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2. Problem Statement 

The system of equations for the propagation of acous-
tic-gravity waves in an inhomogeneous non-ionized iso-
thermal atmosphere in the Cartesian system of coordi-
nates ( , , )x y z  with the wind directed along the horizon-
tal axis x and vertical stratification along the axis z has 
the following form: 

0

1x x x
x z

u u vP
v u

t x x z
  

   
   

,     (1) 

0

1y y
x

u u P
v

t x y
  

  
  

,        (2) 

0 0

1z z
x

u u P g
v

t x z


 

  
   

  
,        (3) 

2 0 0
0x x z z

PP P
v c v u u

t x t x z z

      
           

,    (4) 

0

0 ( , , , )
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uu u
v

t x x y z

u F x y z t
z

  



   
          


 


   (5) 

Here g  is the acceleration of gravity, 0 ( )z  is the 
reference atmosphere density, 0 ( )c z  is the sound speed, 

( )xv z  is the wind velocity along the axis x , 
( , , )x y zu u uu  is the velocity vector of displacement of 

the air particles, P  and   are the pressure and the 
density perturbations, respectively, due to a wave propa-
gating from a source of mass 0( , , , ) ( ) ( )F x y z t r r f t  , 
where ( )f t  is a given time signal in the source. As-
sume that the axis z  is directed upwards. Zero sub-
scripts for the medium physical parameters show their 
values for the reference atmosphere. The atmospheric 
pressure 0P  and the density 0  for the reference at-
mosphere in a homogeneous gravitational field are: 

0
0

P
g

z



 


, 0 1( ) exp( / )z z H   , 

where H  is the height of the isothermal homogeneous 
atmosphere, and 1  is the density of the atmosphere at 
the Earth’s surface, that is, at 0z  . 

The seismic waves propagation in an elastic medium is 
described by the well-known system of first order equa-
tions of elasticity theory as the following relation be-
tween the displacement velocity vector components and 
the stress vector components: 

0

1
( )i ik

i
k

u
F f t

t x




 
 

 
, (6) 

ik k i
ik

i k

u u
div

t x x


 
   

      
u . (7) 

Here i j  is the Kronecker symbol, 1 2 3( , , )x x x  and 

1 2 3( , , )x x x  are the elastic parameters of the medium, 

0 1 2 3( , , )x x x is the density, 1 2 3( , , )u u uu  is the dis-
placement velocity vector, and i j  are the stress vector 
components. The equality 1 2 3( , , ) x y zx y z F F F  F e e e  
describes the distribution of a source located in space, 
and ( )f t  is a given time signal in the source. 

The combined system of equations for the propagation 
of seismic and acoustic-gravity waves in the Cartesian 
system of coordinates 1 2 3( , , ) ( , , )x y z x x x  can be writ-
ten down as 

0 1 0 3

1
( )i ik i x

i x z z x
k

u u vg
F f t K v e u e

t x x x

 
 
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(8)
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    
             

u  

(9) 

0
0x zK v div u

t x z

  
  

       
u .  (10) 

Here i j  is the Kronecker symbol, 0 ( , )x z  is the 
density, ( , )x z  and ( , )x z  are the elastic parameters 
of the medium, 1 2 3( , , )u u u u


 is the displacement ve-

locity vector, and i j  are the stress tensor components; 

1 2 3( , , ) x y zx y z F F F  F e e e  describes the distribution 
of a source located in space, and ( )f t  is a given time 
signal in the source. The medium is assumed to be ho-
mogeneous along the axis y . 

System (1)-(5) for the atmosphere is obtained from 
system (8)-(10) at 

1атмK  , 12 13 23 0     , 11 22 33 P      , 
2
0 0c  , 0  . 

Set 0атмK   in system (9)-(10), and obtain the sys-
tem of Equations (6)-(7) for the propagation seismic 
waves in an elastic medium.  

In the problem in question, the atmosphere-elastic 
half-space interface is assumed to be the plane 

3 0z x  . In this case, the condition of contact of the 
two media at 0z   is written as 

00 0
0 0

, zz zz
z z zz z

z z

u u gu
t t

 


 
 

       
, 

0 0
0xz yzz z

 
 

  . (11) 

The problem is solved at the following zero initial da-
ta: 

0 00 0
0, 1,2,3. 1, 2,3.i i j t tt t

u P i j 
  

       

(12) 

All the functions of the wave field components are as-
sumed to be sufficiently smooth so that the transforma-
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tions presented below be valid. 

3. Solution algorithm 

At the first step, we use the finite cosine-sine Fourier 
transform with respect to the spatial coordinate y , where 
the medium is assumed to be homogeneous. For each 
component of the system, we introduce the correspond-
ing cosine or sine transform: 

0

cos( )
( , , , ) ( , , , ) ( )

sin( )

a
n

n

k y
x z n t x y z t d y

k y

 
  

 
W W , 

0,1, 2,...,n N ; (13) 

with the corresponding inversion formula  

1

1 2
( , , , ) ( ,0, , ) ( , , , ) cos( )

N

n
n

x y z t x z t x n z t k y
  

  W W W  

(14) 

or 

1

2
( , , , ) ( , , , ) sin( )

N

n
n

x y z t x n z t k y
 

 W W ,   (15) 

where n

n
k

a


 . 

