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ABSTRACT

A numerical-analytical solution for seismic and acoustic-gravity waves propagation is applied to a heterogeneous
“Earth-Atmosphere” model. Seismic wave propagation in an elastic half-space is described by a system of first order
dynamic equations of elasticity theory. Propagation of acoustic-gravity waves in the atmosphere is described by the
linearized Navier-Stokes equations with the wind. The algorithm proposed is based on the integral Laguerre transform
with respect to time, the finite integral Fourier transform along the spatial coordinate with the finite difference solution

of the reduced problem.
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1. Introduction

In mathematical simulation of seismic wave fields in an
elastic medium, it is typically assumed that the medium
borders on vacuum, and boundary conditions are speci-
fied on a free surface. Specifically, at the boundary,
seismic waves are assumed to be absolutely reflected,
and the generation of acoustic-gravity waves by elastic
waves in the atmosphere and their interaction at the
boundary are ignored.

In the last decade, some theoretical and experimental
investigations have shown that there is a striking correla-
tion between the waves in the lithosphere and the at-
mosphere. Paper [1] describes the effect of acoustoseis-

mic induction of an acoustic wave produced by a vibrator.

Papers [2,3] deal with theoretical investigations of wave
processes at the boundary between an elastic half-space
and an isothermal homogeneous atmosphere. In these
papers, properties of the surface Stoneley-Scholte and
modified Lamb waves are studied.

In the present paper we consider an efficient numerical
algorithm to simulate and investigate the propagation of
seismic and acoustic-gravity waves in a spatially inho-
mogeneous “Atmosphere-Earth” model. A peculiarity of
the algorithm is a combination of integral transforms
with a finite-difference method.

A similar approach to solving the problem for a verti-
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cally inhomogeneous model in a cylindrical system of
coordinates with no wind in the atmosphere was consi-
dered in [4]. In the problem statement, the initial system
is written down as a first-order hyperbolic system in
terms of the velocity vector and stress tensor in a 3D
Cartesin system of coordinates. The medium parameters
are assumed to be functions of only two coordinates, and
the medium is assumed to be homogeneous in the third
coordinate. This problem statement is called a 2.5 D one.
The algorithm is based on the integral Laguerre trans-
form with respect to the temporal coordinate. This me-
thod can be considered to be an analog to a well-known
spectral method based on the Fourier transform, where,
instead of the frequency @, we have a parameter p
that is the degree of the Laguerre polynomials. The
integral Laguerre transform with respect to time (in con-
trast to the Fourier transform) makes it possible to reduce
the initial problem to solving a system of equations in
which the parameter is present only in the right-hand side
of the equations and has a recurrence relation. This me-
thod for solving dynamic problems of elasticity theory
was first considered in papers [5,6] and then developed
for problems of viscoelasticity [7,8] and porous media
[9]. The above-mentioned papers consider peculiarities
of this method and the advantages of the integral La-
guerre transform over the difference methods and the
Fourier transform with respect to time.
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2. Problem Statement

The system of equations for the propagation of acous-
tic-gravity waves in an inhomogeneous non-ionized iso-
thermal atmosphere in the Cartesian system of coordi-
nates (x,y,z) with the wind directed along the horizon-
tal axis x and vertical stratification along the axis z has
the following form:
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Here g is the acceleration of gravity, p,(z) is the
reference atmosphere density, c¢,(z) is the sound speed,
v.(z) is the wind velocity along the axis x ,
U= (u,u,u.) is the velocity vector of displacement of
the air particles, P and p are the pressure and the
density perturbations, respectively, due to a wave propa-
gating from a source of mass F(x,y,z,t)=0(r—r,) f(?),
where f(¢) is a given time signal in the source. As-
sume that the axis z is directed upwards. Zero sub-
scripts for the medium physical parameters show their
values for the reference atmosphere. The atmospheric
pressure F, and the density p, for the reference at-
mosphere in a homogeneous gravitational field are:
oF,

3, " e py(2) = p exp(-z/ H),

where H is the height of the isothermal homogeneous
atmosphere, and p, is the density of the atmosphere at
the Earth’s surface, thatis,at z=0.

