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PREFACE
At present, various unique devices and installations function in different 

laboratories of the world. They generate, use and register different kinds of 
radiation: synchrotron, Vavilov-Cherenkov’s, transition, radiation at channel-
ing of electrons and positrons in crystals, and etc. Students and masters who 
choose the specialty associated with the operation of accelerators and other 
radiation sources, certainly should have knowledge of theoretical foundations 
and critical characteristics of these types of radiation. They should be familiar 
with the peculiarities of passing charged particle beam in vacuum, material 
media, and through the periodic structure. Possession of basic concepts and 
principles of electrodynamics will enable them to understand the require-
ments for the characteristics of particle beams in accelerators, but also crea-
tively involved in the development of new programmes and carrying out ex-
periments. This study aid can be considered as an introduction to the 
specified range. It consists of three chapters, tasks, tests and appendices.

The first chapter presents the electrodynamics in vacuum. Such an order 
of presentation when Maxwell’s equations for vacuum are shown firstly al-
lows to introduce necessary concepts and symbols in the future and to em-
phasize the experimental basis of Maxwell’s equations. Description of all the 
chapters is in the light of these equations in the subsequent chapters.  

In the second chapter it is shown with the help of simple models how 
to move from microscopic Maxwell’s equations to the macroscopic ones of 
physical media: in electrostatics – for dielectrics, where the environment is 
composed of polar or nonpolar molecules, and magnetostatics– for mag-
nets in explaining diamagnetism and paramagnetism. Then the general ap-
proach of averaging Maxwell’s equations for the variable fields is set out, 
and material equations or equation of communication, without which the 
system of Maxwell's equations can not be considered complete, are con-
sidered. It is shown how you can set the type of permittivity medium with 
the simplest models. A large part of the second chapter is devoted to eluci-
date the physical meaning of permittivity. This is due to the importance of 
the values for the solutions of many problems of electrodynamics of media 
and the passage of radiation through the environment. Electrodynamic and 
thermodynamic methods have been used at considering properties of the 
electrical and magnetic media. Applied methods of quantum mechanics 
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would require a substantial increase of volume of the study aid and should 
be done in special courses.

The third chapter is devoted to the theory of radiation of relativistic 
charged particles. There is derivation of Lienard–Wiehert’s retarded poten-
tials, on the basis of which the formula for the electromagnetic fields of fast 
moving point charge have been deduced. The expressions for the intensive 
radiation, as well as for the spectral-angular characteristics of radiation, have 
been received. Synchrotron and undulatory radiations are considered closely. 
Synchrotron radiation has unique properties: a continuous spectrum, lasting 
until the characteristic frequencies of gamma-radiation, high intensity and 
high degree of polarization. Due to this synchrotron radiation has become 
common use in various fields of science and technology. In the third chapter 
issues relating to other types of radiation and charged particles have been dis-
cussed: the transition radiation, coherent bremsstrahlung, radiation at chan-
neling, etc. It should be emphasized that mathematical formalism and physi-
cal concepts developed in the theory of synchrotron radiation are also 
applicable in the analysis of characteristics of radiation of other types. It is 
suffice to point out such things as the formation of the radiation zone, or the 
length of coherence, polarization of radiation, coherence, arising from the 
emission of charged particles, formed in bunches, etc. It is expected that stu-
dents are familiar with the special theory of relativity. Therefore the formulas 
of relativistic mechanics and relativistic electrodynamics, essential for under-
standing of the calculations, are available in the appendix. 

Gaussian system of units is taken in the study aid, but the tasks and tests 
are formulated in such a way that students could use the international system 
of units (SI). The transition from one system of units to another can be done 
with the help of the tables in the appendices. Twelve tasks are developed for 
the each topics of the course, which consist of control questions, exercises 
and problems. Task execution contributes to better learning of the theoretical 
material. With the same purpose multiversion tests are given in a number of 
sections. The present study aid differs from the edition of 2007. The noticed 
misprints are removed, and tasks, tests and appendices are added. 
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Chapter 1 
MICROSCOPIC ELECTRODYNAMICS IN VACUUM 

1. Electrostatics in vacuum 
1.1. Coulomb’s Law. Electric field 
One of the most important notions in the theory of electricity is the 

charge. It has the following fundamental characteristics: �) electric charges 
can be either positive or negative; b) an algebraically sum of charges doesn’t 
change in any electrically isolated system, in other words there is the law of 
electric charge conservation; c) the charge of a body doesn’t depend on the 
choice of the inertial frame of reference, in which it is measured. 

The experiments on charge interaction show that the interaction force F
�

 
between charged bodies depends on charges q, dimensions and shapes 
of the bodies, and their position in space. The main problem of electrostatics 
is to calculate the interaction force F

�
 between charged bodies. The problem 

simplifies owing to the fact that one can apply the superposition principle 
to electromagnetic interactions, which was proved by experiments: 
 CABACBA FFF ,,,

���
��� , 

that is the interaction force between a charged body � and a system of charged bod-
ies �+� equals the sum of the forces acting between the charged bodies: (�,�) 
� (�,�). The interaction force between any system of charges can be presented 
in the form of vector sum of forces acting between the separate discrete point charges 
 ��

ki
kiFF

,

��
. (1.1) 

Let ),( 11 rq �  and ),( 22 rq �  be two point charges, the positions of which 
in the chosen coordinate system are characterized by the radius-vectors 1r

�
 

and 2r
�

, correspondingly. 
The interaction force of two point charges in vacuum is directed along the 

straight line connecting these charges. This force is proportional to their values 
1q  and 2q  and inversely proportional to the squared distance between them: 

 
21

21
2

21
2121

1
rr
rr

rr
qqF ��

��
��

�
�
�

�
�

� . (1.2) 
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Fig. 1.1. The interaction of two point charges confined in volumes dV and dV.' 

It is the attracting force for unlike charges and the repulsive force for like 
charges. Formula (1.2) expresses the basic qualitative law of electrostatics, 
known as Coulomb's law. The absolute or gaussian system of units was used to 
write this law (1.2). In the sequel it is more comfortable to refer to continuous 
distribution of charges. For calculation, a body is divided into infinitesimal vol-
umes (or surfaces or lengths), and such a notion as the charge density is intro-
duced – volumetric density � , surface density �  and line density 	 , where 

 
dV
dq

�� , dS
dq

�� , dl
dq

�	 , (1.3) 

and dq  is the charge in volume element dV , on surface element dS  on line 
element dl . 

According to Fig. 1.1 and to the superposition principle, Coulomb's law 
should be written in the form: 

 
 

 
 ���
��

�����
)1( )2(

32132
)1( )2(

1 )()()()(
R
RrrVddV

rr
rrVdrdVrF

�
��

��
�����

���� , (1.4) 

Where the integration in the expressions 

)1(

dV  and 
�



)2(

dV  is over the vol-

umes of the first and the second bodies and rrR ���
���

. 
Let’s denote 

 � 
 � 
 Vd
R
RrrE ��� 
 3

)2(
2

�
���

� , (1.5) 

Then the force F
�

 takes the form 

 � 
 � 
 � 
dVrErrF �����

�

)1(
1� , (1.6) 
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And the task solution is found in two steps: at first � 
rE ��
 is found, then F

�
, 

where � 
 � 
dVrEr ���
1�  – the force acting on the charge � 
dVr�1� , and E

�
 – the 

force, working on a unit charge, electrostatic intensity. 
Faraday came to the notion of electrostatic field in the 19th century. He 

asserted that the effect of a body on another one is made either through a con-
tact or through the intermediate medium. So, he kept to the idea of a close-
range interaction, which is opposite to the concept of long-range interaction. 
The latter was borrowed from the Newton’s law of gravity and was devel-
oped in the works of Laplace, Ampere, Poisson, Gauss, Green, Francis Neu-
mann, Charles Neumann, Veber, Kirchgoff and many other physicists and 
mathematicians. 

Intuitive and qualitative Faraday’s proofs got a strict mathematical form 
in Maxwell’s theory. 

Let’s calculate the intensity � 
rE ��
, made by the point charge 0q , which is 

in point 0r
� . For this it is convenient to use the Dirac �-delta function: 

 � 
 )( 00 rrqr ���
��� �� . (1.7) 

According to (1.5) and the property of �-delta function 

 � 
 � 
 0 0 33 ( )R r rE r r dV q r r dV
R r r

� � � �
� � � �� � � �

� �
 

� � �� � � � �

� �  

 
0

0
0 03 3

0

.r r
r rr rq q

r r r r
��

�� �
� �

� � �
� �

� �� �
� � � �  (1.8) 

If there is a discrete collection of point charges, one can introduce for it 
a charge density distribution with the help of �-delta function for it 

 � 
 � 
i

n

i
i rrqr ���

��� �
�

��
1

, (1.9) 

which corresponds to n  point charges, in points ir
�

. Substituting (1.9) into 
(1.5) and integrating with the help of �-function, we get 

 � 
 �
� �

�
�

n

i i

i
i

rr
rrqrE

1
3��

����
. (1.10) 

1.2. Integral and differential forms of Gauss's law 
For electric field the calculation of � 
rE ��

 the relation 

 � 
 � 
 Vd
R
RrrE ��� 
 3

�
���

�  (1.11) 

is not very conveniently. 



 10

There is another integral re-
lation, which gives much more 
possibilities. This is the Gauss’s 
law of flux, one of the most im-
portant theorems in electrostatics. 
The base of the theorem is made 
by the notion of vector flux, 
which is one of the main notions 
of vector analysis. One needs cer-
tain symmetry of a task to apply 
Gauss’ law of flux. Suppose a 
point charge q  is at origin of co-
ordinates (Fig. 1.2, Fig. 1.3.). 

Let us draw a closed surface 
S  around the charge; we will 
choose the external normal to the 
surface as the positive normal. 
Let’s calculate the vector flux of 
the intensity 
 dSnE ��

 through the 
closed surface S  of an arbitrary 
form. According to (1.8) the in-
tensity made by the point charge 
at the observation point r� , on the 
surface S , is equal to 

 3r
rqE
��

� . (1.12) 

 
Fig. 1.4. To the derivation of the integral form of Gauss' law 

for the case when charge q is outside surface S 

Consider an area of the surface dS  (Fig. 1.4). From the figure it follows, 

 � 
 � 
 � 
 �d
r
qdSnr

r
qdSnr

r
qdSnE 223 ,cos ���

������
, 

where � 
nrdSd �� ��� ,cos� . 

 
Fig. 1.2. Vector flux E

�
 through surface dS

 
Fig. 1.3. Vector flux E

�
 through surface dS
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On the other hand, �� d
r
d

2

� - the value of the solid angle, at which the 

area �d  is seen from the origin of coordinates. As a result we get 
 
 � qdSnE �4��

. (1.13) 

If a charge is out of the surface S , then from Fig. 1.4 it follows that the 
near and far surfaces are seen at the same solid angle, but � 
nr ��,cos  is negative 
for the near surface and positive for the far surface. 

That is why 
 
 � 0)( dSnE ��

. (1.14) 
In case of several charges 

 ��
i

iEE
��

 

and 
 � 
dVrqdSnE

V
ni
 
��

���
��� 44)( , (1.15) 

where V  is the volume bounded by the surface S , inq  is the algebraic sum 
of all charges inside the closed surface. The charges that are outside this sur-
face don’t influence the quantity of the flux. The relation (1.15) is called the 
electrostatic Gauss’s flux theorem. 

The Gauss’s theorem is a corollary of Coulomb's law, which by its form 
doesn’t differ from the Newton’s gravity law (in both cases the interaction force 
changes in inverse proportion to the squared distance). That’s why the Gauss’s 
theorem can be applied to gravitational fields. In this case a gravitational mass 
multiplied by the gravitational constant plays the role of the charge. 

Let’s apply Ostrogradsky and Gauss’s theorem known from vector 
analysis: 
 dVEdivnE

VS


 �

���
)( . (1.16) 

Comparing (1.15) and (1.16), we get the differential equation, 
 ��4�Ediv

�
, (1.17) 

known as the differential Gauss’s theorem. 
1.3. Work of electric forces. Potential 
Suppose a point charge q is in the origin of coordinates. Let’s place a 

testing unit charge in its field � 
rE ��
. In this case the field intensity made by 

the point charge q is 

 � 
 3r
rqrE
���

� . 
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By the definition, the field intensity is equal to the force working on a 
unit charge 
 EF

��
� , 

in this case, the following work is produced 

 rdr
r
qrdEAd �����
3�� . (1.18) 

Since 

 � 
 � 
 drrrdrrdrdr ��� 2

2
1

2
1 ���� , 

then 

 � 
2 .q qdA dr d d r
r r

�� �� � � � �� �
� �

 (1.19) 

The forces of the electrostatic central field are conservative, that is the work 
of the field done to move a unit charge along a closed path is equal to zero: 
 � 
 0.dA d r�� � �
 
� �  (1.20) 

The quantity introduced in (1.19) 

 � 
 qr
r

� �  (1.21) 

is called the electrostatic potential of the field of a point charge q . 
 

 
Fig. 1.5. The charge distribution in volume V. Vector r ��  is drawn to the point 

containing a point charge, vector r�  is drawn to the observation point 

For a continuous charge distribution (Fig. 1.5) 

 � 
 � 
 .
r dV

r
r r

�
�

� �
�

��

�

�
� �  (1.22) 
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It should be noted that the point charge potential ( )r� � , as follows from (1.19), 
is defined accurate to an additive constant, which doesn’t play any physical 
role. This constant is equated to the potential value at infinity which is equal 
to zero. From relations (1.18) and (1.19) it also follows that 
 
 � 0rdE ��

. (1.23) 

By the Stock’s theorem from the vector analysis it is known that the 
vector circulation on a closed contour is equal to the vector flux through the 
surface taut on that contour. (Fig. 1.6) 
 � 
dSErotnrdE

L S

 
 ��

����
. (1.24) 

Taking into account (1.23) and (1.24) we come to the differential equation 

 0�Erot
�

, (1.25) 
which is valid for all points of the space. 

 
Fig. 1.6. Surface S strained on contour L 

The task on computing the forces acting between charges reduces thus 
to computing the field � 
rE ��

 from the system of differential equations 

 
�
�
�

�
�

.0
,4

Erot
Ediv �
�

��  (1.26) 

1.4. Maxwell’s equation in electrostatics 
According to Helmgoltz’ theorem, any vector field � 
rG ��

 can be found 
if Gdiv

�
 and Grot

�
 are known. 

If the density of the charge distribution �  in (1.26) is given, these con-
ditions are satisfied, and the field � 
rE ��

 ��n be defined. 
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Equation (1.26) is Maxwell’s equation in electrostatics. From the second 
equation it follows that 
 ,E �� ��

�
 (1.27) 

as 0.rot grad � �  From the first equation, in view of the relation 
 2 ,div grad � �  

where 2�  is the Laplace operator denoted sometimes as 2��� , we get the 
Poisson’s equation: 
 2 4 .� � �� � �  (1.28) 

In the space regions where there are no charges, it turns into the 
Laplace’s equation 
 2 0.�� �  (1.29) 

In many cases it is more preferable to calculate first the potential ( )r� �  from 
the equation (1.28), and then to find the field intensity � 
rE ��

 by formula (1.27). 
The solution of Poisson’s equation has the form: 

 � 
 � 
 .
r dV

r
r r

�
�

� �
�

��

�
� �  (1.30) 

If �  is known, we find the solution for ( )r� �  by formula (1.30), and then 
calculate � 
E r �� ��

� � . Thus, in electrostatics the main task of computing the 
forces interacting between the charged bodies is solved: 

1) by Coulomb's law; 
2) by Maxwell’s equation (on the basis of Helmgoltz’s theorem). 

There are some ways to solve electrostatic tasks: 
�) the method based on the application of field superposition principle; 
b) the calculation of electric field with the help of the Gauss's law; 
c) integration of Laplace and Poisson’s equations; 
d) the method of electrical pictures. 

2. Magnetostatics in vacuum 
2.1. Biot-Savart and Ampere’s laws 
While studying magnetic phenomena some experimental facts have 

been established. They form the basis of the contemporary electromagnetic 
theory. These facts are: 

1) Force F
�

, working on a point charge q , which moves at a speed �� , consists 
of two components: electric and magnetic and is called Lorenz’s force: 

  !
"
#
$

�
�
� �� B

�
EqF

����
�1

. (2.1) 
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Here E
�

 and �
�

 are the intensity of electric and magnetic fields correspond-
ingly. Formula (2.1) is valid not only for direct but also for alternating electric 
and magnetic fields. It is possible to determine the magnitudes and directions of 
vectors E

�
 and �

�
 by the Lorenz’s force working on a charge. That is why, ex-

pression (2.1) can be regarded as the definition of electric and magnetic fields. 
 

 
Fig. 2.1. The interactions two infinitely small elements of linear currents 

2) Moving charges (currents) induce a magnetic field. 
It is more convenient to experiment with magnetic action on moving 

charges using currents that present the motion of many moving charged par-
ticles but not separate charges. 

Suppose that there are two currents 1I  and 2I , flowing along the corre-
sponding contours (Fig. 2.1). As known, they interact with each other, and the 
force of interaction depends on these currents, their forms, directions etc. The 
main task is to calculate the currents interaction force 21F

�
. It was proved in ex-

periments that for the magnetic interactions the superposition principal is valid: 
 
 
 ��

)1( )2(
21 rdrdF ���

. 

There is a similar formula in electrostatics for interaction of charges: 
 

� 



 ��
21

21 VddVF
�

. 

According to (1.6) and (1.5) the calculation 21F
�

 in electrostatics was 
done in two stages: first the intensity � 
rE ��

 was calculated by formula (1.5), 
then the interaction force was calculated by formula (1.6): 

 � 
 � 
 Vd
R
RrrE ��� 
 3

)2(
2

�
���

� , 

 � 
 � 
dVrErF ����

�

)1(
121 � , 
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where � 
 EdVd
R
Rr

��
�

���
32�  is the field, made by an infinitely small charge 

� 
 Vdr ���2� , and � 
 � 
 FddVrEr
����

�1�  is the force of the field 
� 
rE

�
 acting on the infinitely small charge � 
dVr�1� . 

Thus, the following relations are valid for the interaction of charges 

 
�
)1(

21 FdF
��

, (2.2) 

 � 
 � 
dVrErFd ����
1��  (2.3) 

and 

 � 
 
�
)2(

EdrE
���

, (2.4) 

 � 
 Vd
R
RrEd ��� 32

�
��

� . (2.5) 

Similarly we have for current interaction: 

 
�
)1(

21 FdF
��

, (2.6) 

  !Brd
c
IFd

���
,1� , (2.7) 

 
�
)2(

Bd�
��

, (2.8) 

 %
&

'
(
)

*
�� 3

2 ,
R
Rrd

c
IBd

�
��

, (2.9) 

where rrR ���
���

. 
Formula (2.7) gives the force acting on a linear element of current. This 

formula is called Ampere’s law, discovered by Ampere. The force acting on a 
conductor of a finite length is found by integrating by formulas (2.6) and 
(2.7) over the finite length of the conductor. Formulas (2.8) and (2.9) express 
the Biot-Savart law to compute the magnetic field quantities �

�
 and �d

�
, made 

by a linear current 2I . Linear currents are the currents whose transverse sec-
tion is small in comparison with the contour length. In case of currents of fi-
nite section, one can apply decomposition of a current on set of indefinitely 
thin strings of a current (Fig. 2.2): 

Threadlike currents satisfy to a condition of linearity, therefore to them 
formulas (2.6–2.7) with formal replacement are applicable 
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  !  !dV
c
j

c
rdI



 +
......
��

 (2.10) 

Here 
 
 
 ��� SdjdII

��
, 

and the quantity j
�

, density of a current, determined as 

 
dS
dI

S �,� 0lim  

and 
 Sdj

��
- . 