At rather a large distance a  , consider a wave field 
up to the time t T , where T  is a minimum propaga-
tion time of a pressure wave to the boundary r a . As a 
result of this transformation, we obtain 1N   indepen-
dent 2D unsteady problems.  

At the second step, we apply to the thus obtained 
1N   independent problems the integral Laguerre 

transform with respect to time 

 
2

0

( , , ) ( , , , )( ) ( ) ( ),

0,1,2,...

p px n z x n z t ht l ht d ht

p

 






W W
 (16) 

with the inversion formula 

2

0

!
( , , , ) ( ) ( , , ) ( )

( )! p p
p

p
x n z t ht x n z l ht

p

 








W W , (17) 

where ( )pl ht  are the orthogonal Laguerre functions. 
The Laguerre functions ( )pl ht  can be expressed in 

terms of the classical standard Laguerre polynomials 
( )pL ht  (see paper [10]). Here we select an integer pa-

rameter 1   to satisfy the initial data and introduce 
the shift parameter h>0. Then we have the following 
representation: 

2( ) ( ) exp( 2) ( )p pl ht ht ht L ht
   . 

We take the finite cosine-sine Fourier transform with 
respect to the coordinate x, similar to the previous trans-
form with respect to the coordinate y with the corres-
ponding inversion formulas: 

1

1
( , , ) (0, , )

π
2

( , , ) cos( )
π

p i p i

M

p i m
m

x n z n z

m n z k x




 

W W

W
 (18) 

or 

1

2
( , , , ) ( , , , ) sin( )

π

M

i i m
m

x n z p m n z p k x


 W W , (19) 

where m

m
k

b


 . 

It should be noted that the medium in this direction is 
inhomogeneous. 

The finite difference approximation for the system of 
linear algebraic equations with respect to z using the 
staggered grid method was applied (see paper [11]) pro-
viding second order accuracy approximation. This 
scheme is used for FD approximation within the compu-
tation domains in the atmosphere and in the elastic 
half-space, the fitting conditions at the interface being 
exactly satisfied. As a result of the above transformations, 
we obtain 1N   systems of linear algebraic equations, 
where N  is the number of harmonics in the Fourier 
transform with respect to the coordinate y .  

The sought for solution vector W  is represented as 
follows: 

0 1( ) ( ( ), ( ),..., ( ))T
Kp p p pW V V V , 

[ ( 0,..., ; ), ( 0,..., ; ),...i i xx im M z m M z   V

... ( 0,..., ; ), ( 0,..., ; )]T
i z iP m M z u m M z  . 

Then for every n -th harmonic ( 0,...,n N ) the sys-
tem of linear algebraic equations can be written down in 
the vector form: 

( ) ( ) ( 1)
2

h
A E p p  W F .    (20) 

Note that only the right-hand side of the obtained sys-
tem of algebraic equations includes the parameter p  
(the degree of the Laguerre polynomials) and has a re-
current p  dependence. The matrix A  is thus inde-
pendent of p . A sequence of wave field components in 
the solution vector V  is chosen to minimize the number 
of diagonals in the matrix A . The main diagonal of the 
matrix has the components of this system multiplied by 
the parameter h (the Laguerre transform parameter). By 
changing the parameter h, the condition number of the 
matrix can be considerably improved. Solving the system 
of linear algebraic equations (20) determines spectral 
values for all the wave field components ( , , , )im n z pW . 
Then, using the inversion formulas for the Fourier trans-
form (14), (15), (18), (19), and the Laguerre transform 
(17), we obtain a solution to the initial problem (8)-(12). 
In the analytical Fourier and Laguerre transforms, when 
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determining functions by their spectra, inversion formu-
las in the form of infinite sums are used. A necessary 
condition in the numerical implementation is to deter-
mine the number of terms of the summable series to con-
struct a solution with a given accuracy. For instance, the 
number of harmonics in the inversion formulas of the 
Fourier transform (14), (15), (18), (19) depends on a mi-
nimal spatial wavelength in the medium and on the size 
of the spatial calculation domain of the field given by the 
finite limits of the integral transform. In addition, the 
convergence rate of the summable series depends on 
smoothness of functions of the wave field. The number 
of the Laguerre harmonics for determining functions by 
formula (17) depends on a signal given in the source 

( )f t , the parameter h , and the time interval of the 
wave field. Papers [5-8] consider in detail how one can 
determine the required number of harmonics and choose 
an optimal value of the parameter h . 