The seismic waves propagation in an elastic medium is
described by the well-known system of first order equa-
tions of elasticity theory as the following relation be-
tween the displacement velocity vector components and
the stress vector components:

ou, 1 0o,
—L=——"% L F 1), (6)
ot p, Ox;
00y =u %+% + A8, divu . (7)
81‘ ax,' a'xk
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Here &, is the Kronecker symbol, A(x,x,,x;) and
H(x,,x,,x;) are the elastic parameters of the medium,
Po(X,.X,.%;) is the density, U= (u,,u,,u;) is the dis-
placement velocity vector, and o, are the stress vector
components. The equality F(x,y,z)=Fe, +Fe +Fe,
describes the distribution of a source located in space,
and f(¢) isa given time signal in the source.

The combined system of equations for the propagation
of seismic and acoustic-gravity waves in the Cartesian
system of coordinates (x,y,z) =(x,,x,,x;) can be writ-
ten down as
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Here o,; is the Kronecker symbol, p;(x,z) is the
density, A(x,z) and wu(x,z) are the elastic parameters
of the medium, # = (u,,u,,u;) is the displacement ve-
locity vector, and o, are the stress tensor components;
F(x,y,z)=Fe, +Fe +Fe,  describes the distribution
of a source located in space, and f(¢) is a given time
signal in the source. The medium is assumed to be ho-
mogeneous along the axis y.

System (1)-(5) for the atmosphere is obtained from
system (8)-(10) at

=1, 0,=0;=0,=0, 0,=0, =0y, =-P,

amm

A=cip,, u=0.

Set K, =0 in system (9)-(10), and obtain the sys-
tem of Equations (6)-(7) for the propagation seismic
waves in an elastic medium.

In the problem in question, the atmosphere-elastic
half-space interface is assumed to be the plane
z=x, =0. In this case, the condition of contact of the

two media at z=0 is written as

—y 50‘22 _ aO-zz + U
Ple=0 T Tel=00 gy o ot Post: 2=40 ,
Orloeg =O00z|,_ o = 0.

The problem is solved at the following zero initial da-
ta:

=P ,=p|_,=0.i=123./=123.
(12)

All the functions of the wave field components are as-
sumed to be sufficiently smooth so that the transforma-

o =90
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tions presented below be valid.

3. Solution algorithm

At the first step, we use the finite cosine-sine Fourier
transform with respect to the spatial coordinate y , where
the medium is assumed to be homogeneous. For each
component of the system, we introduce the correspond-
ing cosine or sine transform:

cos(k,»)
sin(k, y)
n=0,1,2,..,N; (13)

W(x,z,n,t):jW(x,y,z,t){ }d(y),

with the corresponding inversion formula
N
W (x,,2.0) = TW (2,0,2,0) + 2 3W (x.m.z.0) cos(h, )
T

. (14)

or

N
W (x,7,2.0) = %Zw (v.nz0)sink,y). (15)
n=l1

nrz
where k, =—.
a

At rather a large distance a , consider a wave field
up to the time ¢#<7, where T is a minimum propaga-
tion time of a pressure wave to the boundary r=a.Asa
result of this transformation, we obtain N +1 indepen-
dent 2D unsteady problems.

At the second step, we apply to the thus obtained
N +1 independent problems the integral Laguerre
transform with respect to time

W, (x,n,z) = }[W (x,n, z,t)(ht)_% 17 (ht)d (ht), (16)

p=0,12,...

with the inversion formula

p! «
( W, (x,n,2)% (ht), (17)

W (x,n,z,t) = (ht)?
p; p+a)!

where /7 (ht) are the orthogonal Laguerre functions.

The Laguerre functions /7 (ht) can be expressed in
terms of the classical standard Laguerre polynomials
L; (ht) (see paper [10]). Here we select an integer pa-
rameter « >1 to satisfy the initial data and introduce
the shift parameter #>0. Then we have the following
representation:

1% (ht) = (hty”> exp(—ht/2) L5 (ht).