 
Fig. 2.2. Decomposition of a current of finite section  

on set of indefinitely thin strings of a current 

The quantities rId� , dVj
�

 are, accordingly, elements linear and volume 
currents: 
 dVjrddSjrdI

���
�� . 

Here we used the fact that the direction of a current density j
�

 coin-
cides with that of contour element rd� . AS a result of the transition from the 
linear currents to the current of finite section by formula (2.10) the integra-
tion ...
 rd�  reduces to the integration 
 ...dV , and we get the Biot-Savart law 
and Ampere’s law for currents of finite section. 

Ampere’s law: 

 12 1
1 .F j B dV
�

* '� ) &

� ��

 (2.11) 

The Biot-Savart law: 

 
 �%
&

'
(
)

*
� Vd

R
Rj

c
� 32

1
�

��
. (2.12) 

According to (2.12), magnetic field � 
r� ��
 is � sum of fields made by the 

separate bulk elements of the current dVj2

�
. 
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Consider the expression 

 1 .dF j B dV
c

* '� ) &
� ��

 (2.13) 

It gives the force acting on the bulk element of current dVj2

�
. If � is 

a charge density, and u�  is an average speed of charge motion, then 
 uj ��

�� � . (2.14) 

On the other hand, density �  can be expressed through the concentra-
tion n  and the charge e  of current carriers: 
 ne�� . (2.15) 

Then we get 

 dVn
u i

i�
�

�
�

�
. (2.16) 

Having substituted the expression for j
�

 (2.14) in the formula for Fd
�

 
(2.13) and using (2.15) and (2.16), we find 

 
1 1 .i i

i i

edF en B dV B
c ndV c

� �
* '* ' * '� � � �( %) & ) &) &

� �
� � �� �

 (2.17) 

Force Fd
�

 is expressed through the sum of Lorenz’s forces, which act �� 
the charges moving at speeds i�

�
 from magnetic field �

�
: 

  !B
c
ef ii

���
�� � . (2.18) 

Thus, actually, Lorenz’s force action on the point charges appears 
through Ampere’s law. 

2.2. Vector potential of magnetic field 
According to the Biot-Savart law, magnetic field � 
r� ��

 is calculated by 
the formula 

 � 
 � 

 �%
&

'
(
)

*
�� Vd

R
Rrj

c
r� 3

1
�

����
, (2.19) 

where rrR ���
���

, vector r�  is drawn to the observation point, and r ��  – to the 
point of the volume element Vd � , in which the bulk current � 
rj ��

�
 is (Fig. 2.3). 

As 

 � 
 � 
 � 
222 zzyyxxR ��������� , (2.20) 
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The formula can be simplified noting that 

 � 
 � 
 � 
222 zzyyxxR ���������  (2.21) 
and 

 � 
 � 
%
&

'
(
)

* ��
�
�

�
�
���%

&

'
(
)

*
� rj

RR
Rrj ��
�

��
,1

3 . (2.22) 

Let us calculate � 
�
�
�

�
�
� �rj

R
rot ��1 : 

 � 
 � 
 � 
rjrot
R

rj
R

rj
R

rot ������ 1,11
�%

&

'
(
)

* ��
�
�

�
�
����

�
�

�
�
� � . (2.23) 

 
Fig. 2.3. To the calculation of magnetic field B

�
 created by current I in point P 

The second term vanishes, as vector j
�

 depends on r �� , but not on vector r� , 
whose coordinates are used in the derivation. From formulas (2.22) and 
(2.23) it follows that 

 � 
 � 
�
�
�

�
�
� ��%

&

'
(
)

*
� rj

R
rot

R
Rrj ���

�� 1
3  (2.24) 

and 

 � 
 � 


 �

�
� Vd

R
rj

c
rotr�

��
�� 1 . (2.25) 

Denote 

 � 
 � 
 Vd
R
rj

c
rA �� 


��
�� 1 . (2.26) 
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This quantity � 
rA ��
 is called the vector potential of a magnetic field, and 

field � 
r� ��
 is calculated by the formula: 

 � 
 � 
� 
rArotr� ����
� . (2.27) 

First, vector potential � 
rA ��
 is calculated on the basis of (2.26) by a given 

current distribution � 
rj ��
�

, and then the field � 
 Arotr�
���

�  is computed. 
For electrostatics the field calculations are also done in two steps: 

 ,E �� ��
�

 
where 

 � 
 ,
r dV
R

�
�

� �
� 


�
 

with the scalar potential � 
r� �  satisfying the Poisson’s equation 

 2 4� � �� � � . 
One can easily make sure that the vector potential satisfies the equation 

 j
c

A
�� �42 ��� . (2.28) 

2.3. Maxwell’s equation for magnetostatics 
The main task of magnetostatics is to find the force F

�
, with which the 

currents interact. This task is solved consecutively. First, one finds the field 
� 
r� ��

, and then the force F
�

. According to Helmgoltz’s theorem, to find the 
field � 
r� ��

 it is necessary to know Bdiv
�

 and Brot
�

. From the Biot-Savart law 

it follows that ArotB
��

� . Taking the divergence of vector �
�

, we obtain 

 0�Bdiv
�

, (2.29) 

as 0�Arotdiv
�

. 
Let us calculate Brot

�
: 

 j
c

AdivgradAAdivgradArotrotBrot
������ �42 ������ . (2.30) 

While calculating �
�

, one can substitute A
�

 for xAA ����
��

, 
where �  is an arbitrary function depending on r� , as 0�xgradrot . 

Therefore ArotArot
��

�� . 
Vector potentials A

�
 and A�

�
 give the same field � 
r� ��

. One can suggest 
that in the ensemble . /A�

�
 there is such a potential that 0�Adiv

�
. 
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Indeed, if 00�Adiv
�

, for example 

 � 
rfAdiv ��
�� , (2.31) 

then one can choose 
 xAA ����

��
, (2.32) 

where function x, by virtue of arbitrariness of its choice, satisfies the equation 
 fx ���2 . (2.33) 

In this case 
 � 
 02 ������� xrfxgraddivAdivAdiv ���

 (2.34) 
and 

 j
c

Brot
�� �4

� . (2.35) 

As a result we obtained the Maxwell’s equations for magnetostatics: 

 .4
,0

j
c

Brot

Bdiv
��

�

�
�

�
 (2.36) 

3. Electrostatic and magnetic fields at a far distance from sources 

As we established, electrostatic field E
�

 and magnetic field �
�

 are calcu-
lated in electrostatics and magnetostatics correspondingly in two steps: 

�) for the electrostatic field we compute potential � 
r� �  by formula (1.22) 
and then we calculate electric field intensity � 
rE ��

 by formula (1.27); 
b) for the magnetic field, we find vector potential � 
rA ��

 by formula (2.26) 
and then we calculate magnetic field � 
r� ��

 by (2.27). 
1. If the distribution of charges, which make the field, is known, then the 

potential � 
r� �  is found by integration in (1.22). Under the condition that the 
density � 
r��  is other than zero in the limited area of space and decreases suf-
ficiently fast in any direction as 1,r� . However, the integral in analytic 
form can be taken only for a comparatively simple function � 
r ��� . The form 
of function � 
r� �  can be quite accurately determined to calculate the electro-
static field at far distances from the charge system. It occurs under the condi-
tion maxrr �22  (Fig. 1.5). 

Writing R in the form 

 � 
 2

2

2
222 212

r
r

r
rrrrrrrrrR

�
�

�
����������

������ . (3.1) 
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And making expansion of R  into a series in powers of small parameter 
rr /�  one gets 

 ...
22

311
3

22

23 �
�

��
�
�

�
�
� �

�
�

��
r

r
r
rr

rr
rr

rR

����
. (3.2) 

Denoting coordinates 1xx � , 2xy � , 3xz �  and introducing tensor nota-
tions, we get 

 � 
 3 5 .
2

i j i jQ x xq p rr
r r r

� � � �
� ��  (3.3) 

Here 

 � 
 Vdrq ��� 

��  (3.4) 

is the total charge of the system; 

 � 

 ���� Vdrrp ��� �  (3.5) 

is a dipole moment of the system; 

 � 
� 

 ������ jijiji rxxrQ �� 23�  (3.6) 

is a tensor of the quadrupole moment of the charge system. 
The power series expansion (3.3) is called the electrostatic expansion 

into multipole moments, or multipoles. Every subsequent expansion term is 
minor in comparison with the preceding one. The principal term of the ex-
pansion is a point charge potential 0 /q r� � : at far distances the details of the 
charge distribution become unimportant, and the system makes a potential 
the same as a point charge q, which is in the origin of coordinates. 

If 0�q , the most important term in the expansion (3.3) is the second 
term containing a dipole moment, which is defined by formula (3.4) for 
a continuous charge distribution. In case of a discrete charge system the di-
pole moment is defined as 
 � ��

i
ii rqp �� . (3.7) 

In special case, when there is a system of two charges equal in magni-
tude but with opposite signs, we get from (3.7) 
 � 
 � 
 lqrqrqp

����
����� �� , (3.8) 

where 
 �� �� rrl ���

. (3.9) 
The system drawn in Fig. 3.1. is called an elementary dipole. 
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Fig. 3.1. The elementary dipole 

The electric field intensity E
�

 is calculated by formula (1.27): 
 q pE E E�� �� � �

� � �
, (3.10) 

where 

 
r
qEq ���

�
, (3.11) 

 3r
rpEp

���
��� . (3.12) 

As an exercise it is suggested to calculate: 
�) qE

�
 and pE

�
 in Cartesian coordinate frame; 

�) in spherical coordinate frame ( , , )r 3 ��  with polar axe directed along vector p� , 
it is necessary to find the components of vector E

�
: rE , 3E  and E� . 

2. For magnetostatics, at the first stage, the calculation of field � 
r� ��
 re-

duces to the potential calculation � 
rA ��
 at a far distance from the current sys-

tem (Fig. 2.3). 
In this case the currents can be regarded as “thin” (linear) and according 

to formula (2.10), relating linear and bulk currents, the expression for � 
rA ��
 

(2.26) takes the form 

 � 
 
 �4
�

� mAA
R
rd

c
JrA

�����
0 . (3.13) 

Let’s calculate the last two terms 0A
�

 and mA
�

 in approximation; when for 

value 
R
1  the first two terms of the expansion are taken (3.2). As a result we get 

 00 �A
�

, (3.14) 

because 
 �� 0rd� , and 
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 � 

3r
rr

rd
c
JAm

���� 

��

��
. (3.15) 

Consider � 

 ��� rrrd ��� . 
The integrand can be transformed as: 

 � 
 � 
 � 
 � 
 � 
rdrrrdrrrrrdrrrdrrrd �������������� ���������������
2
1

2
1

2
1

2
1 . (3.16) 

The first and the fourth terms in (3.16) are a double vector product 

  ! !rrdr �5�
���

2
1 , 

and the rest of the terms yield the differential with respect to coordinates 
of vector r �� . 

As the integral (3.15) is over a closed contour, so 

 � 
 0
2
1

����
 rrrd ���  and 

  ! !  !%&
'

()
* �����5�� 

 rdr

c
J

r
rrrdr

cr
JAm

�������
2

,
2 33 . (3.17) 

Let’s denote 

  !  ! Vdrjr
c

rdr
c

Jm ������� 

 )(
2
1

2
������ . (3.18) 

We returned to the bulk current in formula (3.18) in the latter expres-
sion. The value m�  in (3.18) is called a magnetic dipole current moment; vec-
tor potential mA

�
 (3.17) is expressed through this moment in the dipole ap-

proximation 

  !
3r
rmAm

���
� . (3.19) 

Let’s compare it with the electrostatic potential in dipole approximation 
(in formula 3.3)): 

 � 

3 .p

p r
r

� �
� �

 

Let us calculate the magnetic field � 
r� ��
 in the above mentioned ap-

proximation: 

 � 
  !rm
r

rotr� ����
3

1
� . (3.20) 

Applying the rotor calculating rule for the composite functions (see the 
appendix “Field theory elements”) we find 
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 � 
 � 

35

3
r
m

r
rmrr�

������
�� . (3.21) 

 
Fig. 3.2. The electric field of two equal charges opposite in sign.  

At far distance from charges it coincides with the field of electric dipole 

 
Fig. 3.3. The magnetic field of a loop with current. At a far distance  

from the loop the field coincides with the field of magnetic dipole 

Formula (3.21) coincides (up to notations) with the field intensity 
of electric dipole (3.12), in which the corresponding calculations are done. 
The same are the shapes of the field lines of electric and magnetic dipoles 
(Fig. 3.2, Fig. 3.3). 

3.1. The systems of charges and currents  
in external electric and magnetic fields 

Let a charge system be in external electric field � 
rE ��
, weakly changed 

within the volume V of the system (Fig. 1.5). 
Let’s compute the force of field � 
rE ��

 acting on the charges by formula 

 � 
 � 
dVrErF
V

����

� � . (1.6') 

Let’s make the expansion � 
rE ��
 in the neighborhood of the coordinate 

origin in Taylor's series: 

 � 
 � 
 � 
 � 
 00 .rE r E r E r �4 � � �
� � � �� � �

 (3.22) 

And substituting (3.22) into ( 6.1 � ), we get 

 � 
 � 
 � 
00 EpEqF
�����

��� . 
If the center of the charge cloud is not in the coordinate origin but in 

point r� , formula (3.22) will take the form 
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 � 
 � 
 � 
rEprEqF �������
��� . (3.22') 

If we measure the particles deviation caused by the force (3.22') acting 
on the charge system, one can find the charge q and the dipole electrical mo-
ment of the charge system. 

The total force working on the charge system consists of separate forces Fd
�

, 
which work on smaller parts of the system characterized by vector r� . That’s 
why there appeared moments of forces 
  !FdrNd

���
�  (3.23) 

and the total moment 

  ! dVErN
V

�
�
���

. (3.24) 

Taking into account only the first term of the expansion (3.22) in for-
mula (3.24) for � 
rE ��

, we find 

 � 
 ! � 
 ! � 
 !rEpEpdVErN
V

��������
4�4 
 00 � . (3.25) 

A system of charges is characterized by a dipole moment �� , which has 
a definite orientation with respect to E

�
. That’s why the dipole is influenced 

by the force, which causes its movement in the space, as well as by force 
moment N

�
, which orientates it along the field. 

The same conclusions are true for the system of the currents that are in 
external field � 
r� ��

. In this case 

 � 
BmF
���

��  (3.26) 
and 
  !BmN

���
� , (3.27) 

where m�  is a magnetic dipole moment of the current system. 
3.2. The energy of interaction of charges and currents with an external field 
If a charge system . /iq  is in an external field � 
rE ��

, then the work done 
by the field for the infinitely slight displacement of charges is defined by the 
formulas: 

 � 
 � 
� 
 � 
i i i i i i i i i i
i i i i

dA F dr q E r dr q r dr q d r� �� � � � � � � �� � � � �� � � �
� �� � � � � �

 

 � 
i id q r dW�� � � � �� �
. (3.28) 

The value 
 � 
i i

i
W q r�� �� �

 (3.29) 
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is the interaction energy of the system of point charges . /iq  with the external field. 
For a continuous charge distribution 

 � 
 � 

V

W r r dV� �� 

� � . (3.30) 

If the volume V , where the charges are, is small, one can think that the 
potential � 
r��  changes slightly within the system size. Doing the expansion 

� 
r��  in Taylor’s series 

 � 
 � 
 � 
 � 
 � 
 � 
� 
0 0 0 , 0r r r E� � � �4 � � � �
� �� � �

 (3.31) 

And substituting (3.31) in formula (3.30), we get 

 � 
 � 
0 0W q p E�� � �
��

. (3.32) 

If the center of the charge cloud is not in the coordinate origin but in 
point r� , then 

 � 
 � 
W q r p E r�� � �
�� � �

. (3.33) 

So, according to (3.33), the interaction energy W  is defined by the inter-
action energy of the point charge q  of the cloud and by the interaction energy 
of the dipole moment of the system with field � 
rE ��

. 
For the current in the magnetic field 

 BmW
��

�� . (3.34) 
As compared with (3.33) there is no summand similar to the first term in 

(3.33), because the magnetic “charges”, monopoles, haven’t been found ex-
perimentally. 

4. Alternating electromagnetic field 
4.1. The law of electric charge conservation 
Suppose, that charges move in arbitrary volume V  with the surface S , 

limiting this volume (Fig. 4.1), and the charge density can change in time, 
and by the time t  the total charge in volume V  is 

 � 
 � 

�
V

dVtrtq ,�� . (4.1) 

Then by the time tt ��  the charge is defined by the expression 

 � 
 � 

 �����
V

dVttrttq ,�� . (4.2) 

Let’s evaluate the balance of charges incoming and outgoing through 
surface element S�  for time t�  at speed �

�
. Let’s denote the normal to the 
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surface element by n� . As is obvious from Fig. 4.2, the change of the charge 
quantity for time interval t�  is determined by vector flux �

�
 through the sur-

face element S�  for time interval t� : 
 � 
 � 
ntStSt ��

�6�� ������� cos , (4.3) 
and through the whole surface S: 
 � 
 � 
 � 
dStrnttqttqq

S

�������� ,���

�� . (4.4) 

 

 
Fig. 4.1. To calculation of balance of charges,  

moving with velocity v�  in the areas V limited to surface.  
Density of changes eventually 

Passing to the limit under the sign of integrals (4.1) and (4.2) 

 � 
 � 

tt

trttr
t 7

7
�

�
���

,�

��� ,,lim
0

��
, (4.5) 

we get from (4.4) 

 

 ��
7
7

SV

dSnjdV
t

���
, (4.6) 

where 
 ��

��
�j  (4.7) 

is the electric current density. 

 
4.2. Vector flux v�  through surface element �S 
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Applying the Ostrogradsky and Gauss’s theorem to the right-hand side 
of (4.6), we come to the differential form of the charge conservation law: 

 0��
7
7 jdiv

t
��

, (4.8) 

which is valid at an arbitrary moment of time. Equation (4.6) is the integral 
form of the charge conservation law. 

4.2. The electromagnetic induction law 
Suppose there is a closed conductor that moves at speed V

�
 in a mag-

netic field. There are electrons inside the conductor, moving at a speed ���  
relative to the conductor. That’s why, according to the speed composition law 

 V
���

����� . 
The electron with charge - e  is subjected to the Lorenz force of magnetic 

field �
�

: 

  !  !  !BV
c
eB

c
eB

c
ef

�������
������ �� . (4.9) 

The first term in (4.9) presents the force perpendicular to speed ��� , that 
is why the value ���  doesn’t change. The second term accelerates the elec-
tron at the expense of 

  !BV
c

E
�� 1

� . (4.10) 

Let’s calculate the electro-moving force (emf), defined as the circulation 
of vector E

�
 along the contour, which is the conductor 

 1

L L

dlE dr B dr
c dt

8
* '

� � �( %
) &


 

�� �� �� � . (4.11) 

Here we use the expression for E
�

 (4.10) and the definition of V
�

 
as a speed of the position change of the conductor in the magnetic field: 

 
dt
ldV
��

� . (4.12) 

Consider the integrand in (4.11): 

 .dl B dr dr dl B* ' * '� � �) & ) &
� �� �� �  (4.13) 

In formula (4.13) the property of cyclic permutation of vectors in a par-
allelepipedal product is used. Let the surface �  rest on the contour, which is 
a conductor. 
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Fig. 4.3. The figure shows the forward motions of contour L,  

which shifts on ld
�

 for time dt , surface S  bears on contour L .  
Value d r�  presents element of contour L 

From Fig. 4.3, it follows that 

 ,dr dl n d�* ' � �) &
�� �

 (4.14) 

where �d  is the magnitude of the square, which is “shaded” by contour ele-
ment rd�  in the space when being shifted by vector ld

�
, and n�  is a normal 

vector to the surface. 
As a result we get 

 � 
 � 
 � 
1 1 1

L S S

dl B dr n B d n B dS n B dS
� dt c dt �

�
� $* '

� � � � �� #( %
) & � "


 
 
 

�

� � � �� � � ��  

 � 
 � 
1 1

S S

n B dS n B dS
c dt ��

� $
� � �� #

� "

 


� �� � . (4.15) 

We added and subtracted the integral over an arbitrary surface S, resting 
on contour L in formula (4.15). 

