if the comparison group has included 4 labo-
ratories, addition of a new participant is useless as it gives
out no new information on the reference value. In case of
p > 0.5, one can see the loss of necessity in new partici-
pants as early as k = 5, though the comparison group con-
sists of a single member.

Looking at Fig. 6 one can see that it is important in what
fashion a comparison group was setup. Indeed, if p = 0.05,
m = 2 and k = 8 give the relative growth a = 3.11, whereas
m = 4 and k = 6 produce only a = 1.16, and at that the total
number of participants is the same: m + k = 10. Thus, a
combination of m and k with their fixed sum results in
greater growth a, if m < k.

The number k can be easily determined in explicit form
using expression (19). That is

k ¼ lnð1� PkÞ
lnð1� pÞ �m ¼ m

lnð1� PkÞ
lnð1� PÞ �m; ð21Þ

In practice, the number k can be calculated on the
assumption of desirable or critical value of Pk known.
Surely, the elementary probability p should also be given,
estimated or assigned.
4. Conclusion

In the paper a preference aggregation model treated as
ordinal measurement model has been considered. Deter-
mination of the ordinal scale measurement result in form
of Kemeny ranking using an exact recursive B&B algorithm
enables to draw at least two preliminary conclusions.

First, even if a preference profile is transitive (that is, all
rankings in it are consistent) a number of multiple solu-
tions of the KRP may be extremely large in spite of small
amounts of m and n. This ‘‘chaotic’’ behavior of the KRP
should be a subject of future research, see also [33].

Second, the multiple solutions require to develop spe-
cial measures to build some appropriate final convoluting
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solution. Though some appropriate ideas had been pro-
posed in [16,17] the issue needs further investigations.

On the basis of preference aggregation approach a pro-
cedure of the largest consistent subset determination for
interlaboratory comparisons has been proposed. Experi-
mental verification of this method confirms its correctness.
In contrast to other approaches, it provides additional
information about interrelations of values in the actual val-
ues range. For instance, from the solution in paragraph 3.2
one can conclude that values a6 and a7 are equivalent to
each other from the view point of their contribution into
the final reference value and, at the same time, they both
are less important for the reference value than the value
a8. This information, somehow or other, can be taken into
account when analyzing the comparison results. The paper
describes a simple probabilistic method for justification of
reasonable number of interlaboratory comparison
participants.

Obtained outcomes demonstrate the possibility of use-
ful application of preference aggregation methods in
metrological practice.
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