We take the finite cosine-sine Fourier transform with
respect to the coordinate x, similar to the previous trans-
form with respect to the coordinate y with the corres-
ponding inversion formulas:
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It should be noted that the medium in this direction is
inhomogeneous.

The finite difference approximation for the system of
linear algebraic equations with respect to z using the
staggered grid method was applied (see paper [11]) pro-
viding second order accuracy approximation. This
scheme is used for FD approximation within the compu-
tation domains in the atmosphere and in the elastic
half-space, the fitting conditions at the interface being
exactly satisfied. As a result of the above transformations,
we obtain N +1 systems of linear algebraic equations,
where N is the number of harmonics in the Fourier
transform with respect to the coordinate y .

The sought for solution vector W is represented as
follows:

W (p) = (Vo (P)V, (), Vi (P))
V,=[p(m=0,..,M;z,),0, (m=0,...,M;z,),..
P(m=0,.,M;z)u (m= O,...,M;zi)]T .

Then for every n-th harmonic (n=0,...,N ) the sys-
tem of linear algebraic equations can be written down in
the vector form:

(A+§E>W(p>=F(p—1). (20)

Note that only the right-hand side of the obtained sys-
tem of algebraic equations includes the parameter p
(the degree of the Laguerre polynomials) and has a re-
current p dependence. The matrix 4 is thus inde-
pendent of p. A sequence of wave field components in
the solution vector V is chosen to minimize the number
of diagonals in the matrix 4. The main diagonal of the
matrix has the components of this system multiplied by
the parameter 4 (the Laguerre transform parameter). By
changing the parameter /4, the condition number of the
matrix can be considerably improved. Solving the system
of linear algebraic equations (20) determines spectral
values for all the wave field components W (m,n,z,, p) .
Then, using the inversion formulas for the Fourier trans-
form (14), (15), (18), (19), and the Laguerre transform
(17), we obtain a solution to the initial problem (8)-(12).
In the analytical Fourier and Laguerre transforms, when
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determining functions by their spectra, inversion formu-
las in the form of infinite sums are used. A necessary
condition in the numerical implementation is to deter-
mine the number of terms of the summable series to con-
struct a solution with a given accuracy. For instance, the
number of harmonics in the inversion formulas of the
Fourier transform (14), (15), (18), (19) depends on a mi-
nimal spatial wavelength in the medium and on the size
of the spatial calculation domain of the field given by the
finite limits of the integral transform. In addition, the
convergence rate of the summable series depends on
smoothness of functions of the wave field. The number
of the Laguerre harmonics for determining functions by
formula (17) depends on a signal given in the source
f(t), the parameter s, and the time interval of the
wave field. Papers [5-8] consider in detail how one can
determine the required number of harmonics and choose
an optimal value of the parameter /.

4. Numerical Results

Figures 1-3 show the results of numerical calculations of
a wave field as snapshots at a fixed time for the horizon-
tal component of the displacement velocity u (x,y,z).

Figure 1 presents a snapshot of the wave field for

u, (x,y,z) in the plane XZ at the time /=15 sec. This

model of the medium consists of a homogeneous elastic

layer and an atmospheric layer separated by a plane
boundary. The physical characteristics of the layers are
as follows:

e the atmosphere: sound speed ¢, =340 m-sec . Den-
sity versus coordinate z was calculated by the formula
p,(z)=pexp(-z/ H) , where p =1.225-10"
g~cm’3, H =6700 m;

o the elastic layer: pressure wave velocity ¢, =300
m-sec ', shear wave velocity ¢, =200 m-sec ', den-
sity p, =12 g-cm .