Vector flux �
�

 through the surface S  is the magnetic flux 	  through 
contour L: 

 � 

�
S

dSBn	
��

, (4.16) 

And the expression in the curly brackets in (4.15) is inaccurate as the 
change of magnetic flux d	 . From formulas (4.11), (4.16) and (4.15) it fol-
lows that 

 1 	
� t

8 7
� �

7
. (4.17) 

That is, the emf in the contour appears due to the change of magnetic 
flux through the contour. Formula (4.17) presents the electromagnetic induc-
tion law in the integral form. 
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Let’s formulate this law in the differential form. 
The conductor may remain motionless, but in the course of time the 

magnetic field � 
tr� ,�
�

 changes and so does the flux consequently: 

 1 	
� t

8 7
� �

7
. (4.18) 

Writing � 
 � 
dStrBnt
 
� ,�
��  and � 
 � 
dSttrBntt
 
 ����� ,�

�� , and substi-
tuting these expressions into (4.18) we have: 

 dS
t
Bn

dt
d	


 7
7

�
�

�
. (4.19) 

On the other hand 

 � 

L S

Edr n rot E dS8 � �
 

� �� ��  (4.20) 

according to the Stock’s theorem. 
From formulas (4.17), (4.19) and (4.20), the electromagnetic induction 

law follows in the differential form 

 t
B

c
Erot

7
7

��
�� 1

. (4.21) 

4.3. Maxwell’s equation for alternating electromagnetic field 
Suppose, there is a system of moving charges in some region of space 

(Fig. 4.4). A moving electric charge is an electric current. As the charge 
never appears and never disappears, charge density � 
tr ,��  and current density 

� 
trj ,�
�

 obey the charge conservation law in the differential form, in other 
words the continuity equation: 

 0��
7
7 jdiv

t
��

. (4.8) 
 

 
Fig. 4.4. The motion of a charge system in some area of space 
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Besides, the following equation is valid for moving charges as well as 
for motionless ones 

 ��4�Ediv
�

. (1.17) 
The absence of magnetic charges leads to the equation 

 0�Bdiv
�

, (2.36a) 
And according to the electromagnetic induction law, the alternating 

magnetic field is connected with the electric field. This connection is de-
scribed by the equation 

 t
B

c
Erot

7
7

��
�� 1

. (4.21) 

According to the Helmgoltz’s theorem, to find the fields � 
trE ,�
�

 and 
� 
trB ,�

�
 it is necessary to know their divergences and rotors. 

It is known from magnetostatics that 

 j
c

Brot
�� �4

� , (2.36b) 

where j
�

 is the density of a conduction flux. 
It is easy to make sure that the equation in the form (2.36.b) for chang-

ing in time charges and currents don’t satisfy the continuity equation. Indeed, 
if we take div  from both parts (2.36.b), we will get 

 jdiv
c

Brotdiv �4
�

�
, 

that is 
 0�jdiv

�
. 

The right equation for Brot
�

 was suggested by Maxwell. He proceeded 
from the symmetry of electric E

�
 and magnetic �

�
 fields in the equations. The 

equation containing Brot
�

, he wrote as 

 � 
��jj
�

Brot
���

��
�4

, (4.22) 

where the density of displacement current was introduced: 

 
t
�j�� 7

7
�

�
�

�4
1

. (4.23) 

In this case the charge conservation law is valid (4.8) in the differential 
form, and the equations transform into the equations of magnetostatics and 
electrostatics if �  and j

�
 don’t depend on time. 
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Let us write Maxwell’s equation for alternating fields: 

 t
B

�
Erot

7
7

��
�� 1

, (4.24�) 

 ��4�Ediv
�

, (4.24b) 

 j
ct

E
�

Brot
��� �41

�
7
7

� , (4.24c) 

 0�Bdiv
�

. (4.24d) 

Maxwell’s hypothesis about displacement currents reduces into the as-
sertion that alternating electric fields are the sources of magnetic fields. This 
discovery belongs purely to Maxwell and it is similar to the discovery of 
electromagnetic induction. The latter means that alternating magnetic fields 
induce electric fields. 

Let us formulate a system of Maxwell’s equations in the integrated form: 

 

 7
7

��
SL

Sd
t
B

�
rdE

��
�� 1

, (4.25�) 

 � 
 

 � dVSdE
S

��4
��

, (4.25b) 

 Sd
t
Ej

c
rdB

SL

��
���



 ��
�

�
��
�

�
7
7

��
�

�
4
14

, (4.25c) 

 � 
 0�

S

SdB
��

. (4.25d) 

4.4. The solution of Maxwell’s equations 
The solution of Maxwell’s equations in electrostatics (1.26) is 

 E �� ��
�

, (1.27) 

where electric potential � 
r��  obeys the Poisson’s equation 

 2 4� � �� � � , (1.28) 

which has the solution 

 � 
 � 
 ,
r dV

r
R

�
�

� �
� 


�
�  (1.30) 

 rrR ���
��

. 
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The solution of Maxwell’s equations in magnetostatics (2.36) is 

 � 
 � 
rArotr� ����
� , (2.27) 

and vector potential � 
rA ��
 is found as a solution of the equation 

 j
c

A
�� �42 ���  (2.28) 

and has the form 

 � 
 � 
 Vd
R
rj

c
rA �

�
� 


��
�� 1

. (2.26) 

The set of Maxwell’s equations (4.24) allows us to find the fields E
�

 and ,�
�

 
which are expressed through scalar and vector potentials. 

It immediately follows from the equation (4.24d) that 
 � 
 � 
trArottrB ,, ����

� . (4.26) 
Substituting (4.26) into the equation (4.24�), we have 

 01
���

�

�
��
�

�
7
7

�
t
A

c
Erot

��
. 

The equation is fulfilled if 

 1 .AE
c t

�7
� � ��

7

��
 

So, the fields are expressed through the yet unknown potentials � 
tr� ,�
�

 
and � 
,r t� � : 

 1 AE
c t

� 7
� �� �

7

��
, (4.27) 

 ArotB
��

� . (4.28) 
Let’s calculate � 
tr� ,�

�
 and � 
,r t� � . Let’s substitute (4.27), (4.28) into the 

equation (4.24c): 

 4 1 1 Arot rot A j
c c t c t
� �

� �7 7
� � �� �� �7 7� �

�� �
. (4.29) 

As 
 � 
 AAdivArotrot

����
2���� , (4.30) 

the equation (4.29) takes the form 

 j
ctc

AdivA
tc

��� �� 411
2

2

2
2 ��

�
�

�
�
�

7
7

�����
�

�
��
�

�
7
7

��� . (4.31) 
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The substitution of fields E
�

 and �
�

 in equation (4.24b) gives 

 1 4Adiv
c t

� � �
� �7
�� � �� �7� �

�
. 

Let us add to the left-hand side of the equation and subtract the term 
2

2 2

1
c t

�7
7

, then we get 

 
2

2
2 2

1 1 1 4div A
c t � t c t

�� � �
� �7 7 7� �� � � � � �� � � �7 7 7� �� �

�
. (4.32) 

Operator 2

2

2
2 1

tc 7
7

��  is called d’Alembert operator: 

 
2

2

2
2 1

tc 7
7

��� . 

Equations (4.31) and (4.32) in these notations take the form: 

 j
ctc

AdivA
��� �� 41

��
�
�

�
�
�

7
7

��� , (4.31�) 

 ���� 411 ��
�
�

�
�
�

7
7�

7
7�

tc
Adiv

t�
�

. (4.32�) 

The equations will simplify if one can prove that 

 1 0div A
c t

�7
� �

7

�
. (4.33) 

Really, having chosen the potentials 

 � 
1 ,x r t
� t

� � 7� � �
7

�
, (4.34) 

 � 
trxAA ,�
��

���� , (4.35) 
where � 
trx ,�  is an arbitrary function, it is easy to make sure that physical 
fields E �

�
 and ��

�
,written through the new potentials, coincide with the fields 

E
�

 and �
�

, written through the former potentials, that is �E
��

�� , ��
��

�� . 
Generally, there is an infinite set of potentials bringing to the same 

fields. One can assume that there are the potentials among them such that 

 1 0div A
c t

�7
� �

7

�
. 

If 

 � 
1 , 0div A f r t
c t

�7
� � 0

7

� � , 
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the calculations with the potentials (4.34) and (4.35) give 

 � 
 � 
1 1 1 ,xdiv A div A x f r t
c t c t c t

� �
�7 7 7� �� � � �� � � �� �7 7 7� �

� � � . 

Having chosen a function � 
trx ,�  which satisfies the equation 
 – ,x f�  

we come to the condition 1 0div A
c t

��7� � �
7

�
. 

Thus, one can always think that the d’Alembert equations hold true 
 ����� 4 , (4.36) 

 j
c

4A
��

�
�

��  (4.37) 

with the additional condition of Lorenz 

 1 0div A
c t

�7
� �

7

�
. (4.38) 

The equations (4.36), (4.37) and the condition (4.33) present a set of 
equations that are equivalent to Maxwell’s equations. 

4.5. Retarded potentials 
Suppose that in the wave equations 

 � 

2

2
2 2

1 4 , ,r t
c t

�� � �7
� � � �

7
�  (4.36) 

 � 

2

2
2 2

1 4 , .j r t
c t �

�7
� � � �

7

� �  (4.37) 

The sources �  and j
�

 are arbitrary coordinate and time functions placed 
in a finite region of space. In this case, it is possible to find the solutions to the 
inhomogeneous equations (4.36), that is the potentials � 
,r t� � , � 
tr� ,�

�
, made by 

these sources in the whole space. Generally speaking, the fields made by 
charged particles can influence the motion of these particles, but this influence 
can be often ignored. The solution of a given task is found with the help of 
Green’s function � 
trtrG ��,;, �� , determined as the solution of the equation 

 � 
 � 
ttrr
t
G

c
G ������

7
7

�� ��� ��41
2

2

2
2  (4.38) 

for the unbounded space. 
Then the solution of the wave equations is written by means of Green’s 

function in the form: 

 � 
 � 
 � 
 tdVdtrjtrtrG
c

trA ������� 
 ,,;,1, ������
. (4.39) 
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The same expression is also written for � 
,r t� � . Operating with 
d’Alembertian on the potentials, it is easy to verify that the equations (4.36) 
are satisfied. A careful mathematical analysis shows that, actually, a large 
class of Green’s functions satisfies the equation (4.38). Using these functions 
we get different solutions for � 
tr� ,�

�
. To find the only solution for a given task 

it turns out to be enough to use the causality principle. According to this 
principle, the cause (the motion of a charge in the source), which results in 
the radiation, is prior to the consequence (the field excitation at the point of 
observation). The potentials that satisfy this condition are called retarded po-
tentials. The mathematical proof of this unique choice is described in Jack-
son’s monograph or in the course “Classical electrodynamics” by 
M.M. Bredov, V.V. Rumjanzev and I.N. Toptygin. We will only notice that 
Green’s retarded function has the form: 

 � 
 �
�
�

�
�
� ��������

c
Rtt

R
ttrrG R �1,��

, (4.40) 

where rrR ���
���

 and the retarded potentials can be written as: 

 � 

,

,R

Rr t
cr t dV

R

�
�

� �� �� �
� � �� 


�
� , (4.41�) 

 � 
 
 �
�
�
�

�
�
� ��

� Vd
R

c
Rtrj

c
trAR

,
1,

��
��

. (4.41�) 

From equations (4.41) it follows that the field at point r�  at moment t is 
defined by the state of the sources in the previous moment of time 

c
Rtt ��� , 

which differs by the time of electromagnetic disturbance propagation from 
the source to the point of observation. 

4.6. Electromagnetic field energy. Umov- Pointing’s vector 
Suppose, the charges distributed in the space with density � 
tr ,��  move 

in electromagnetic field � 
tr� ,�
�

 and � 
tr� ,�
�

. The charge in the volume dV  
is acted by Lorenz’s force: 

  !
"
#
$

�
�
� � B

c
EdV

���
�� 1 . (4.42) 

And while the charges shift by the way rd� , the following work is done 

  !
"
#
$

�
�
� � rdB

c
rdEdV �����

�� 1 . (4.43) 
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Dividing (4.43) by time dt , we get the work performed per unit of time 

  ! dVEjB
c

EdV
�������

�
"
#
$

�
�
� �� ���� 1 . (4.44) 

Here we take into account that the second term equals zero and j���
� . 

The work done by the field on all the charges per time unit is equal to 

 � 

 ��
dt
dTdVEj

dt
dA ��

, (4.45) 

where 
 is the kinetic energy of all the charges of the observed system. 
Let us transform Maxwell’s equations (4.24.�) and (4.24.c). Let’s make 

a scalar multiplication of �
�

 by Erot
�

 and subtract BrotE
��

� : 

  !BEdivBrotEErotB
������

���� . (4.46) 

On the other hand we obtain 

 Ej
ct

EE
ct

BB
�

��
���� �411

�
7
7

�
7
7

� , 

that is, we come to the relation 

  ! � 
 � 
22

2
14 EB

t�
Ej

c
BEdiv �

7
7

���
���� �

, 

which is convenient to write down in the form 

 � 
  !BEcdivEjBE
t

����
�� 48

22

���
�

7
7 . (4.47) 

Let’s introduce the notations 

 
�

9
8

22 BE �
� , (4.48) 

  !BEcS
���

�4
� . (4.49) 

The physical sense of these values can be defined on taking integral 
over the space arguments in both parts of the equation (4.47). First let’s inte-
grate over the whole space, that is x , y , z  change between 1�  and 1� : 

 
 
 ��
7
7 W

dt
ddV

dt
ddV

t
99 , (4.50) 

where 
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 � WdV9 , (4.51) 

 � 

dt
dTdVEj �


1

��
, (4.52) 

 
 

1 1

�� 0dSnSdVSdiv ���
. (4.53) 

In the expression (4.53) the Ostrogradsky-Gauss’ law of flux was used. 

This law reduces the integral of vector divergence  !BEcS
���

�4
�  to that of vec-

tor flux S
�

 through the unlimited surface. But fields E
�

 and �
�

, included in the 
expression for S

�
 at infinity are equal to zero by physical implication. 

As a result we come to the equation 

 
dt
dT

dt
dW

�� , 

or 

 � 
 0�� TW
dt
d . (4.54) 

The constant value TW �  gives the total energy of moving charges T  
and the electromagnetic field energy W. 

Value 9  is the energy density of electromagnetic field. To find out the 
physical sense of vector S

�
, it is necessary to integrate the equation (4.47) 

over the infinite space: 

 
��� dSnS
dt

dT
W

dt
d V

V
��

. (4.55) 

The energy of electromagnetic field is spent on the kinetic energy of 
moving charges and on radiating energy of the field through the surface, 
which bounds the observed volume V . That is why the value � 
dSnS ��

 is the 
electromagnetic field energy that is emitted through surface dS  in a time 
unit. Vector S

�
 shows the direction of electromagnetic energy propagation. 

SS
�

�  is the quantity of energy which goes through 1 cm2 per 1 sec. Value S
�

 

is called the energy flux or Umov -Pointing’s vector. Vector S
�

 depends on 
the position in the space at a given moment of time: 
 � 
trSS ,�

��
� . 

The above-mentioned formulae express the energy conservation law for 
the charges moving in the electromagnetic field made by these charges. 
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5. The Propagation of electromagnetic waves in vacuum and in media 
5.1. Wave equations 
It follows from Maxwell’s electrodynamics that there is a principally 

new physical phenomenon, which was discovered by Maxwell. This phe-
nomenon is electromagnetic waves or disturbances which propagate in space 
at a certain speed. 

Let’s consider Maxwell’s equations (4.24), written for vacuum in the pres-
ence of electric charges with density �  and electric currents with density j

�
. The 

equations are asymmetric with respect to the fields E
�

 and B
�

, and this asymmetry 
is conditioned by currents and charges and by the absence of magnetic charges. 
Let 0�� , 0�j

�
 in these equations. The equations take a symmetric form: 

 
t
B

c
Erot

7
7

��
�� 1 , (5.1) 

 0�Ediv
�

, (5.2) 

 
t
E

c
Brot

7
7

��
�� 1 , (5.3) 

 0�Bdiv
�

. (5.4) 

The term with displacement current 
t
E

c 7
7
�

1  plays the most important 

role here. Its presence in equation (5.3), as well as the similar term for 
magnetic field in equation (5.1), means the possibility of electromagnetic 
waves to appear. The alternating in time magnetic field makes an alternat-
ing electric field, which makes an alternating magnetic field, and so and so 
forth (see Fig. 5.1). 

One of the greatest Maxwell’s discoveries is his statement that electro-
magnetic waves can propagate at a long distance from the source where they 
can be registered by an appropriate device. 

Developing the mathematical theory of the electromagnetic wave, 
Maxwell found out that the electromagnetic waves propagate at a speed equal 
to velocity of light which had been known at that time thanks to Romer’s 
measuring. He compared these facts and also understood that both the elec-
tromagnetic radiation and the light are of the same wave nature, which al-
lowed him to refer the light to the electromagnetic phenomena. Different 
light theories had existed before Maxwell’s researches. But only Maxwell’s 
theory managed to explain all the light phenomena known at that time. Spe-
cifically he managed to predict the behavior of the light passing through dif-
ferent mediums. As is known, the sunlight contains all colors from red to vio-
let. In combination they make a sense of white color. In other words, it means 
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that the white color (sun light) is a combination of a wide spectrum of fre-
quencies (rations) in the interval � 
14104 :  hertz. The further discoveries and 
studies of ultra-violet, infra-red and x-rays radiation (the latter was discov-
ered by Roentgen in 1895) as well as ; -radiation led to the idea that, all the 
types of radiation are of electromagnetic nature. The spectrum of the elec-
tromagnetic radiation is in the frequency interval 233 1010 :  hertz. 

 

 
Fig. 5.1. The electromagnetic wave propagation. Vectors ,E

�
 B
�

 and k
�

  
are mutually perpendiculars vectors. Vectors E

�
 and B

�
 make  

synchronic harmonic oscillations in plates ZY and XY correspondingly 

The experimental proof of electromagnetic waves existence was done by 
Enrich Hertz. He made the electromagnetic wave generator (the Hertz dipole) 
and received them by means of a resonator (the Hertz resonator). The transmit-
ter and the receiver were at a distance from each other. The further discoveries 
changed the human’s way of life and the technologies of human society: 
< William Crooks invented the wireless telegraph in 1892; 
< Oliver Joseph Lodge managed to transmit the electromagnetic waves at 

short distances in 1894; 
< the Russian scientist Popov A.S. invented the radio but didn’t obtain a 

patent for his discovery; 
< Guljemo Markoni registered his idea about the transmission of electro-

magnetic waves at far distances in 1897 and soon fulfilled the first trans-
mission of a human speech; 

< in 1907 Lee de Forest invented the first electronic tube which makes it 
possible to transmit music and speech by the radio. 
The list of discoveries and applications of Maxwell’s electromagnetic 

theory could go on and on. 



 42

5.2. Plane waves 
From equation (5.1 – 5.4) we get the equation of the second order for 

vectors E
�

 and H
�

 taken separately. Applying the operation rot  to equation 
(5.1) and using the equation (5.3) we get: 

 2

2

2

11
t
E

c
Brot

tc
Erotrot

7
7

�
7
7

��
���

. (5.5) 

We will write the left-hand side of the equation 

 � 
 2 2rot rotE E E E E* '* '� � � � � �� �� � ��) &) &
� � � � �

, (5.6) 

as 

 � 
 0���� EEdiv
��

. 