4. Numerical Results 

Figures 1-3 show the results of numerical calculations of 
a wave field as snapshots at a fixed time for the horizon-
tal component of the displacement velocity ( , , )xu x y z . 
Figure 1 presents a snapshot of the wave field for 

( , , )xu x y z  in the plane XZ  at the time t=15 sec. This 
model of the medium consists of a homogeneous elastic 
layer and an atmospheric layer separated by a plane 
boundary. The physical characteristics of the layers are 
as follows: 
 the atmosphere: sound speed 340pc  m·sec–1. Den-

sity versus coordinate z was calculated by the formula 

0 1( ) exp( / )z z H   , where 3
1 1.225 10  

g·cm–3, 6700H  m; 
 the elastic layer: pressure wave velocity 300pc 

m·sec–1, shear wave velocity 200sc   m·sec–1, den-
sity 0 1.2   g·cm–3. 

A bounded domain, ( , , )x y z = (15km, 15km, 10km) , 
was used for the calculations. A wave field from a point 
source (a pressure center) located in the elastic medium 
at a depth of ¼ of the length of a pressure wave with 
coordinates 0 0 0( , , )x y z = (6 km, 7.5km, 0.075km)  was 
simulated. The figure shows the wave fields for the ho-
rizontal component xu  of the displacement velocity in 
the plane XZ  at 0 7.5 kmy y  : without wind (top), 
with the wind speed in the atmosphere of 50 m·sec–1 
(bottom). The elastic medium-atmosphere interface is 
shown by the solid line. This figure demonstrates that in 
the elastic medium, in addition to the spherical P-pressure 
wave and the conic S-shear wave, there also propagates a 
“non-ray” spherical wave S*, and then there follows a 
surface Stoneley-Scholte wave. An acoustic-gravity 
wave refracted at the Earth-atmosphere boundary propa-
gates in the atmosphere. At the boundary, this wave ge-
nerates the corresponding pressure and shear waves in 

 

Figure 1. A snapshot at t = 15 sec for the velocity component 
ux in the plane (XZ) without wind (top), with wind (bottom) 
(wind speed 50 m·sec–1). 
 
the elastic medium. 

Figures 2 and 3 present snapshots of the wave field 
when the seismic waves velocity in the elastic medium is 
greater than the sound speed in the atmosphere. In this 
model, the physical characteristics of the elastic medium 
and the atmosphere are as follows: 
 the atmosphere: sound speed 340pc  m·sec–1. Den-

sity versus coordinate z was calculated by the formula 

0 1( ) exp( / )z z H   , where 3
1 1.225 10  

g·cm–3, 6700H  m; 
 the elastic layer: pressure wave velocity 800pc 

m·sec–1, shear wave velocity 500sc   m·sec–1, den-
sity 0 1.5   g·cm–3. 

A bounded domain ( , , ) (20 km, 16 km, 14 km)x y z  , 
was used for the calculations. A wave field from a point 
source (the pressure center) located in the elastic medium 
at a depth of ¼ of the length of a pressure wave with the 
coordinates 0 0 0( , , ) (10 km, 8km, 0.2km)x y z    was  
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Figure 2. A snapshot at t = 12 sec for the velocity component 
ux in the plane (XZ) without wind (top), with wind (bottom) 
(wind speed 50 m·sec–1). 
 
simulated.  

Figure 2 shows the wave fields for the horizontal 
component xu , of the displacement velocity in the plane 
XZ  at 0 8y y   km: without wind (top), with wind 

speed in the atmosphere of 50 m·sec–1 (bottom). The 
elastic mediumatmosphere interface is shown by the 
solid line. This figure shows that in the atmosphere, in 
addition to the conical P- pressure wave and the conical 
S-shear wave, there also propagates a “non-ray” spherical 
wave P*, and then there follows a surface Stoneley- 
Scholte wave.  

Figure 3 presents snapshots of a 3D wave field at 10t   
sec for the velocity component xu  with the wind speed 
of 50 m·sec–1 in the atmosphere. 

The numerical simulation results have revealed some 
new peculiarities of the wave propagation with wind in 
the atmosphere. Specifically, the influence of the wind 
on the propagation velocity of the surface Stoneley  

 

Figure 3. A snapshot of a wave field for the horizontal ve-
locity component ux(x,y,z), at t = 10 sec with wind in the 
atmosphere (wind speed 50 m·sec–1). 
 
waves in an elastic medium has been demonstrated. The 
numerical results have also shown that the velocity of 
these waves increases downwind and, hence, it decreases 
upwind by a quantity equal to the wind speed. The same 
influence of wind is on a non-ray spherical exchange 
acoustic-gravity wave propagating in the atmosphere 
from a source located in a solid medium. Another fact of 
the wind influence that has been established is that the 
surface wave changes in the amplitude along its front. 
This manifests itself as an increase in the amplitude in 
that part of the wave front that propagates downwind and 
a decrease in the wave front propagating upwind but with 
conservation of the total wave energy. 

5. Conclusion 

The approach proposed to the statement and solution of 
the problem makes it possible to simulate the effects of 
the wave field propagation in a unified mathematical 
earth-atmosphere model and to study the exchange waves 
at their boundary. The numerical simulation of these 
processes makes it possible to investigate the peculiari-
ties of the wind effects on the propagation of the acous-
tic-gravity atmospheric waves and surface Stoneley 
waves. 
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