A bounded domain, (x,y,z)=(15km,15km,10km),
was used for the calculations. A wave field from a point
source (a pressure center) located in the elastic medium
at a depth of % of the length of a pressure wave with
coordinates (x,, ¥, z,) =(6km, 7.5km, —0.075km) was
simulated. The figure shows the wave fields for the ho-
rizontal component u_ of the displacement velocity in
the plane XZ at y=y,=7.5km: without wind (top),
with the wind speed in the atmosphere of 50 m-sec
(bottom). The elastic medium-atmosphere interface is
shown by the solid line. This figure demonstrates that in
the elastic medium, in addition to the spherical P-pressure
wave and the conic S-shear wave, there also propagates a
“non-ray” spherical wave S, and then there follows a
surface Stoneley-Scholte wave. An acoustic-gravity
wave refracted at the Earth-atmosphere boundary propa-
gates in the atmosphere. At the boundary, this wave ge-
nerates the corresponding pressure and shear waves in

Copyright © 2013 SciRes.
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Figure 1. A snapshot at t = 15 sec for the velocity component
Uy in the plane (XZ) without wind (top), with wind (bottom)
(wind speed 50 m-sec™).

the elastic medium.

Figures 2 and 3 present snapshots of the wave field
when the seismic waves velocity in the elastic medium is
greater than the sound speed in the atmosphere. In this
model, the physical characteristics of the elastic medium
and the atmosphere are as follows:

e the atmosphere: sound speed ¢, =340 m-sec . Den-
sity versus coordinate z was calculated by the formula
p,(z)=pexp(-z/H) , where p =1.225-10"
g'cm’3, H =6700 m;

o the elastic layer: pressure wave velocity c, =800
m-sec ', shear wave velocity ¢, =500 m-sec ', den-
sity p, =1.5 gem”,

A bounded domain (x, y, z) = (20km, 16km, 14km),
was used for the calculations. A wave field from a point
source (the pressure center) located in the elastic medium
at a depth of % of the length of a pressure wave with the
coordinates (X, ¥,, z,) = (10km, 8km, —0.2km) was
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Figure 2. A snapshot at t = 12 sec for the velocity component
Uy in the plane (XZ) without wind (top), with wind (bottom)
(wind speed 50 m-sec™).

simulated.

Figure 2 shows the wave fields for the horizontal
component u_, of the displacement velocity in the plane
XZ at y=y,=8 km: without wind (top), with wind
speed in the atmosphere of 50 m-sec”' (bottom). The
elastic medium—atmosphere interface is shown by the
solid line. This figure shows that in the atmosphere, in
addition to the conical P- pressure wave and the conical
S-shear wave, there also propagates a “non-ray” spherical
wave P, and then there follows a surface Stoneley-
Scholte wave.

Figure 3 presents snapshots of a 3D wave field at ¢ =10
sec for the velocity component u_ with the wind speed
of 50 m-sec ' in the atmosphere.

The numerical simulation results have revealed some
new peculiarities of the wave propagation with wind in
the atmosphere. Specifically, the influence of the wind
on the propagation velocity of the surface Stoneley

Copyright © 2013 SciRes.

Figure 3. A snapshot of a wave field for the horizontal ve-
locity component u,(x,y,z), at t = 10 sec with wind in the
atmosphere (wind speed 50 m-sec™).

waves in an elastic medium has been demonstrated. The
numerical results have also shown that the velocity of
these waves increases downwind and, hence, it decreases
upwind by a quantity equal to the wind speed. The same
influence of wind is on a non-ray spherical exchange
acoustic-gravity wave propagating in the atmosphere
from a source located in a solid medium. Another fact of
the wind influence that has been established is that the
surface wave changes in the amplitude along its front.
This manifests itself as an increase in the amplitude in
that part of the wave front that propagates downwind and
a decrease in the wave front propagating upwind but with
conservation of the total wave energy.

5. Conclusion

The approach proposed to the statement and solution of
the problem makes it possible to simulate the effects of
the wave field propagation in a unified mathematical
earth-atmosphere model and to study the exchange waves
at their boundary. The numerical simulation of these
processes makes it possible to investigate the peculiari-
ties of the wind effects on the propagation of the acous-
tic-gravity atmospheric waves and surface Stoneley
waves.
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