As a result we come to the d’Alembert equation: 
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2 �

7
7

��
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. (5.7) 

A similar equation can be obtained for the field B
�

: 
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2 �
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��
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c
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��
. (5.8) 

In the absence of charges and currents similar equations take place for 
the scalar and vector potentials �  and �

�
 from equations (4.34), obtained un-

der the additional Lorenz’s condition (4.33): 
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, (5.9) 
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Moreover, as we’ll see in the next chapter, similar equations are valid 
also for electrodynamics in non-conducting mediums. For these mediums 
Maxwell’s equations include dielectric 8  and =  magnetic permeability. 

Any Cartesian component of vectors E
�

, B
�

, A
�

 and the scalar potential �  
satisfy the equation 

 � 
 0).(1. 2

2

2
2 �

7
7

��
t

trUtrU
��

�
, (5.11) 

where the constant 

 
=8

� �
� , (5.12) 
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which has a speed dimension in the wave equation(5.11), is a characteristic of 
the medium. For vacuum ��� , where �  is the velocity of light. 

The wave equation (5.11) has a solution in the form of a plane wave: 
 � 
 tirkietru 9��

���, , (5.13) 
where the frequency 9  and the scalar of the wave vector k

�
 are related by the 

formula: 

 
c

k 98=
�
9

�� . (5.14) 

For vacuum 

 
c

k 9
� . (5.15) 

If we study the waves propagating in one direction, for example along 
the axis x, the general solution of the equation (5.11) will be: 
 � 
 � 
 � 
txiktxik

k BeAetxu �� ��� ��, . (5.16) 
For the speed � , which is independent on k (it takes place in the case of 

a non-dispersive medium for which the value 8=  doesn't depend �n the fre-
quency 9 ), one can use the expansion of the function � 
txu ,  in Fourier inte-
gral and formulate the general solution of the wave equation with the help of 
the linear superposition � 
txuk , : 
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�
. (5.17) 

In the form 
 � 
 � 
 � 
txgtxftxu �� ����, , (5.18) 
where f  and g  are arbitrary functions of the arguments tx ��  and tx ��  cor-
respondingly. 

One can easily check that functions f  and g  satisfy the equation of the 
form (5.7). Let’s verify it for function � 
txf �� : 

 f
x

ff
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ff
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ff
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,,, �� , (5.19) 

where f �  is an arbitrary function by the argument of the function. 
From (5.19) we get 
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�
7
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�
7
7

t
f

x
f

�
.  

The functions � 
txf ��  and � 
txg ��  describe the waves moving along 
the axis x in positive and negative directions correspondingly. 
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If function � 
txf ��  presented a certain curve (�) at a moment t , at the 
moment tt ��  it would be the same curve shifted in the positive direction of 
axis x by t�� . That is, it is a wave moving at speed �  in the positive direc-
tion along the axis �  (see Fig. 5.1). Function � 
txg ��  presents the wave 
moving at a speed �  in the negative direction of the axis x . It explains the 
sense of the introduced notation: 

 
8=

� c
� .  

The speed �  is called the phase velocity of wave. 
Plane waves which satisfy the scalar equation (5.11), are defined by the 

formulas (5.13) and (5.14). Electric and magnetic fields E
�

 and �
�

 must corre-
spond to the real parts of complex quantities: 
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In another representation the vector � 
trE ,Re ��
 has the form 

 � 
 � 
0 0Re , cosE r t kr t8 9 �� � �
�� �� �

, (5.21) 

where 

 0
0 0 1 0

iE e e E�8� �
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 (5.22) 

and 08
�  is the real constant vector. 
Similar relations are also true for vector 0�

�
. Here vectors 1��  and 2��  are 

unit constant vectors, 0�  and 0�  are complex amplitudes, which are constant 
in space and time. 

From the equations 

 0�Ediv
�

 (5.2) 
and 

 0�Ediv
�

 (5.4) 
the following relations follow 

 01 �� ke
��

, (5.23) 

 02 �� ke
��

, (5.24) 
which mean that vectors E

�
 and �

�
 are perpendicular to the direction of the 

propagation of wave k
�

. 
Such waves are called transverse waves. 
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From Maxwell’s equation for the non-conducting medium without the 
sources in the unlimited space 

 01
�

7
7

�
t
B

c
Erot
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.  

Taking into account (5.20), we get 
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This implies: 
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where 
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�
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Thus, in virtue of the formulas (5.23)–(5.25) the vectors 1�� , 2�� , k
�

 make 
a right system of orthogonal vectors. Formulas (5.20) show that vectors E

�
 

and �
�

 oscillate in a phase, and the ratio E
�

 to �
�

 is constant. In vacuum 
 00 �� � . (5.28) 

It is easy to use these formulas while calculating the mean-square root 
values by the field period 
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For example, a time- average energy flux is defined as 

  !  !  !**

42
1Re

44
HEcHEcHEcS
�������

���
���  (5.32) 

and presents a flux (that is energy flowing through a square unit per a time 
unit), which equals 
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=
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� , (5.33) 

where 3e�  is a unit vector in the direction k
�

: 
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The period-average density of the energy, 

 ��
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taking into account (5.20), (5.26), equals 
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04

E
�
89 � . (5.36) 

The speed of the energy flow is defined as the ratio of the absolute val-
ues (5.32) and (5.36) and turns out to be equal to 

 
8=

� �
� . (5.37) 

For vacuum 1�� 8=  and ��� . 

5.3. Polarization of the plane wave 
In this part we will study the properties of the amplitude 0�

�
 of a mono-

chromatic plane wave in details. If the wave (5.20) is described with the help 
of the complex vector 0�

�
, then one can decompose 0�

�
 in two actual vectors: 

 02010 �i��
���

�� . (5.38) 

Substituting (5.20) into the set of equations (5.1 – 5.4), we get a relation 
between the complex amplitude of the fields 
 0 0 0 0 0 0

ˆ ˆ ˆ ˆ, , 0, 0B k E E B k k E k B* ' * '� � � � � �) & ) &
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, (5.39) 

where 

 ˆ k kk c
k 9

� �
� �

 (5.27) 

is a unit vector in the direction of the wave propagation. 
It follows from the conditions (5.39) that vectors 01�

�
 and 02�

�
 are per-

pendicular to vector k
�

, in all the other respects they can be thought as arbi-
trary ones. So let’s factor out phase factor 0ie �  from (5.38), so that the rest two 
actual vectors may be mutually perpendicular: 
 � 
 0

0 01 02
iE i e �8 8� �

� � � , (5.40) 
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 00201 ��88
�� . (5.41) 

From (5.40) and (5.41) we obtain 

 01 01 0 02 0

02 01 0 02 0

cos sin ,
sin cos .

E E
E E

8 � �
8 � �

� �
� � �

� ��
� ��  (5.42) 

The value of phase 0�  is found from the conditions of perpendicularity (5.41): 

 01 0
0 2 2

01 02

22 E Etg
E E

� �
�

�

� �
. (5.43) 

Then the real part E
�

, which is the observed field, will be written in 
the form: 
 � 
 � 
1 0 2 0cos sinE kr t kr t8 9 � 8 9 �� � � � � �

� �� � � . (5.44) 

Suppose vectors 18
�  and 28

�  are directed along the axis x and y corre-
spondingly. Then the equation of the curve which is described by the extreme 
point of vector E

�
, has the form 

 12
2

2

2
1

2

��
88

yx EE . (5.45) 

That is, it is an ellipse with semi-axis 18  and 28 . In this case they say 
that the wave has an elliptical polarization. If vectors 18

� , 28
� , k̂  make either 

the right or the left triplet, the direction of the rotation is called the right or 
the left one correspondingly. The rotation directions of vectors E

�
 and �

�
 co-

incide, but the vector of the magnetic field describes an ellipse, its axes are 
turned relative to the axes of vector E

�
 by 2/� . 

When 18
�  = 28

�  we get a circular polarization which also has two direc-
tions of rotation. When 01 08 , 02 �8  or 01 �8 , 02 08  the polarization be-
comes linear, and the electric and magnetic vectors oscillate along mutually 
perpendicular directions. So, with a given k

�
 there may be two independent 

polarizations of the plane monochromic wave: an elliptical (in the special 
case it is a circular polarization) with the right and left directions of rotation 
or two linear polarizations in mutually perpendicular directions. 

6. Radiation of a non-relativistic system of charged particles 
6.1. Electric dipole radiation 
In section 4.5 we obtained the formulas (4.41) for the retarded poten-

tials. The task is the following: it is necessary to find potentials by given dis-
tributions of sources �  and j

�
 in a certain bounded region of space (Fig. 6.1), 

and then (with their help) to calculate fields � 
tr� ,�
�

, � 
tr� ,�
�

. 
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Fig. 6.1. The motion of a charge system in some area of space 

The solution of this task considerably simplifies if the time of the 
propagation of electromagnetic disturbances in the range of a radiating 
charge system is small in comparison with the characteristic time of the mo-
tion of charged particles in the system: 
 Tc

l >> , (6.1) 

where l  is a linear dimension of the system, 
 is the time during which the 
distribution of charges changes insignificantly. If the charges move periodi-
cally, then T  is a period, and the inequation has the form 
 	>>l , (6.2) 
where cT�	  is the length of radiation wave. 

Dividing both parts of the inequation (6.2) by T  and taking into account 
the characteristic speed of particles �4

T
l , leads to the condition: 

 1>>c
� , (6.3) 

that means the requirement that the particles should have a non-relativistic 
speed. Besides, we assume that the system dimensions are small in compari-
son with the distance to the observation point: 
 rl >> . (6.4) 

The region determined by the conditions lr 22  and 	22r  is called 
a wave zone. One can simplify the retarded potentials in this region. First, 
let’s consider the retarded potential 

 � 
 1, , ,Rr t r t dV
R c

� � � �� �� �� �
� �


� � , (6.5) 

where rrR ���
���

. 
If r  is large, then 

 rr
r
rrrR �����

�
�

�
�
� �

�4
����

21 , (6.6) 
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where 
 r

r��
�� . (6.7) 

Present the charge density which is under the integral, in the form of ex-
pansion: 

 � 
 � 
 � 
 ?
?

?�?�??�� ��
7

�7
��4������

�

�
��
�

� ��
��� ;;;, rrr

c
r

c
rtr

�����
� , (6.8) 

where 

 
c
rt ��? , (6.9) 

 
c
r ��

��
��

? . (6.10) 

It suffices to limit oneself to the zero approximation for R  in the de-
nominator under the integral (6.5) 
 � 
 rrR 4  (6.11) 

accurate to 1>>r
l . 

Substituting (6.8) into (6.5) and taking into account (6.9), (6.10), we get 

 
� 
 � 
 � 


� 


1, ; ;

.

rr t r r dV
r c

q q pp
r cr r cr

� � ? � ?
?

?

� $�7 �� � �� � � � �� #7� "
� �

� � � �



� �� � �

� � ����
 (6.12) 

Here q  is the charge of a system, ��  is the dipole moment of a system 
which depends on ? , and while calculating the second integral, with respect 
to the derivative time ?  is taken outside the integral, with respect to the de-
rivative ?  is marked by the point: 

 � 

?
?

7
7

�
pp
�

�� . (6.13) 

For the vector potential we find 

 � 
 � 
 � 

 

"
#
$

�
�
� ��

���
7
7

���4�
�
�
�

�
�
� �

�
c
rrjrjVd

cr
Vd

R
c
Rtrj

c
trA

��
����

��
��

?
?

? ;;1
;

1, . 

The second term is negligibly small, that’s why we get 

 � 
 Vd
c
rtrj

cr
trA ��

�
�

�
�
� ��� 


�����
;1, . (6.14) 
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Then, we make use of the identity 
 ( ) ( ) ( )( ),a j j a r j a r a r j� � � � � �* '� � �� � � � � � � � � �) &

� � � �� � � � � � �  (6.15) 

where a�  is a constant vector, to get 

 . / VdjvdiraVdrajVd
c
rtrja ��������������

�
�

�
�
� ��� 




���������� )(, . (6.16) 

The first integral in the right-hand side is equal to zero, therefore, 

 

 ��������
�
�

�
�
� ��� VdjvdiraVd

c
rtrja

������� , . (6.17) 

Using the continuity equation 

 � 
 0�
7
7

��
?
�?jvdi

�
, 

we find from (6.17): 

 � 
?pVd
c
rtrja ��
����

���
�
�

�
�
� ��� 
 ,  (6.18) 

and 

 � 
 � 

cr

ptrA ?����
�, . (6.19) 

The formulas (6.12) and (6.19) give electromagnetic potentials at a far dis-
tance from the system of radiating charges, that is in a dipole approximation. 

Let’s find the electromagnetic fields in a dipole approximation. 
For that it is necessary to calculate 

 ArotB
��

�  (6.20) 
and 

 1 AE
c t

� 7
� �� �

7

��
. (6.21) 

For electrically neutral systems (q = 0) there is no first term in formula (6.12): 

 p
cr

� �
�

� ��
. (6.22) 

The vector potential is equal to 

 � 
 � 

cr

ptrA ?����
�, . (6.19) 

While calculating the fields (6.20) and (6.21) one should take into ac-
count that � 
?pp ���� � , where 

c
rt ��?  and 222 zyxr ��� , that is time ?  de-

pends on the coordinates of the observation point. 
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Let’s calculate ?� : 

 
cr

r
c

r
�

�
��������

��11? . (6.23) 

Applying the operator �  to function � 
?f , we find 

 � 
?
?

?
?

f
d
d

cd
dff �

�����
�

, (6.24) 

that is 

 
?d

d
�
�

���
�

. (6.25) 

If there is a vector function � 
?F
�

, then 

 � 
 � 
 � 
F
cd

Fd
c

FFdiv ��������
�����

�

�
��
�

�
�����

1,1,
?

? , (6.26) 

 � 
  !  !F
c

FFrot ������
�����

1,? . (6.27) 

Let’s find field �
�

: 

  ! %
&

'
(
)

*
�
�
�

�
�
�����%

&

'
(
)

*
���� p

cr
p

crcr
pp

cr
rotArotB ����������

,1,1,1 . 

Dropping the second addend 2

1~
r

, we get 

  !  !  !������
�����������

,1,1,1
22 p
rc

p
rc

p
cr

B . (6.28) 

Let’s calculate the field E
�

. 

We find 
t
A

7
7
�

: 

 
cr
p

t
p

crcr
p

tt
A �����

�
7
7

7
7

�
7
7

�
7
7 ?

?
1 . (6.29) 

Calculate �� : 

 � 
 � 
 � 
 � 
2 2 2 2

1 1 1 1r p r p r p r p
cr cr cr cr

� � � � �� � � � � � � 4 � �� � � �
� � � �

� � � � � � � �� � � �  

 � 
 � 
. /2

1 , , .r rot p r p p rot r p r
cr

* ' * '� � � � � �) & ) &
� �� � � � � � � �� � � �  (6.30) 

The third term is equal to zero and 
 � 
 prp ������ �� , (6.31) 
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 � 
 � 
pr
c

pr ���������
����

1 , (6.32) 

 � 
 � 
1 1 1, .r rot p r p r p r p p r
c c c

* ' * '* ' * ' * '� � � � � � � � � �) & ) & ) &) & ) &
� � � �� � � � � � � � � �� � �� �� ��  (6.33) 

Substituting (6.31)-(6.33) into (6.30), we find 

 � 
 � 
2 2 2

1 1 1 .pr p p p
cr � cr cr

� � $� � � � � � � � � �� #
� "

��� � �� � � ��� � ��  

Neglecting the second term 2

1~
r

, we get 

 � 
2

1 p
cr

�� � � � �
� � ���  

and 

 � 
 � 
2 2 2

1 1 1 .E p p p B B
cr cr cr

* '* ' * ' * '� � � � �� � � � � � � � �) & ) & ) &) &
� � � � � � � � � � �� � ��� �� ��  

Thus, we get the expression for the fields in dipole approximation: 

 2

1 , ,B p
c r

* '� �) &
� ����  

 .E B* '� �) &
� � �

 

Vectors E
�

, B
�

 and �
�

 are mutually perpendicular to each other, vectors E
�

 
and B

�
 are lying in the plane perpendicular to the direction of the electromag-

netic wave propagation (Fig. 5.1). The magnitudes of vectors E
�

 and B
�

 
are qual: �� � . 
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Chapter 2 
BASIC CONCEPTS  

OF MACROSCOPIC ELECTRODYNAMICS 

7. Electrostatics in dielectrics 
A substance consists of atoms, atoms consist of charged particles. Atom 

is neutral, but in electric field charges can shift, which can cause important ef-
fects – the appearance of current in conductors, the polarization of dielectrics. 
Such a substance generates its own field, which adds to the external field. 

7.1. Vector of Polarization 
In the electric field the charges shift, it breaks the neutrality of the se-

lected volume V� . A bound charge is 0q
i

i 0�  and 0rq
i

ii 0� � . If the electric 

dipole moment is 0p 0
�� , then the dielectric is polarized and 

 )
V
p(limP 0V �

�
�

��
,�  (7.1) 

is the polarization vector. 

 
Fig. 7.1. The polarization of dielectrics  

in distinguished volume V�  if there is field E 

7.2. Polarization of non-polar molecules 
Non-polar molecules are the molecules, for which the distribution cen-

ters of positive and negative charges coincide. The field shifts them to a cer-
tain value. In equilibrium the internal molecular field inE

�
 is equal to the ex-

ternal field outE
�

. For calculation inE
�

 let’s draw a sphere through the 
observation point and make use of the Gauss-Ostrogradsky integral theorem: 
 � 
 

 ���

VS

dV4dSnE ���� , (7.2) 
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where 
r
rn
��

� , � 
 � 

r
rrErE
���

�  – is a spherically symmetric field. 

Calculating the integrals in both sides of the equation (7.2) yields 

 � 
 � 
 32 r
3
404r4rE ���� �4 . (7.3) 

From the relation 

 � 
 � 

3
r04rE �� �� . (7.4) 

It follows that the shift is equal to 

 � 
04
E3r0 ��

� , (7.5) 

where outEE � . 
The electric moment of molecule is equal to 

 � 
 EE
04
3zp e

���
���

�
� @

��
. (7.6) 

The proportionality coefficient @  of p
�  to E

�
 is called the molecular po-

larizability. 
Multiplying the electric moment of molecule by the concentration 0n  

yields the polarization vector of a unit volume of a substance: 
 EEnP 0

���
6@ ��� , (7.7) 

where 6  is molecular polarizability, which characterizes the dielectric prop-
erties. Polarization vector P

�
 generates its own field. The experimental data 

show that there exists the proportionality E~P  which can be observed in 
weak fields. Thus, if a non-polar substance is placed in electric field, it is po-
larized and P

�
 generates its own field. 

7.3. Orientation Polarization 
In nature there are also polar molecules, which are dipoles at once, for 

example, NaCl. These molecules have electric dipole moment, but in the ab-
sence of field they are chaotically oriented and the sum of the electric mo-
ments is 0P �

�
. The field turns dipole molecules along itself, but thermal mo-

tion breaks the orientation, but 0P 0
�

 because in equilibrium there is an 
excess of field oriented molecules. 

To calculate the number of molecules oriented in a given direction, let’s 
draw a sphere of a unit radius in the substance; let’s mark it by parallels and 
meridians to get sections with the same square S , so that the solid angle at 
which the area is seen, should be equal. Consider V� . 
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Let � 
,dN 3 �  be a number of molecules within the solid angle 2R
dSd �� . 

If there is no external field, then all molecules � 
,dN 3 �  are equal, that is 

 �dCdN 0� . (7.8) 

By integrating of both sides of the equation (7.8), we find 

 
�4
NC0 � , 

that is 0C  does not depend on ,3 � . 

Thus, �
�

d
4
NdN � . Thermal motion changes the orientation but any dN  

remains unchanged. 
In field E

�
 dipole has the potential energy � 
EpW

��
�� . Dipole tends to 

reach the condition with a minimal W , but thermal motion impedes this. 
In the condition of thermodynamic (thermal) equilibrium the Boltsman’s 

distribution is true: 

 �� deCdeCdN kT
Ep

E
kT

W

E

��
��

�� , 

where constCE � , which, if there is a field, is found from the condition 

 

�

� �deCN kT
W

E . 

If z -axis is E
�

-directed, then 3cospEEp ��
�� , ppn ��

� , where  
 sin ,d d d3 3 �� �  
and we find, that 

 3

�
cosa

aa e
ee

a
2
NdN ��

� . (7.9) 

Here 

 
kT
pEa � . (7.10) 

Let’s calculate: 
 � �

�

��
1i k

kki pNPP ���
� , (7.11) 

 

 �
�
�

�
�
��� �

�
� d

d
dNnpdNpP ���

, (7.12) 

where p/pn ��
� . 

To find P�  means to find the projection P
�

�  onto z0 -axis. 
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Since VnN 0�� , then for the polarization vector we find: 

 ��
�

�
��
�

�
�

�
�

� �

�

a
1

ee
eepnP aa

aa

0 . (7.13) 

Formula (7.13) shows that pnP 0,  as 1,E )a( 1, . 
For small E

�
 one obtains 

 EE
kT3
pnP

2
0 6�� . (7.14) 

Where 6  molecular polarizability: 

 � 

KT3
pnT

2
0�� 66 . (7.15) 

Polarized dielectric generates its own field, which adds to the external 
field. That is the field which should be found. 

7.4. Field Potential in Dielectric 
Dielectric is polarized in electric field. If the field is not strong, EP

��
6� , that 

is an additional field is generated (6  can be thought to be known). If dipole is 
situated in the coordinate origin then the electric potential, generated by dipole at 

point r� , is equal to � 
 3

Pr
P r

r
� �

��� ; if it is situated in point r �� , then (see Fig. 7.2) 

 � 
 3P
PRr
R

� �
� �

� , rrR ���
���

. 

 
Fig. 7.2. To calculation of the potential created by bound charges 

in dielectric, taking place in a homogeneous field E
�

.  
)( rP ���

 is the polarization vector of the unit volume 
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Let’s divide the polarized dielectric into regions Vd � . 
On the whole the electric moment of neutral volume element Vd �  is 

equal to: 
 ��

��

����
Vd

i
Vd

ii prqVdP ���
, 

where the summing is done over the charges (or over all the molecules) in 
volume Vd � . By the definition P

�
 is the polarization vector of the unit vol-

ume, that is 

 
V
PlimP 0V �

�
�

��
,� , 

therefore, it can be written as 

 � 
 VdrPVdP ����
���

 � � 
 3P
PRr dV
R

� �� 

� �

� . (7.16) 

One can easily verify that  

 
R
1

R
R

3 ���
�

, )r/1(PPvdi
r
1

r
Pdiv ����

���
. (7.17) 

Where primes over operators ��  � vdi �  signify that the differentiation 
is carried out with respect to the components of vector � 
z,y,xr �����

� , entering 
rrR ���
�� . 

The integrations element can be written as 

 Pvdi
R
1

R
Pvdi

R
1P

R
RP
3

�����
�����

�
�

�
�
���� , (7.18) 

 � 
 ( ) .P
P div Pr div dV dV
R R

�
�

� � �� �
 

� �

� . (7.19) 

By the Gauss-Ostrogradsky divergence theorem, integration over infi-
nite contour implies 

 0dS
R

PnVd)R/P(vdi �
�

��� 


1

���
. (7.20) 

Here we took into account that � 
 0P �1
�

. As a result we obtain 

 ( )( ) .p
div P r dVr

R
�

� �
� �


� �� . (7.16') 

Compare with ( ) dVr
R

��
��

� 

� . Magnitude )r(Pvdi ���

��
 stands for the den-

sity of bound charges: 
 )r()r(Pdiv bound ����

���
� . (7.21) 
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As a result we’ll get the total field of free and bound charges: 

 ( )( )( ) .bounddiv P r dVr dV
R R

� ���
� � �� �� �
 

� ��  (7.22) 

Thus, the appearance of polarization in dielectric results in the appear-
ance of the total field. 

7.5. Maxwell Equations in Dielectrics 
To find the total field E

�
 by the Helmgoltz’s theorem it’s necessary to 

know Ediv
�

 and Erot
�

. 
As known, the scalar potential 

 dV
R

�� �
� 
  

is a solution of the Poisson’s equation: 

 2 4� � �� � � . 

In a dielectric 

 2 4 ( )divP� � �� � � �
�

, (7.23) 

where 

 2 ,div grad divE� �� � � �
�

 (7.24) 

 ��� 4)4( ��� PEdiv
��

 (7.25) 

and 

 DPE
���

��� �4  (7.26) 

is the vector of electrostatic induction. 
By making use of the relation EP

��
�� 6 , we find 

 EEEED
�����

��������� 86�6� )41(4 , (7.27) 

where 6  is dielectric susceptibility, 8  is dielectric constant called relative 
permittivity or simply dielectric permittivity. 

In electrostatics E grad�� �
�

 and 0�Erot
�

. In view of that and the rela-
tionships (7.25), (7.27) one obtains Maxwell’s equations for dielectrics: 

 0�Erot
�

; 

 ��4�Ddiv
�

; 

 ED
��

�� 8 . (7.28) 
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8. Direct Current 
8.1. Potential and Field in the presence of conductors 
The following conductor model can be presented as the simplest one: 

there is an ionic crystalline core with slightly bound electrons inside it. Elec-
trons, not ions, carry electricity. Here are the results of somel experiments. 

Rike’s experiment. During one year a current is conducted through 
three cylinders put one over other. Cylinders are copper, aluminium and cop-
per again. After the experiment the penetration of one metal into another was 
not detected. 

Tallman and Stuart’s experiment. Current excitation in metals caused 
by inertia forces. 

A coil made of metal wire is rapidly rotated around its axis. Terrestrial 
magnetic field in the coil was carefully compensated by means of fixed coils 
with current, so if the motion is uniform a current does not appear. But in 
case of rapid deceleration there is an electric current caused by movement of 
negatively charged particles with a specific charge me / . 

Within the errors of measurement it is similar to the charge of the elec-
trons, which appear in experiments with cathode rays. 

In constant field current stops existing, in conductor 0�E
�

, that is the addi-
tional field from the redistribution of charges compensates the external field. 

If 0�E
�

, then � 
 0�
 dSnE��  (integration is over all internal surfaces) 
and 0�q . There are no compensated charges inside the conductor. The 
charge is distributed over the surface. The same is true for free charges. 

0�E
�

, it means � 
in r const V� � �
� . Parameter V is conductor potential. 

The redistribution of the free charge, caused by the field, is called electro-
static induction. 

It’s necessary to find � 
out r� �  (in view of electrostatic induction). 
In electric field electrons are redistributed, so the changed electric field 
should be found. 

Problem statement. There is a charge q  (on conductor including); there 
are conductors, potential of some of them is specified as V . It’s necessary 
to find out�  of all conductors. 

 
Solution. The Poisson’s equation 2 4� ��� � �  is solved under the bound-

ary condition 
r S

V�
A

� . One finds � , then E �� ��
�

. 
We limit ourselves to a simple case, when charges are only on a conduc-

tor, or a conductor is connected to a battery. If � 
out r� �  is found, then one can 
find � 
rE ��

 and � 
r���  – surface charge density. 
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Let’s select an area S�  on the surface of the conductor and put it 
into a closed parallelepiped surface (Fig. 8.1). By the Gauss theorem 

qdSnE �4�

�� . 

 
Fig. 8.1. To the solution Poisson`s equation  

with the boundary condition for the potential of � on the conductor surface.  
The area �S is selected on the conductor surfaces and is surrounded 

by the closed surface of a rectangular parallelepiped  

If parallelepiped height vanishes, then 

 � 
 � 
� 
 � 
 SESEEdSE nnnn ����� �
 121 , (8.1) 

since 0)2( �� �nin EE
��

. 
On the other hand, according to the Ostrogradskiy-Gauss theorem 

 SqdSEn ���
 ��� 44 , 

where �  is the surface charge density. It means that � 
 � 
rrEn
�� ��4� , with point r�  

being on the conductor surface. 
From the equation E �� ��  we obtain that � 
n nE

n
�� 7

� � � � �
7

 that is, 

 � 
 � 
1
4

r
r

n
�

�
�

7
� �

7

�
�  (8.2) 

and 

 1
4

q dS
n
�

�
7

� �
7
� . (8.3) 

Instead of the boundary condition 
r S

V�
A

�  they use sometimes 

 1
4

dS q
n
�

�
7

� �
7
� . (8.4) 



 61

8.2. Current in Metals. The Integral Form  
of Ohm’s Law and Joule-Lenz’s Law. Voltage 

If the potential difference between the ends of a conductor is sup-
ported in a source, then a current flows through the conductor. Current in-
tensity (amount of electricity per second) is directly proportional to the po-
tential difference: 

 1 2I
R

� ��
� , (8.5) 

where R  is the resistance. 
On the other hand, the potential difference is found as 

 � 

2 2 2

1 2 12
1 1 1

,d dr Edr� � � � 8� � � � � � � �
 
 

�� �

, (8.6) 

where 128  is voltage. 
The equation 

 128�IR  (8.7) 

is Ohm’s law, it is also true for a non-stationary case, when there is no such 
a concept as the potential. 

Let’s consider a conductor with a current. 
It’s necessary to calculate the work on charge transferring in field E

�
 

from point (1) to point (2): 

 � 
 � 

2 2 2

1 2
1 1 1

A qEdr q dr q d q� � � �� � � � � � � �
 
 

� � �

. (8.8) 

From mechanics it’s known that if a force F
�

 acts on a body, it acceler-
ates. The speed �  changes, and consequently, kinetic energy also changes. 
In a conductor this energy converts into thermal energy: 

 � 
 2
1 2 12Q I I I R� � 8� � � � . (8.9) 

This is the integral form of Joule-Lenz Law. 

8.3. Current Density. The Differential Form  
of Ohm’s Law and Joule-Lenz’s Law 

Let’s divide the conductor into thin unions with current (Fig. 8.2). 
In this case it can be written for a current union 

 
�
2

1

rdEIR ��
. 
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Magnitude R  is called resistance; it’s connected with specific resistance � . 
Then we obtain 

 
lE

S
lSj ��

�
�

�� � , Ej �� , Ej
��

�
1

� . 

Introduce also �
�

�
1

 – the conductivity. 

I can be expressed through current density: 

 SjI �� , 
S
lR

�
�

� � . 

As a result one gets 

 Ej
��

�� . (8.10) 

The differential form of the Ohm’s law, that is in a fixed space point. 
For current union 

 Vj
S
lSjRIQ ��

�
�

��� �� 2222 . (8.11) 

Denote q
V

Q ~�
�

 as quantity of heat in unit volume. From equation (8.11) 

it follows that 

 EjjEjjq
��

�����
�

�
2

2~ . (8.12) 

This is the differential form of the Joule-Lenz Law. 
The difference between stationary field of direct current from electro-

static field is that, for maintaining currents one needs constant power supply 
which is intended to compensate the energy loss in form of joule heat at the 
expense of other kinds of energy – mechanical power (dynamo), chemical 
(galvanic elements, accumulators), thermal energy. It’s necessary that EMF 
(electromotive force) of non-electrostatic origin should act in certain sec-
tions of the circuit. 

In the cell (Fig. 8.3) with water and acid, the diffusion takes place in so-
lution �� �, ClHHCl . Mobility of ions �H  is higher, they move upward 
faster, that is a current appears without electric field (no Ej

��
�� ), caused by 

forces of non-electric nature. Let denote the field extE
�

, which can cause the 
same current, which appears due to the diffusion: 

 extext jE
��

�
1

� . (8.13) 
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Fig. 8.2. In a vessel containing water and an acid,  
there is a diffusion. In a solution .ClHHCl �� �,   

Because mobility of ions �H  is more, than mobility of ions �CL ,  
arises a current not the electric nature 

This implies 
 � 
extEEj

���
��� . (8.14) 

The field extE
�

 arises at metal-electrolyte contact because of the different 
solubility of positive and negative ions at the contact of two metals with dif-
ferent electronic structure. 

Let’s write down the Ohm’s law in the integral form: 
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�
�
�

�� 


2

1

2

1

1 rdErdE
R

I ext
����

. (8.15) 

For closed contour 

 ,
2

1

. In this case the first integral is equal to 

zero, since Edr d�� �
� � , 0d� �
� , that’s why 
� rdEIR ext

��
 is electromotive 

force, EMF 8� , and the Ohm’s law takes the form: 
 8�IR . (8.16) 

9. Magnetostatic Field in the Magnetic 
A substance placed in a field B

�
 magnetizes, that is each element dV  

gains a magnetic moment. There are three types of substances, which have 
different magnetizing mechanisms: diamagnetics, para- and ferromagnetics. 
If im�  is an atom magnetic moment, then  

 B�
�
�

,�

��

V
mi

V 0lim  

is a magnetization vector. 
A magnetized body generates its own magnetic field, which adds to the 

external field: the presence of the substance changes the field. This is the 
field to be found. 
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9.1. Larmor’s theorem. The magnetizing mechanism for diamagnetics 
The electron in the orbit generates circular current, it has the magnetic 

moment 

  !  ! LgL
cm

e
m
mvr

c
edVjr

c
m

ee

e
ee

�������
������ 
 222

1
, 

where vj ��
�� , � 
� 
trre e

��
��� �� , vector � 
tre

�  characterizes the electron position 
at time t . 

A magnetic moment of a rotating electron is directly proportional to 
a mechanistic moment, and proportional factor g  is called the gyromag-
netic ratio: 

 
cm

eg
e2

�� . (9.1) 

The magnetic moments of single electrons are summed to get an atom 
magnetic moment, in this case the total magnetic moment is either equal to 
zero, or is not equal to zero. If 0��� at

i
i mm ��  (without field), then this sub-

stance is a diamagnetic. For paramagnetics and ferromagnetics without field 
00atm� . If there is an external field the case is different. In field B

�
 each 

magnetic moment m�  is effected by the moment  !BmN
���

� , which tends to turn 
the magnetic moment along the field. 

 

 
Fig. 9.1. Precession of a magnetic  

moment around the direction of magnetic field 
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But Lgm
��

�  and N
dt
Ld ��

� , that’s why 

  !BLg
dt
Ld ���

� . (9.2) 

Let Z0  axis coincide with B
�

. Then  

 
B
LLL
eee

g
dt
Ld

00
321

321
����

� , (9.3) 

 21 gBLL �� , 12 gBLL ��� , 03 �L� . 

Denote LgB 9�� . Then 21 LL L9��� , 12 LL L9�� , constL �3
� , 

 1
2

21 LLL LL 99 ���� ��� . 
It means that 

 01
2

1 �� LL L9�� . (9.5) 
The solution of this equation is 

 � 
69 �� tAL Lcos1 . (9.6) 
From the first equation  

 � 
69
9

���� tALL L
L

sin1
12
� . 

Consequently, constLL �� 2
2

2
1 , and noting that constL �3 , that is 

constLLLL ���� 2
3

2
2

2
1

2 . As the length remains constant, then the rotation direc-
tion changes, and as the projection onto Z0 -axis is constant, then vector L

�
 

precesses round B
�

 with angle velocity L9 , where L9  is Larmor’s preces-
sional frequency. 

The precession is an additional rotation. There arises an additional mo-
ment. The magnetic moment is parallel or antiparallel to B

�
 for each atom 

electron. 0���m�  without field, in field an atom magnetic moment is 

�
�

��
z

i
i�� mm

1

��  and it’s oriented either in the direction of B
�

, or opposite B
�

. 

The generation of an atom magnetic moment due to the precession in 
the external field explains the phenomenon of diamagnetism. 

If all atom electrons preccess, then � 
  !rrv LL
���� 9� , and the current LL vj ��

��  
arises. 

The value of atom magnetic moment is determined by the current den-
sity Lj

�
: 
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  !
� dVjr
c

m Lat

���
2
1 . (9.7) 

As a result 
 Bmat

�� 6�  (9.8) 
for diamagnetics 0>6 . 

9.2. Paramagnetic Properties 
If in the absence of a magnetic field 00atm� , then such substances are 

called paramagnetics. 
In this case magnetic moment m�  in field B

�
 has potential energy � 
BmW

��
��  

and tends to be orientated along field B
�

, but the thermal motion prevents it. 
In thermal equilibrium (as well as for polar molecules) the number of atoms 
with a magnetic moment orientated within the solid angle �d  is equal to 

 � 
 �
�

� �
� de

ee
NdN a

aa
3

�
cos

2
, (9.9) 

where 

 
kT
mBa � . (9.10) 

It means that it’s Bolzmann’s distribution. 
Again, as well as in electrostatics, we have 

 
V
MM V �

�
� ,�

��
0lim , (9.11) 

 
 �
C

�� d
d
dNnmM ��

, (9.12) 

 MeM 3
��

�� , (9.13) 

 cos sin ,dNM m d d
d

3 3 3 �� �
�


�
 (9.14) 

where 
 VnN �� 0 . (9.15) 

That is why the calculation of the integral in the expression for M�  
(9.14) taking into account (9.9) gives 

 ).(1
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aee
eemnM oaa

aa
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���
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�
��
�

�
�

�
�

�  (9.16) 

With the increase of field B
�

 occurs the saturation:  
 ),,( 00 MmnMaB �,1,1, . 
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If B
�

 is small: 
 BM

��
6� , (9.17) 

the expression 

 
kT
mn

3

2
0�6  (9.18) 

is Curie’s Law. 
Here vector M

�
 is parallel to field B

�
 and low diamagnetic effect is sup-

pressed. Paramagnetic salts are used in achieving low temperatures T : the 
salt is cooled and magnetized up to the saturation, and then a slow adiabatic 
demagnetization is performed. 

If field B
�

 changes its direction, then M
�

 also changes its direction, that 
is the magnetic moment m�  turns, but in this case the energy W  increases. 
If the energy is constant, then kinT  decreases. In this way one can achieve tem-
peratures KT 310~ � . Then one gets KT 610~ �  due to the adiabatic demagneti-
zation of magnetic moments of nuclei. 

9.3. Ferromagnetism 
For ferromagnetics 00atm� , but in this case m�  of neighboring atoms 

strongly interact. The real ferromagnetic properties is explained by quantum 
mechanics, which proves the necessity of taking into account the forces of 
interchange between electrons of the atom. However, a lot of ferromagnetic 
properties can be explained in classical mechanics, if we assume the field af-
fects the atom magnetic moment m� : 
 MbHBeff

���
�� , (9.19) 

where H
�

 is the external field and b  is a parameter, characterizing the proper-
ties of a given ferromagnetic, which is called Weiss’s constant. 

In this case the potential energy is equal to 
 � 
MbHmW

���
��� , . (9.20) 

And even without external magnetic field for atom magnetic moments it 
is advantageous to line up along field M

�
, that is a spontaneous magnetization 

takes place (domains). 
The further calculation is the same as for paramagnetics: setting in (9.16): 

 � 

kT

MbHma �
� , (9.21) 

we obtain 
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but � 
Maa �  and this formula can’t be written as � 
HfM � . 
Further we consider the conditions under which the solution exists. 
Let's assume, that the magnetic field H is small in comparison with 

a molecular field bM : 
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0 , (9.23) 

where we introduce the notations: 

 
kn

bM
0

2
0

3
�3  

and 
 omnM �1 . (9.24) 

From (9.23) it follows that  

 
33
Ta

M
M

��
1

. (9.25) 

The equations (9.25) and (9.26) allow to find the graphic solution, that is 
to determine the 

1M
M . 

From (9.22) one finds 

 )(1 aL
a

ctha
M
M

1
1

���� , (9.26) 

where )(aL1  is Langevene’s function in a classical limit. 
The equations (9.25) and (9.26) allow to find the graphic solution, that is 

to determine the 
1M

M . 

Equating the right sides of equations (9.25) and (9.26), we’ll get  
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cthaTa 1
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. (9.27) 

The plots intersect if 
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1
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T
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Dependence 
1M
�M )(  is given in Fig. 9.2. 

Expanding the function �
�
�

�
�
� �

a
ctha 1  into series, and retaining 4 terms in 

the expansion yield 
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 � 
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d dctha
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. (9.29) 

 

 
Fig. 9.2. Graphic finding magnetization M  at 0H �  

(that is spontaneous magnetization) 

The intersection occurs if the inequality 
333

1 T
2  is satisfied, that is 3>T ; 

3  is Curie temperature. 
If 3>T , then the substance is a ferromagnetic, if 32T , it’s a paramagnetic: 

0372�3  for Ni and 0758�3  for Fe. 
9.4. Maxwell’s equations in magnetics 
Let’s take some volume Vd �  in the magnetics. 
In magnetic field B

�
 the substance is magnetized, magnetization vector � 
rM

�
 

arises and generates it’s own field, which adds to B
�

. If “poor magnet” is in the 

coordinate origin, then � 
 %&
'
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*� 3r

rmrA
����

, if it is in point r �� , then � 
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&

'
(
)

*
� 3R

RmrA
�

���
. 

Let’s calculate the vector potential caused by magnetization vector � 
rM
�

: 
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. (9.30) 

Noting that 
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 (9.31) 

and using the relation 
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we’ll get 

 
R
MtroMtro

RR
RM

����
����%

&

'
(
)

* 1
3 . (9.33) 

There is Gauss’s theorem a counterpart of Ostrogradskiy-Gauss’s theorem: 
  !

 � dSAndVArot

V

���
, (9.34) 

where SddSn
��

�  and n�  is a normal vector to surface dS . 
For infinite surface 

  ! 0�
 dSAn
��  (9.35) 

and 
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, (9.36) 

at the same time 
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��� 1 . (9.37) 

Total potential is presented by the formula: 
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where 
 ArotB

��
� . 

As is known the formula for jA
�

 follows from the set of Maxwell’s equations: 
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consequently, in the magnetic 
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or 
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where HMB
���

�� �4  is a magnetizing force: 

 j
c

Hrot
�� �4

� . (9.41) 
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Earlier it was shown that BM
��

~ , that’s why BH
��

~ , consequently, 
 HB

��
=� , (9.42) 

where =  is a magnetic permeability. 
One can write the equation, relating fields M

�
 and H

�
: 

 HM
��

G� , (9.43) 
where G  is called a magnetic susceptibility. 

The final form of the set of Maxwell’s equations in magneto static’s for 
magnetic substances is as follows: 
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Hrot
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where 
 HB

��
=� , (9.45) 

is called the constraint equation. 
If j

�
, =  are known, then one can calculate B

�
, H

�
. 

9.5. The classification of Magnetics 
Media with a magnetic conductivity 10=  are called magnetics. In such 

media magnetic field H
�

 and magnetic induction B
�

 do not coincide, and the 
relation between them can be nonlinear, as in ferromagnetics. Except mag-
netic conductivity =  one uses another property of magnetics – magnetic sus-
ceptibility G . It relates the magnetic moment density of a substance M

�
 

(magnetization vector) to the field strength H
�

: 
 HM

��
I� . 

The magnetic susceptibility is related to =  by the formula: 

 �G= 41�� . (9.46) 
The value G  can be positive or negative. If 02G , then the substance is 

called a paramagnetic. Among paramagnetics there is, for example, oxygen, 
aluminium, platinum, alkali elements. In the course of the value of the molar 
magnetic susceptibility 
 3 610 10G � �4 E . (9.46) 

Paramagnetism is caused by the orientation of magnetic moments of in-
dividual structure elements, which constitute the substance under external 
magnetic field. These magnetic moments do not depend on the external mag-
netic field, they can exist without it. 
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The substances with 02G  are called diamagnetics. For them -610~G . 
The examples of diamagnetics can be inert gasses. All bodies have diamag-
netic properties. The table shows the values of the molar magnetic suscepti-
bility for inert gasses and some ions in crystals. 

 
Table 

The values of the molar magnetic susceptibility  
for inert gasses and some ions in crystals 

Substance He Ne Ar Cr Xe F– Li+ Ca2+ Ba2+ I– 
610��G  
mole3sm  –1,9 –7,2 –19,4 –28 –43 –9,4 –0,7 –10,7 –29 –50 

 
Paramagnetism is stronger, and it predominates diamagnetism, that’s 

why diamagnetism can be directly observed in the molecules with 0�H
�

. 
Among ferromagnetics there is iron, cobalt, nickel and a lot of their al-
loys. At low temperatures ferromagnetic elements can be observed in 
some rare earth elements (gadolinium, terbium, dysprosium, holmium, 
erbium and thulium). 

10. Macroscopic Electrodynamics 
(The electrodynamics of Polarizing and Magnetizing Media) 

10.1. Microscopic and Macroscopic Approaches  
to the Description of Electromagnetic Phenomena in Media 

In the microscopic approach for the calculation of fields one needs to 
write down the equations for electromagnetic fields, generated by individ-
ual moving charges – electrons and nuclei, which constitute the substance, 
then to add the quantum-mechanical equations of motion for micro parti-
cles. Thus, the microscopic approach takes into consideration the proc-
esses on an atomic scale. 

Maxwell’s microscopic equations formulated above are also true when 
along with the electromagnetic field and the charges (currents), generating it, 
there is a substance, interacting with the field. Under the influence of the 
electromagnetic field the charges, which are in the medium, start moving, 
there appear currents in the medium (let denote the charge and current densi-
ties depending on the field strength as �  and j

�
 be the correspondingly). 

There are charges and currents, which don’t depend on the strength of the 
fields, they are called off-side currents (charges): ext�  � extj

�
. So, the bases of 

the electrodynamics of media are the Maxwell’s microscopic equations: 
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In the microscopic approach they should be supplemented with the me-
chanic equations, for example, Newton’s equation: 

 extfhv
c

eerm
������� ��

�
�

�
�
� ���

1 , (10.2) 

where extf
�

 is a force of non-electromagnetic origin. 
Such a detailed approach can’t be fulfilled because of a great number of 

equations of type (2), as these equations should be written for each particle. 
But such a detailed description is not necessary. 

Substance properties, exhibited in a specific form �  and j
�

, should be 
described statically that is one should average the Maxwell’s equations by the 
statistic assembly).Sometimes it proves to be sufficient, but more often one 
has to average (1) by physically small volumes V�  and time intervals t� . 

If the medium consists of neutral atoms, then the electric microscopic 
field (measured or calculated) will be the strongest ( 1610~  in Gauss’s system) 
in some points at fixed moments in regions of 13103~ ��  cm, occupied with 
atom nuclei. Away from the nucleus the field gets weaker and becomes very 
weak at the distances, longer then the typical dimensions of the electron shell. 
Then in the region, occupied with another atom, the field increases 
(abruptly). Besides, rapid field fluctuations (temporary) are caused by the at-
oms motion. These fluctuations take place in plasma, crystals and other me-
dia at distances, correlated with distances between neighboring particles. 

10.2. Maxwell’s Equation Averaging 
Let’s take a physically small volume of medium V� , in which there is a 

great number of particles, but the averaged region is small in comparison 
with, for example, the electromagnetic wave-length (if there are any waves in 
the medium). Let’s take time average t� , which is much longer then a typical 
period of the charge motion in V� . 

Let’s average equations (1) by V�  and t� . 
Let’s find an average value of any component electromagnetic field � 
trg ,� : 

 � 
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where J3d  is a volume element V�  with the center in point with radius-
vector r� : 
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that is 
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7 , (10.5) 

where x  is a corresponding variable . / tz, y, ,: xx . 
The same average values can be found as the result of the assembly average 
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where g� , g ��  are microscopic field values, which correspond to different as-
sembly systems. 

Again 
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The result of averaging is 
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In microscopic electrodynamics Ee
��

� , Bh
��

�  (the vector of magnetic in-
duction). Usually the bare in parameters extjj

��
, , ext��

��,  is omitted, extjj ,
�

, ext�� ,�  
are considered as average (macroscopic) values of these parameters: 
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. (10.9) 
Equations (10.9) preserve their form despite the values of average re-

gion, whose choice depends on characteristics of a problem, experimental 
technique of field averaging and etc. 

But the equation set is not complete, until the relationships are established  
 � 
 � 
jHE

���
,, �K  or � 
 � 
extext jj

��
,, �� K . 
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To determine these relations one can apply statistical notions about the 
motion of particles in a substance – the distribution function � 
tprf ,, ��  of parti-
cles in the studied electromagnetic field is introduced, for a quantum descrip-
tion, the density matrix is introduced. 

Thus, � 
 prddtprf 33,, ��  is the average number of a part with coordinates 
within physically small volume rddV 3� , and momentum components �re in 
volume pd 3  of the momentum space. 

Let’s find induced charges and currents: 
 � 
 � 

� pdprfetr 3,, ���� , (10.10) 

 � 
 � 

� pdtprfvetrj 3,,, �����
. (10.11) 

The distribution function is found as a solution of a kinetic equation. 
The kinetic approach to the description of medium electromagnetic 

properties is the most detailed but it’s too rather complicated, because one 
needs the detailed information about a medium structure.  

Due to the lack of such information one has either to introduce phenome-
nological models or to use experimental relations between � 
j

�
,�  and � 
BE

��
, . 

Usually one uses the Ohm's law in differential form: 
 Ej

��
��  – for isotropic media  (10.12) 

or 
 @6@6 � Ej

��
�  – for anisotropic media (10.13) 

(for fields, which are weak in comparison with atomic ones), where �  
is a macroscopic characteristic of the substance, and does not depend on E

�
. 

For strong fields and in anisotropic media 
 �;@6@;;@6@;@6@6 J;� EEEEEEj

�������
��� . (10.14) 

The density of the induced current can be defined not only by E
�

, but 
also by a field gradient: 

 
;

@
6@;@6@6 J�

x
E

Ej
7

7
��

�
��

. (10.15) 

In superconductors 
 Bjrot

��
C�� . (10.16) 

The solutions of electrodynamics equations in media are remarkable for 
their variety. It is conditioned by the difference in properties of media (labo-
ratory and cosmic plasmas; metals similar in certain respects, semimetals and 
semiconductors; non-conducting media: solid and liquid dielectrics; different 
magnetics, and etc.). 
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11. Electromagnetic Field Equation for Different Media 
Let’s establish the relation of induced charges and currents to specific 

dipole moments. 
In equations (10.3) extext j

�
,�  are given by external conditions and can be 

considered as non-homogeneous terms of the equation. Parameters �  and j
�

 
are not known in advance and they should be expressed in terms of some 
macroscopic parameters of the substance, which depend on the field strength. 
They can be written by analogy with the relation Ej

��
�� , but it’s more con-

venient to express �  and j
�

 in terms of densities P
�

 and M
�

 of macroscopic 
electric and magnetic dipole moments of the medium, defined as 

 
� 
 V

pP
V

i ���
�

�
��
�

�
� �

�

1��
, (11.1) 

 
� 

�
��

�
V

im
V

M �� 1 , (11.2) 

where ip� , im�  are dipole moments of individual micro particles, of which the 
substance consists, V�  is a microscopic small volume. 

Let’s express �  in terms of P
�

. 
Consider any electroneutral body and require 

 

 � dVr�dVP ��
. (11.3) 

The integration is done over the whole body volume. 
Multiply both sides of (11.3) by vector a�  and use the identity  

 � 
� 
 ,a P P a r� � �� �
� � �� � �  (11.4) 

 � 
 � 
� 
 � 
 � 
 ,
V

a r dV P a r dV P a r dV a r divPdV� * '� � �� � � � � � �) &
 
 
 

� � � �� � � � � � � �  (11.5) 

where 
 � 
 � 
 0,

V S

P a r dV n P a r dS* ' * '� � � � �) & ) &
 

� �� � � � �  (11.6) 

because P
�

 is equal to zero outside the body. 
From this due to arbitrary a� : 

 

 �� dVPdivrdVr
���� , (11.7) 

 Pdiv
�

��� . (11.8) 

Here 0�
 dV�  is carried out, the condition of the electroneutrality. 
Let’s express j

�
 in terms of the vectors of electric and magnetic polari-

zation. Use the continuity equation for induced charges and currents: 



 77

 0��
7
7 jdiv

t
p �

. (11.9) 

Substituting Pdiv
�

���  gives 

 0���
�

�
��
�

�
7
7

�
t
Pjdiv
�

� , (11.10) 

 
Mrot

t
Pj

��
�

�
7
7

� . (11.11) 

In this case 00�Mrot
�

, as well as P
�

, only in volume V . 
The current j

�
 can be presented as the sum of two currents: polarization 

current 
t
P

7
7
�

, because this current is bound up with the flow of charges, which 

form an electrodynamics moment of the substance; the second current Mrot �
�

 
is caused by the closed micro currents in the substance, which are not due to 
the microscopic electric field. 

Consider current j
�

 first in the absence of electric field 0�
7
7

t
P
�

. 

Then Mrotj ��
��

 possesses the property: 
 0�
 dSj

�
. (11.12) 

That is the full current through any medium cross section is equal to 0: 

 

 �� dVMdVjr
c

���
2
1 , (11.13) 

where 
 dVM
�

 is the total magnetic moment of the body. 
Let a�  be an arbitrary constant vector. Multiplying scalarly a�  by both 

sides of equation (11.13) one gets 

 1 ,
2

a r j dV aMdV
c

* '� � �) &
 

��� � �  (11.14) 

 � 
  !  ! .a r j a r rotM a r rotM a r M
L* '

* '� � �� � � � � � � � � �( %) &
) &

� � ��� � � � � � � �  

Denote  !raf ���
��  and consider 

 
 !  !  ! � 
2 .

div M f M f M f M f f M M f

div M ar M rot ar div M ar aM

LL * '* '
* ' * ' * '* '� � � � � �� � � � � � � �� � � � � � �( %( % ) &) & ) & ) &

) & ) &
* ' * '� � � �� � � �) & ) &

� � � � � �� � � � � �

� � � ��� �� �� �
 (11.15) 

Substituting (11.16) for (11.15) and using Ostrogradsky-Gauss’s theo-
rem, taking into account the vector a�  arbitrariness we find: 
 M c M� � �

� �
. (11.16) 
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Thus, without the electric field 
 Mrotcj

��
�� , (11.17) 

besides, using Stock’s theorem, one can show that 
 0�
 dSj

�
. (11.18) 

Expression (11.17) is also true for static electric field. If there is an al-

ternating electromagnetic field and 00
7
7

t
P
�

, then 
c

M �
�

 does not coincide with 

the magnetization vector M �
�

. However, the formula 

 Mrotc
t
pj

���
��

7
7

�  (11.19) 

is true, if M �
�

 is not considered as a magnetic moment density. 
Substituting the relations (11.8) and (11.9) for the density of the induced 

charges and currents in the system of equations (10.9) gives: 

 
t
B

c
Erot

7
7

��
�� 1 , � 
 extpEdiv ��� 44 ��

� , 

 � 
 � 
pE
tc

j
c

MBrot ext
�����

��� 4144 �
7
7

��� , 

 0�Bdiv
�

. (11.20) 

12. Maxwell’s Equations for Media, Constraint Equations 
The system (11.20) is similar to that for vacuum. If we introduce two 

new field vectors: 
 PED

���
�4�� , (12.1) 

 MBH
���

�4�� . (12.2) 
Then the system of equations (11.20) takes the form: 

 
t
B

c
Erot

7
7

��
�� 1 , extDdiv ��4�

�
, 

 
t
D

c
j

c
Hrot ext 7

7
��

�
�� 14� , 0�Bdiv

�
. (12.3) 

In contrast to Maxwell’s system of equations for vacuum the set of 
equations in medium (12.3) contains four vectors: E

�
, B

�
, D

�
 and H

�
, that’s 

why set of equation (12.3) is not closed and it should be supplemented with 
the equations of additional relations between four field vectors. 

Until now we consider Maxwell’s equations for media were dividing the 
charges into bound charges ( bond�� � ), exterior charges ( ext� ), and with the cur-

rent density Mcrot
t
p

bond

��
�

7
7

��  � ( extj
�

), where P
�

 and M
�

 depend on E
�

 and B
�

. 



 79

If we consider conductors, where together with the bound charges there 
are also free ones, then in this case there is the macroscopic motion of free 
charges in them caused by the field, that is an electric current. Such a current 
is called conduction current: 
 jvbond �� . (12.4) 

In view of the bound charges and conduction current the average density 
of macroscopic current can be written as  

 Mcrot
t
Pjvvv freebond

��
�

7
7

���� ��� . (12.5) 

In this case the average density of microscopic charges (instead of (11.8) 
Pdiv
�

��� ) is 

 Pdiv
�

�� �� , (12.6) 
where 
 freebond ��� �� . (12.7) 

One can verify that 

 0��
7
7 jdiv

t
�� , (12.8) 

Then the equations (10.9) take the form: 
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Erot

���
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 (12.9) 

where 
 PED

���
�4�� , (12.10) 

 MBH
���

�4�� . (12.11) 
In contrast to the system (12.11) the constraint equations are not univer-

sal; they are determined by the concrete medium properties. Further we will 
obtain the constraint equations for the media with the simplest properties. 
Now we suppose that 
 ED

��
8� , (12.12) 

 HB
��

=� , (12.13) 

 Ej
��

�� . (12.14) 
By 8 , =  and �  we mean some operators: they can be tensors of the sec-

ond rank, differential or integral operators, and for fields 8  and = , slowly 
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changing in space and time they reduce to multiplication of E
�

, H
�

 and ��  
by algebraic (or tensor) values. 

The relation Ej
��

��  expresses the differential Ohm’s law, where �  
is a metal (substance) conductivity. 

Operators 8  and =  are the operators of electric and magnetic permeabil-
ity. Macroscopic vectors of field strength E

�
 and field density B

�
 are very 

close to microscopic field strength E
�

 and magnetic inductivity H
�

 by their 
properties. It is just they that determine the force, which work on the charge 
put in the medium: 

 ])[1( Bv
c

EqF
����

�� . (12.15) 

On the surface of the medium, where the medium properties change 
stepwise, differential equations (12.9) are not true, and are replaced by the 
boundary conditions: 

 nn BB 12 � , ��412 �� nn DD , ?? 12 EE � , vic
HH �

??
4

21 �� , (12.16) 

where ?�  and n�  are tangent and normal vector components, current Mi  
is determined as hh

��
M0lim ,  and it’s a projection onto the direction M�  of the 

surface current. Current i  is in the tangent plane to surface N  and not equal 
to zero, if the current of a finite force flows in a thin surface layer. ),,( vn ���?  
is a triple of mutually orthogonal orts. Numbers 1 and 2 show the side of the 
surface, where the vectors are taken. 

 
Fig. 12.1a. To the derivation of boundary conditions.  

Let's extract a cylinder with base � S and height h on the bound of two media 

Let’s calculate vi  and �  – the density of the surface current and charge, 
respectively  
 

 ��

�
, dSdext

v
h �M�� )(lim 0 , vcxth iSdjj ��
,

���
)(lim 0 . 

In a particular case of anisotropic media ikik 8�8 � , ikik =�= � , ikik ��� �  
and the equations (12.12 – 12.14) take the form: 
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 ED
��

8� , HB
��

=� , Ej
��

�� . (12.17) 

 
Fig. 12.1b. The same that on the Fig. 12.1a.  

Side view, , ,n? �  is a triple of mutually orthogonal orts 

Fig. 12.2 shows the behavior of some physical quantity during the tran-
sition from medium (1) to medium (2). 

 
Fig. 12.2. The example of behavior of some physical value  

at transition from medium (1) into medium (2) 

13. The Energy Conservation Law in Macroscopic Electrodynamics 
Let’s write down the macroscopic dynamics equations, assuming that 

there are no exterior currents and charges: 

 ,1
t
B

c
Erot

7
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��
��

 (13.1�) 

 ,4���Ddiv
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 (13.1b) 

 
,14

t
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c
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c
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 (13.1c) 

 .0�Bdiv
�

 (13.1d) 
From equations 13.1c and 13.1� it follows that 

 .ErotH HrotE div E H* '� � � �) &
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Besides, let’s take into account the constitutive equations 
 ,ED

��
8�  (13.2) 

 HB
��

=� . (13.3) 
As a result we obtain 
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Consider the expression 
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Let’s express 
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�hus, from (13.5) and (13.6) one has 
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It gives 
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If 8  and =  do not depend on time, then we get 
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Let’s introduce the notations: 

 . / . /22

8
1

8
1 HEBHDE

������
=8
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9 ���� , (13.9) 

  !HEcS
���

�4
� , (13.10) 
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where 9  is the energy density of the electromagnetic field in a substance; 
S
�

 is Umov-Pointing’s vector. Equation (13.8) takes the form: 

 0���
7
7 EjSdiv

t
���9 . (13.11) 

It means, that the decreasing of energy density with time in the electro-
magnetic field in some point by the law of energy conservation (13.11) gives 
rise to the divergence of Pointing’s vector, which is not equal to zero, and to 
the work of the field on free charges: 

 EjdVSdivdVdV
t

���


 
 ��

7
7

� 9 . (13.12) 

Taking into account that for a substance at rest 
dt
d

t
�

7
7 , we write down 

the integral conservation law in macroscopic electrodynamics: 

 


 ���
V

dVEjdSSndV
dt
d ����9 . (13.13) 

The decreasing of the electromagnetic field energy in some volume V  is 
equal to the sum of the energy flow through the surface, which bounds this 
volume, and field work, preformed on free charges in volume V  in a time unit. 

14. Quick-alternating Field in a Substance 
14.1. Frequency Dispersion of Dielectric Permittivity 
Consider the fields 

 � 
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In this case frequency 9  is not small in comparison with frequencies 
typical for this medium. Let’s suppose that there are no exterior charges and 
currents, and neglect the magnetic properties of the medium 1�= : 
 � 
 � 
 � 
trHtrHtrB ,,, ������

�� = , (14.2) 
 � 
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Then the Maxwell’s system of equations takes the form: 
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and the constraint equations will be written as 
 ,ED
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8�  (14.5) 

 Ej
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�� , (14.6) 
where �  and 8  depend on 9 : 
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The equation 

 D
c

ij
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Hrot
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4  

can be rewritten as 
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iE
c

Hrot
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� �����

��8989�� 44 . (14.7) 

There’s no sense to divide the charges and currents into free and bound, 
as under the influence of the quick alternating field both types of charges and 
currents oscillate in the space and hence they can be described in the same 
way. One term in the right side describes the contribution of bound electrons, 

and the second one �
�
�

�
�
� i

c
��4  describes conductivity electrons. 

So it’s convenient to introduce the total effective dielectric permittivity 
of the medium: 

 
9
��88 4~ i�� . (14.8) 

Introducing the induction 

 ED
��

8~
~

� , (14.9) 
we write 

 D
c

iHrot
~�� 9

�� . (14.10) 

The value 8 , entering 8~  can be complex. Further subscript ~ should be 
omitted, because both free and bound electrons are taken into account: 

 H
c

iErot
�� 9

� , (14.11) 
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 D
c

iHrot
�� 9

�� , (14.12) 

 0~
��� Ddiv

c
Hdivrot

�9 , (14.13) 

that is 0�Ddiv
�

 and ED
��

8� . 
Thus, the equations, describing quick alternating fields will be written as 

follows: 
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iErot
�� 9

� , 
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c

iHrot
�� 9

� , 

 0�Ddiv
�

. (14.14) 
And the constraint equation as 

 .D E8�
� �

 (14.15) 

Formally, due to the harmonic dependence of the fields on time, opera-
tor t77  is reduced to the substitution in the equations: 9��,77 it . 

If in (14.4) one makes a change: 
t

i
7
7

,9 , then the equations will be true 

for arbitrary dependence of the field strength on time, but they will be com-
plicated operator equations, not differential in general case. 

Actually, the constraint equation 
 ED

��
8�  

for an arbitrary dependence on time means the integral relation between in-
duction D

�
 at moment t  and strength E

�
 at all previous moments: 
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Here the causality principle is used: the induction can depend only on 
the field strength at previous moments. Physically it means that for quick al-
ternating fields the stabilization of medium polarization can’t follow the 
change immediately. Function � 
?f  determines the field “memory” about the 
field, which existed at previous moments. Formally 
 ˆD E8� �

� �
, 

where 8̂  is a linear integral operator. 
Let’s expand � 
tD

�
 and � 
tE

�
 into Fourier’s integral: 
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It gives the relation: 
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that is 
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where 
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Let’s write 8  as a complex value: 
 � 
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989898 �� 21 i . (14.20) 

From (14.19) and (14.20) it follows 
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 � 
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9898 22 ��� . (14.24) 
The relations of parity for 

 � 
 � 
9898 2,12,1 O��  (14.25) 

can be combined, to write 
 � 
 � 
P�� 9898 . (14.26) 

The dependence of the dielectric permittivity on the frequency is called 
a frequency dispersion of the dielectric permittivity. 

15. Dielectric Permittivity Characteristics (Low and High Frequencies) 
For low frequencies � 
98  can be expanded into a series in powers 9 . 

The expansion � 
981  has only even degrees of 9 , and that of � 
982  has only 
uneven degrees. In the limit 0,9  in a dielectric � 
98  tends to � 
08 , which 
is a static value of the dielectric permittivity: 
 � 
 � 
0lim 0 8989 �, . (15.1) 
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Let’s expand � 
98  into Maclaurin’s series: 
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 � 
00lim 10 88989 ��, . 

In conductors, taking into consideration that now conductivity �  is also 
included into 8 , as 0,9  the dielectric permittivity has the pole: 

 � 

9
��98 4

2 � , (15.3) 

where �  is a normal conductivity for continuous current. 
There arises a question whether there can exist a frequency range for 

which the dispersion phenomena are substantial, but still it’s admissible to 
use a macroscopic approach for their description. One needs to verify if the 
conditions of establishment of electric polarization – dispersion, substantial 
for 

relt
1

Q9 , relt  are compatible (electronic mechanism is the quickest). 

It’s obvious that 

 
v
atrel ~ , 

a
v

Q9 , (15.4) 

where a  is atomic sizes; v  is a characteristic electron velocity. 
Let’s formulate the condition at which one can apply the macroscopic 

description: wave length 	 , at which the field strength substantially changes, 
should be more then a . Cyclic frequency 9  relates to linear frequency M  
by the relationship: 
 �M9 2� , 
that’s why the condition 

 acT 22�	  means ac
22

M
 or ac

22
9
�2  

or 

 
a
c

>>9 . (15.5) 

Since 
137

1~
c
M , then the inequalities 

a
v

Q9  and 
a
c

>>9  can be satisfied 

simultaneously, so the above-mentioned frequency range exists. 
At high frequencies for all substances 1,8 . 
It follows from the fact that if the strength changes quickly, the proc-

esses establishing induction D
�

, different from E
�

, have no time for realiza-
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tion. If 9  is more then all characteristic medium frequencies, then one can 
find the limiting form of function � 
98 , which is true for all substances. 

15.1. Limiting Form Definition 8(9). Plasma Frequency 
Thus, let 9  be high enough, that is it exceeds all characteristic medium 

frequencies. Then in the calculation of the substance dipole moment all elec-
trons can be considered to be free, because we consider the times equivalent 
to 

9
1 . The distance, covered by an electron during this time, is 

99
cv

> , that 

is it’s less then the distance, where the field strength is substantially changed. 
That’s why this field can be considered as homogeneous in the definition 
of the electron displacement, caused by the field. 

Let’s write down the motion equation 
 Eerm

���� � , (15.6) 
where 
 � 
 tieEE 99 ��

��
. (15.7) 

A solution is sought in the form 
 � 
 tieatr 9��

�� . (15.8) 
Substituting (15.8) in (15.6) we obtain the relation 

 � 
 titi eE
m
eear 99 99 �� ���

����� 2 , (15.9) 

from which it follows that 

 � 
9
9

E
m

ea
��

2�� , (15.10) 

 � 
 E
m

etr
��

29
�� . 

The multiplication of � 
tr�  by eN � , where N  is an electron concentra-
tion, gives: 

 E
m
NeP

��
2

2

9
�� . (15.11) 

Since the induction PED
���

�4�� , then 

 EE
m

NeD p ���
�
�
�

�
�
�
�

�
����

�

�
��
�

�
�� 2

2

2

2

141
9
9

9
� , (15.12) 

where 

 
m
Ne

p

24�9 � . (15.13) 
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Parameter p9  is called a plasma frequency. 
On the other hand, � 
ED

��
98� , that is 

 � 
 2

2

1
9
9

98 p�� . (15.14) 

Thus, for the description of the quick alternating fields in the substance 
for arbitrary relation between strength and time the following form of the 
constraint equation is used 

 � 
 � 
 � 
 � 
 ??? dtrEftrEtrD ��� 

1

,,,
0

�����
, (15.15) 

and instead of the equations 

 
,

,

irotE H
c

irotH D
c

9

9

� �FF
�
F � �
F�

� �

� �  (15.16) 

one can use the equations 

 

F
F
�

FF
�

�

7
7

��

7
7

��

.1

,1

t
D

c
Hrot

t
H

c
Erot

��

��

 (15.17) 

16. Complex Dielectric Permittivity of Rarefied Neutral Gas 
Consider the problem of wave propagation in rarefied gas. The field 

strength changes according to the harmonic law: 

 � 
rtieEE
����

G9 ��� 0

~
, 

 � 
rtieHH
����

G9 ��� 0

~
. (16.1) 

Under the action of an electromagnetic wave there arises the alternating 
dipole moment � 
tPP

��
� , which functionally depends on the fields E

�
 and H

�
 

of the wave and atom properties of the medium. 
Denote an electric dipole moment of one atom by � 
td

�
. If a volume unit 

contains N  atoms, then 

 � 
tdNP
��

� . (16.2) 

That’s why for monochrome wave (without dispersion) 

 � 
ED
��

98�  
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and 

 � 
 � 
tdNEPEED
������

��98 44 ����� . (16.3) 

Thus, to find � 
98  it’s necessary to know an explicit relation between d
�

 
and E

�
. In classical theory this relation can be found on the basis of the oscil-

lating atom model, in which an atom is considered as a motionless nucleus 
with point electrons, moving non-relativistically round it. 

Let m , e  be the electron mass and the charge respectively, ;  is a coeffi-
cient, characterizing attenuation if 02;  (or in other words, dissipative prop-
erties of an oscillator), if 0>;  antidissipative properties of an oscillator, 0R

�
 is 

an electron radius-vector without disturbing force (in this case the disturbing 
force is an electromagnetic wave), � 
tR

�
 is an electron radius-vector in pres-

ence of disturbance, 09  is an oscillator frequency. 

Quasi-elastic force � 
 � 
 � 
0
2
000 RRmRRm

m
RR

������
��������� 9GG . 

The motion equation for an oscillator under the action of disturbing 
force can be written as 

 � 
 FRRmRmRm
�������� ���� 0

2
09; , (16.4) 

where 

 � 
RtieHR
c

EeF
�������

G9 ��

"
#
$

�
�
�

%&
'

()
*�� 00

~1~
. (16.5) 

Is called Lorenz’s force of electromagnetic wave. 
Since the electron displacement vector with respect to the equilibrium 

position is equal to � 
0RRr
���

�� , then 

 2 (
0 0 0

1 ),t krmr m r m r e E RH e
c

9; 9 � �� $* '� � � �� #( %) &� "

��� � �� � � ��� �  (16.6) 

where we introduced the notations: 

 0
00

~
RieEE
����

G� , 0
00

~
RieHH
����

G� . (16.7) 

Equation (16.6) is nonlinear and can’t be solved in general form. It’s 
linearized by making use of the smallest of its parameters. In the non-
relative case (electron in the atom has a non-relativistic motion) 1>>

c
R , 

besides, in electromagnetic wave 00 ~ HE
��

, that’s why the magnetic part 
of the Lorenz’s force can be neglected. Let’s also take into consideration 
that displacement r a>>

� , where a  is an interatomic distance and in view 
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of this 0�r��G  can be considered in respect to microscopic electrodynamics 
and 1�rie

��G . Then  

 tieEermrmrm 99; ���� 0
2
0

������� . (16.8) 

Multiply equations (16.8) by e  and take into account that red ��
� , 

where d
�

 is a dipole moment: 

 tieE
m
eddd 99; ���� 0

2
2
0

������� . (16.9) 

Generally speaking, the solution of equation (16.9) is a combination of 
the general solution of the homogeneous equation and particular solution of 
the heterogeneous equation. The solution of the homogeneous equation is a 
linear combination of two independent solutions, where the constants are de-
termined by the initial conditions. It’s necessary to take into account that for 
any initial conditions these solutions tend to zero because te ;�  as 1,t . This 
implies that a solutions of equation (16.9) should be sought as a particular so-
lution of the heterogeneous equation. 

Thus, we seek the solution in the form 

 tiedd 9�� 0

��
. (16.10) 

Substituting the expression for d
�

 in (16.9): 

 
2 2

2 2
0 0 ,i te ei d E e E

m m
99 9 ;9 �* '� � � �) &

� � �
 

yields 

 
� 


2 22 2
0

22 2 2 2 2 2
0 0

.
E ie E ed

mm i

9 9 ;9

9 9 ;9 9 9 ; 9

* '� �) &� �
* '� � � �) &

���
 (16.11) 

The oscillation of vectors d
�

 and E
�

 proceed out of phase. Actually, let’s 
represent the value 

 
� 


2 2
0

22 2 2 2 2 2
0 0

1 ii e
i

S9 9 ;9 �
9 9 ;9 9 9 ; 9

� �
� �

� � � �
 (16.12) 

as 
 Siezibaz ��� , (16.13) 

where 

 22 baz �� , 
ba

b
�

�
2

sinS , 
22

cos
ba

a
�

�S , (16.14) 

as is obvious from Fig. 16.1. 
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Fig. 16.1. The forms of complex number presentation: z = a + ib = �ei� 

As a result we obtain: 

 

� 
 � 

� 
 !

� 
 22222
0

22
0

2
22222

0

22222
0

22222
0

22
0 1cos

9;99

99

9;99

9;999;99

99S

��

�
�

�

��

����

�
�

 (16.15) 

and 
 

� 
 22222
0

sin
9;99

;9S
��

� . 

From the expression for d  (16.11) and formulas (16.12-16-15), it’s ob-
vious that 

 � 

� 


� 
 22222
0

0
2

22
0

2

9;99;999

S9

��
�

��
�

��

m

eEe
im

Eed
ti

���
. (16.16) 

Comparing it with tieEE 9�� 0

��
, we determine that phase difference S  be-

tween the oscillation of vectors d
�

 and E
�

 depends both on the frequency of an 
incident wave and on atom characteristics ;  and 09 . 

Let’s study the relation between the phase difference S  and the frequency 

 22
0 99
;9S
�

� arctg . 

It’s obvious that 

 

F
F
F

�

F
F
F

�

�

1>>T>

�

>TT

. if - 
2

  resonancein  -       
2

 if -  
2

0

0

0

99�S�

�S

99�S

 (16.17) 
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Let’s find the polarization vector of the medium in view of (16.11): 

 
� 


2 2 2
0

22 2 2 2
0

.
e NE i

P Nd
m

9 9 ;9

9 9 ; 9

* '� �) &� �
� �

�
��

 (16.18) 

For a known polarization vector, let’s find the expression for the induc-
tion vector: 

 � 

� 


2 2 2
0

22 2 2 2
0

4
4 1 .

e N i
D E E P E

m

� 9 9 ;9
8 9 �

9 9 ; 9

* '* '� �) &( %� � � � �
( %� �) &

� � � � �
 (16.19) 

It is common to denote 

 
m

Ne
p

2
2 4�9 � , (16.20) 

where p9  is a plasma frequency [the frequency of plasma deviations or 
Langmuir’s frequency], that’s why in the constraint equation  
 � 
ED

��
98� .  

The dielectric permittivity 8  depends on the frequency and has the form 

 � 

� 


2 2 2
0

22 2 2 2
0

1 .p i9 9 9 ;9
8 9

9 9 ; 9

* '� �) &� �
� �

 (16.21) 

As it follows from formula (16.21), � 
98  depends not only on the me-
dium (in terms of ;  and 09 ), but also on the frequency 9  of incident elec-
tromagnetic radiation and in general case is a complex value: 
 888 ����� i , (16.22) 

 � 

� 
 22222

0

22
0

2

1
9;99

999
8

��

�
��� p , (16.23) 

 � 
 22222
0

2

9;99

;99
8

��
��� p . (16.24) 

The oscillation of induction vector D
�

 proceed out of phase with E
�

 due 
to complexity of � 
98 : 

 � 
 � 
U98888 ������������ tieEEiD 0
22
���

, (16.25) 

 
� 
 � 


2

22 2 2 2 2 2 2
0 0

.p

p

arctg arctg
9 ;98U

8 9 9 ; 9 9 9 9

��
� �

� * '� � � �( %) &

 (16.26) 

Let’s analyze the dependences of 8�  and 8 ��  on the frequency. The whole of 
frequency region can be divided into three parts, depending on 

9
8

7
�7  (Fig. (16.2)): 
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I and III, where 02
7

�7
9
8  is a range of normal dispersion; 

II, where 0>
7

�7
9
8  is a range of anomalous dispersion; 

� 
98 ��  is much higher in the second range than in I and III; 
8 ��  is bound up with the dissipative term � 
;~ , and that’s why the energy 

absorption of an electromagnetic wave by the medium in II is much higher 
than in I and III. 

 

 
Fig. 16.2. The diagram of dependence of real and imaginary part  

of dielectric permittivity on the frequency: a) real part; b) imaginary part 

Relatively high values of 8 ��  correspond to the opaque region, and low 
values – to the transparent region. 

A important particular case of expression (16.21) is dielectric permittiv-
ity of plasma and plasma-like media. In such media electrons and nuclei are 
not bound into nuclei, consequently, quasi-elastic (recovery) force is equal to 
0 � 
00 �9 . Then if there is no absorption � 
0�; : 

 2

2

1
9
9

8 p�� . 

It means that if the frequency of forced oscillation coincides with plasma 
frequency, then the dielectric permittivity of plasma-like media is equal to 0. 

17. Physical Meaning of Imaginary Part 8 
From Maxwell’s equations for macroscopic electrodynamics 

 
t
B

c
Erot

7
7

��
�� 1 , 

 ��4�Ddiv
�

, 

 
t
D

c
j

c
Hrot

7
7

��
�

�� 14� , 0�Bdiv
�

 (17.1) 

and from material equations 



 95

 ED
��

8� , (17.2) 
 HB

��
=� , (17.3) 

one can deduce the law of energy conservation in differential form: 

 0���
7
7 EjSdiv

t
���9 , (17.4) 

where 

 . / . /2 21 1
8 8

ED HB E H9 8 =
� �

� � � �
� � � � � �

 (17.5) 

is the energy density of electromagnetic field in the substance, and 
 !HEcS

���
�4

�  is Umov-Pointing’s vector. 

The integral law of conservation of energy has the form 

 


 ��� dVEjdSSndV
dt
d ���9 . (17.6) 

And if there are no free charges, the law of conservation of energy can 
be written as 

 
��
S

dSSn
dt
d ��8 . (17.7) 

And it means that the energy decrease of electromagnetic field (electro-
magnetic waves) in some medium volume V  is equal to the total energy flow 
through the surface, bounding this volume V . 

In previous section we established the relation between the imaginary 
part of dielectric permittivility � 
98  and dissipation (or anti-dissipation) of 
the energy of electromagnetic wave, which propagates in neutral rarefied gas: 

 � 
 � 
 22222
0

2

9;99

;99
98

��
��� p . (17.8) 

This expression implies that: 
02;  corresponds to the attenuation or dissipative properties of the oscillator; 
0>;  corresponds to the anti-dissipation, for example, for laser media. 

This property is typical for other material media as well. If complex di-
electric permittivility � 
98  has � 
 00�� 98 , it means that the medium either ab-
sorbs the energy of electromagnetic field, converting it to other types of en-
ergy (heat, for example), or transmits the stored energy to electromagnetic 
wave (anti-dissipating media, laser media). 

If 0>�V 
 dSnS�� , then the dissipation of energy takes place, if 02V , then 
the energy of, for example, luminous electrons, in metastable atom levels of laser 
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media, coming through electromagnetic radiation, converts into electromagnetic 
energy, which increases the energy flow of outflow electromagnetic waves. 

Let’s consider the problem: find how the sign V  relates to 
� 
 � 
9898 nJm � . By the definition 

 
 
��V dVSdivdSnS
��� , (17.9) 

where the second side of the equation is written according to Ostrogradskiy-
Gauss’s theorem, where 

 . /.
4 4
c cdivS div EH HrotE ErotH
� �

* '� � �) &
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 (17.10) 

From Maxwell’s equations: 

 
t
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c
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Hrot
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�� 1 , (17.11) 

it follows that 
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. (17.12) 

Generally speaking, vectors ,H
�

 ,B
�

 ,E
�

 D
�

 should be real, if we want to 
leave a complex formulation of the vectors, then in Sdiv

�
 it’s necessary to take 

their Re  parts: 
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7
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�
7
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�� D
t

EB
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ReReReRe
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. (17.13) 

Since � 
*

2
1Re AAA

���
�� , then 

 � 
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#
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�
�
� �

7
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���
7
7

��� ****

16
1 DD

t
EEBB

t
HHSdiv

���������
�

. (17.14) 

Let’s assume that the wave is monochromatic, that is tieEE 9�� 0

��
. The 

same refers to the fields H
�

, B
�

 and D
�

. 
For the derivatives of fields with respect to we obtain 

 *
*

Bi
t

B ��
9��

7
7 , and etc. 

The expression of the divergence of Umov-Pointing’s vector takes the 
form 

 � 
� 
 � 
� 
. /* * * * .
16
idivS H H B B E E D D9
�

� � � � � � �
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 (17.15) 

Let’s use the equations 
 � 
 � 
 � 
EiED

���
88989 ������ ~ , HB

��
=� , 
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 � 
 ** EiD
��

88 ����� , ** HB
��

=� , (17.16) 
then formula (17.15) will transform as: 
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 � 
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2 .
16

idivS H H E E i E i E
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�

* '� �� � ��� � � � � � � �) &

� ��� � � � � � �

� � � � � � �

� � � � � � � �  (17.17) 

This expression is not quite convenient for the analysis, because it con-
tains the quick oscillating terms ,2H

�
 ,2E
�

 ,2*H
�

 2*E
�

 with frequency 92 : 

 � 
 titi eHeHH 99 22
0

2
0

2 �� ��
���

. (17.18) 

Let’s average the expression V  over a wave period: 
�

T 	
9
�

��
2 , 
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TT

SdivdVdVdtSdiv
T

dt
T 00

11 ��
, (17.19) 

where 

 
�
T

dtSdiv
T

Sdiv
0

1 ��
. (17.20) 

When averaging the field squares there arises the integral: 
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0

2

0

�� 

 � ti
T

ti
T

edtedt 99 , 

and the values ,2H
�

 ,2E
�

 ,2PH
�

 tieE 922 ~ �P
�

 don not occur in the expression for Sdiv
�

. 
As a result one gets 
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88
EEESdiv
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89

�
89 ��
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��

�� P . (17.21) 

Since 0
2
2E

�
9 , then sign Sdiv

�
, and, consequently, sign V  depend on 

sign 8 �� . 
If 02��8 , then 0>Sdiv

�
 in every point of volume V , and, consequently, 

0>V . 
Thus, 00��8  is a direct consequence of dissipative properties of the media. 
By the definition 
�V

S

dSnS��  is an energy flow through the surface, 

bounding the medium volume V . 
Oscillating components describe the energy interchange between the 

field and the medium: the field, accelerating the charges, transmits them its 
energy, the charges while accelerating (retarding) radiate and as a result the 
energy is transmitted to the field. 
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On the average this process does not influence the energy interchange 
between the field and the medium. The interchange is determined only by 
components, which do not depend on time. 

In the state of thermodynamic equilibrium the medium always absorbs 
and 02��8 , However, it’s possible to generate such medium condition, at 
which 0>��8  and the increase of an electromagnetic wave occurs. 

For some frequency values 0���8  the medium becomes translucent for 
the radiation with such frequency. The frequency regions, where 8 ��  values 
are low enough, are called transmission band of the substance. 

18. Dispersion Relations of Kramers–Kronig 
Even for the elementary material medium of neutral rarefied gas the 

vector oscillation P
�

, caused by external electromagnetic wave, lags behind in 
phase as compared with E

�
 oscillations: 
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eENedNP
ti

���
, (18.1) 
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0 99
;9S
�

� arctg , (18.2) 

that is at every fixed moment PED
���

�4��  is determined not only by E
�

 value 
at the same moment t , but also by the field values at the previous moments: 

 � 
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 � 
 � 

 ���
T

dtEftEtD
0

4 ???�
��

. (18.3) 

Where function � 
?f  depends on the medium properties and demonstrates 
the influence of field E

�
 at previous moments on the state D

�
 at given moment t. 

It’s obvious that � 
?f  is a bounded function for all ?  and quickly and smoothly 
tends to zero as 1,? . Let’s expand (18.3) into Fourier’s integral in time: 

 � 
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�� tieDdtD 999
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, (18.4) 
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Substituting (18.4) and (18.5) into (18.3), gets 

 � 
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41 ??�99 9? defED i
��

. (18.6) 

For isotropic media the relation between D
�

 and t  for each fixed value of 
9  has the form: 
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 � 
 � 
 � 
9989 ED
��

� . (18.7) 
Comparison of (18.6) and (18.7) gives: 
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1

��
0

41 ??�98 9? def i . (18.8) 

This relation has been obtained without any detailed description of me-
dium properties, proceeding only from the causality principle, therefore this 
expression should be true for wide of material media. 

Using relation (18.8), let’s study the properties of � 
98 . 
Since the function is real, and  

 � 
 � 
 � 
989898 ����� i , (18.9) 
then 
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cos41 ?9??�98 df , (18.10) 
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1

���
0

sin4 ?9??�98 df . (18.11) 

From relations (18.10) and (18.11) it follows: 
 � 
 � 
9898 ���� , (18.12) 
 � 
 � 
9898 ������� . (18.13) 

In relation (18.8) let’s change over complex values 
 iyxz ��,9 , (18.14) 
where z  is a complex frequency: 
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1 ??8 ? defz zi . (18.15) 

In contras to (18.8) we define the function � 
?f  as 
 � 
 � 
??� ff ,4 . (18.16) 

It obviously does not influence 8  properties. 
Let’s write (18.5) in the form  

 � 
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 � 


1

�����
0

1 ??88 ?? deefiyxz yxi . (18.17) 

Integral (18.17) converges for any 02y , since the function � 
?f  is 
bounded. Besides, for dielectric media function � 
?f  tends fast to zero as 

1,? , that’s why the integral also converges at 0�y . It means that func-
tion � 
z8  has no peculiarities in the upper half plane, including the real 
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axis, that is for 0�y , except for the coordinate origin, where there is a 
simple pole for conductors. 

Let’s consider dielectrics as a medium. 
 

 
Fig. 18.1. The view of closed contour W  in the complex plane  

of argument z while calculating integral 18.18 

In view of the mentioned above, integral I  over closed contour C  (see 
Fig. 18.1) is equal to 0: 
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where 
 � 
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 1�� zzf 8 . (18.19) 

According to the Cauchy integral formula the integral over closed con-
tour W , bounding the area, inside of which there is an analytic function � 
zf , 
reduces to function f , taken in some point 9 : 

 � 
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If point 9  lies on an integration contour, then the Cauchy formula has 
the form: 

 � 
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The integral over real axis with the excluded singular point 9  is calcu-
lated in the principle value sense: 
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 04321 ����� IIIII , (18.23) 
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where  
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4 . (18.24) 

Integral 4I  over contour RC  is equal to 0, since on the great-radius arc 

the integral element tends to zero faster then 
z
1  as 1,z . It follows from the 

form of function � 
98  for high frequencies: � 

2

2

~1
9

9
98 p�� , and integral ele-

ment on the section of contour RC  at 1,z  is as 3
1
z

: 

 04 �I , (18.25) 
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 , (18.26) 

where symbol P  before the integral means that the integral is taken in the 
principle value sense.  

Let’s calculate 2I . 
Let’s pass from argument z  to angle � : 
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that is we obtain  
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 !12 ��� 98�iI . (18.27) 

Since 04321 ����� IIIII , then 
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Under the integral 9��x , covering all values of a real axis, except 9 , it means: 
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111 , (18.29) 
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diPii 11 . (18.31) 

Let’s isolate the real and imaginary parts in (18.31): 
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Formula (18.32) is called Kramers–Kronig relations. 
Knowing � 
98 ��  in a wide interval 9  (by measuring the electromagnetic 

wave absorption in the medium, because the absorption is directly related to 
� 
98 ��  -the imaginary part � 
98 ), one can integrate in the first expression 

(18.32) and determine � 
98 � . 
For conductors Kramers–Kroning formulas contain the additional term 

9
��4i  in � 
98 , that is � 
98  has the singularity in point 0. That’s why in inte-

gral I  it’s necessary to encircle the point 0�9  in the upper half plane. 
It leads to the relation 
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dP . (18.33) 

The Kramers–Kronig relations can be written in different form. 
Let’s take into account the properties: 
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Thus, 
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where 
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12 . (18.38) 

For the majority of material media, function � 
98 ��  has one or several 
sharp maximums in the neighborhood of some characteristic frequencies and 
tends to zero rather quickly as 1,9  and 0,9 . 

This property of � 
98 ��  enables one to study the behavior of � 
98 �  in the 
range of low and high frequencies. Let’s assume that � 
98 ���  takes sufficiently 
large values only in the region 210 999 >�>>  and tends to 
 0 � 
� 
0,��� 98  out 
of this interval. 

Then one can write 
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If 299 22  in the integration element and 99 �22  
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where 
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dA . (18.42) 

Experimental data show that this formula describes well the qualitative 
behavior of � 
98 �  in the domain of high frequencies. 

Another limiting case is 199 >> . 
In this case 99 �>> , since 199 2� : 
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211 998 BB ���� , (18.44) 

where 
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32
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9 9
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dB . (18.45) 

Using the relations, obtained above, one can make sure that expressions 
(18.41) and (18.44) correctly reproduce the qualitative behavior of � 
98 ��  in 
the presence of any elementary medium (in this case it’s rarefied neutral gas). 

19. Some Dielectric Permittivity Properties 8 (9) 
Dielectric permittivity in general case is a complex value 

 � 
 � 
 � 
989898 ����� i , (19.1) 
where 
 � 
 � 
9898 ���� ; � 
 � 
9898 ������� . (19.2) 

In isotropic and non-magnetic medium � 
1�= , which is in the thermo-
dynamic equilibrium, parameter � 
98 ��  has the properties:  

 � 
 00 22�� 98 , � 
 00 >>�� 98 . (19.3) 
In dielectrics at low frequencies 

 � 
 00lim 8989 �, . (19.4) 

In conductive media the generalized induction vector: 
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��99 EiED
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41 . (19.5) 

As 0,9 , parameter 14
22

9
�� , that’s why 

 � 

9

��989
i4lim 0 �, . (19.6) 

Where �  is a conductivity, which coincides with the static conductivity 
at low frequencies. 

High frequency asymptotic at � 
98  (unlike asymptotic � 
98  at low 9 , 
which changes in different media) is the same for all media: 

 � 
 2

2

1
9
9

98 p�� , (19.7) 

where mNep
24�9 �  is a plasma frequency, N  is a concentration of charged 

particles  
Fig. 19.1 shows the form of function (19.7). 
Get the evaluation as a typical for solids electron concentration 

22 23
3

1~ 10 10  
��

N E  for plasma frequency: 

c
1 10~ 16

p9  is an ultra-violet part of spectrum. 

 
Fig. 19.1. High frequency asymptotic  

of dielectric permittivity � 
 � 
 � 
989898 ����� i  and 9 9� �  

It can be much lower for other media. 
p9  lies in the infrared region for the typical for semiconductors concen-

trations of the charge supports in the conduction region. p9  is in the micro-
wave range for the laboratory plasma. 

Let’s consider the steps to obtain the formula � 
 2

2

1
9
9

98 p��  evaluation. 

p9
9
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We write down the equation of motion for a charge in the high fre-
quency field: 
 tieEerm 9�� 0

���� . (19.8) 
From here we find: 

 tie
m
Eei 9

9
R �� 0

��
. (19.9) 

Knowing the concentration and the velocity of charged particles we can 
find the current density: 

 
9

R
9

m
eNEeieNj

ti�

�� 0
2��

. (19.10) 

Since the denominator contains mass, then it suffices to take into ac-
count only light particles � 
�e . 

Further one can find the electric induction vector: 
 Y��

���
�4ED , (19.11) 

where 
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, (19.12) 
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From here � 
ED
��

98�  we find the form of � 
98  
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1
9
9

98 p�� . (19.15) 

Calculation of the dissipation (that is the energy loss due to the collisions 
of charges), which means the additional friction losses in the motion equation: 
 reEerm ti ������ ��� � ;9

0 , (19.16) 
from which we get the velocity. As a result we obtain the expression for the 
current density: 

 � 
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ENiej
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. (19.17) 

And the expression for the dielectric permittivity 
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The analytical properties of function � 
98  were discussed earlier: this 
function is characterized by the absence of zeros in the upper half plane of 
complex variable 999 ����� i  (that is if 02��9 ). At 0�9  function � 
98  has 
the pole, which is bypassed along the contour, shown in Fig. 19.2, while cal-
culating integral � 



 �
� dz

z
z

9
8 1 . 

 

 
Fig. 19.2. The bypass of the contour at calculating integral 18.18  

when function )(z8  has a pole at 9�=0  

Temporary dispersion of the dielectric permittivity is caused by the lag 
of the medium reaction and this reaction is determined by the field not only at 
a given moment t , but also at all the preceeding moments. The parameter, 
which allows evaluating the importance of temporary dispersion, is the rela-
tion 

09
9 , that is the relation of the field frequency to the characteristic fre-

quencies of the charge motion in the medium. The medium can have several 
frequencies 09 . The most important among them is the frequency of electron 
motion at the length of the atomic scale 

 � 
15 16
0

1~ 10 10  
c

9 E . (19.19) 

Dispersion is important for 1
0

22
9
9  (these are optical frequencies and ul-

tra-violet radiation). 
Further we consider the characteristic motion frequencies of atom nuclei 

in the crystal lattice  

 
c
1 10~ 13

09  is the infra-red region. (19.20) 
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The frequency of electron collective motions also can be characteristic. 
Besides, the order of characteristic frequencies depends on the substance 
concentration (in plasma, for example) and can change within a wide range. 

Natural frequencies describing the typical motion in good magnetics are 
the lowest. 

Dielectric permittivity is often expressed in terms of dielectric susceptibility: 
 � 
 � 
 � 
 � 
9I9898II98 ������������� 11 ii , (19.21) 
 � 
 � 
989I ����1 , (19.22) 
 � 
 � 
989I ����� . (19.23) 

According to the results of quantum theory of photon scattering, dielec-
tric susceptibility of homogeneous (isotropic) substance is expressed in terms 
of amplitude of scattering on the zero angle by an atom of the substance � 
0f : 

 � 
 � 
04 0 fN
9
�9I � , (19.24) 

where 0N  is the number of atoms in unit volume. 
The imaginary part of the susceptibility � 
9I ��  determines photon ab-

sorption and can be expressed according to the optic theorem in terms of ab-
sorption cross-section � 
9� : 

 � 
 � 
9�
9

9I 0N
��� . (19.25) 

That’s why, using Kramers-Kronig dispersion relation, one can get the re-
lation of the real part of the susceptibility � 
9I �  with the imaginary part � 
9I �� : 

 � 
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1

��
�����

��
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22

2
99

99I9
�

9I dP . (19.26) 

 
Fig. 19.3. The dependence on the frequency  

of dielectric susceptibility and on spectral density of radiation energy  
of an electron in argon near the L-edge of photo absorption: 

1 – )(9I� ; 2 – )(9I �� ; 3 – details of a spectrum of )(9I�  
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Thus, using detailed experimental data about absorption cross-section as 
the function of photon energy, one can calculate � 
9I�  for a number of sub-
stances. These calculations were done in several works, where the integration 
was performed from the first ionization threshold (photo effect) to the thresh-
old of ��ee  pair production (for example: V.�. Basylev, N.�. Zhevago. The 
radiation of quick particles in the substance and in the external fields, §3.8 
Roentgen Cherenkov’s radiation). 

Maximum values of � 
9I�  are not too big for gaseous substances 
at normal pressure and it can be from 7105 ��  for Ne � 
�
 870�9  to 510�  for Ar 
� 
�
 250�9 , and for solids – from 210�  for carbon with density –31,5 " ��� � �  
� 
�
 284�9  to 5105 ��  for Al � 
�
 73�9 . 

20. Electromagnetic Waves in Isotropic Media 
Consider first the electromagnetic wave in vacuum: 

 � 
 � 
tirkiEtrE 9��
�����

exp, 0 , � 
 � 
tirkiHtrH 9��
�����

exp, 0 , (20.1) 

If electric and magnetic fields satisfy the equations 
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, (20.2) 
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, (20.3) 

then as a result we obtain 
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c
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. (20.4) 

Thus, for vacuum kc
�

�9 , and amplitudes E
�

 and H
�

 of electromagnetic 
field are mutually orthogonal to vector k

�
. It’s seen from the substitution of 

� 
 � 
tirkiEtrE 9��
�����

exp, 0  and � 
 � 
tirkiHtrH 9��
�����

exp, 0  in the Maxwell’s system 
of equations with 0�� , 0�j : 
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From the equation 
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7
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it follows: 
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expexpexp 000 , (20.8) 

that is 
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  !00 EnH
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�� , (20.10) 

where 
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�� . (20.11) 

From 
t
E

c
Hrot

7
7

�
�� 1  it follows that  ! 00 EkiHki

����
���  or 

  ! 00 EnH
���

�� . (20.12) 

From equation 0      followsit       0 0 �� EnEdiv
���

, (20.13) 

from equation 0       followsit      0 0 �� HnHdiv
���

, (20.14) 
where n�  is a unit vector in the direction of wave propagation. 

Vectors 0E
�

, 0H
�

, n�  are three mutually perpendicular vectors (Fig. 20.1), 
with 00 HE

��
� . 

 

 
Fig. 20.1. The propagation of the flat electromagnetic wave in space 

What relations appear between the characteristics of a plane electro-
magnetic wave during its propagation in the substance? Let’s assume 
that 1�= , the substance is isotropic and homogeneous. 
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In this case for the vector of electric induction one has 
 � 
 � 
tirkiDtrD 9��

�����
exp, 0 , 

where there is the relation between D
�

 and E
�

 are related as 
 � 
ED

��
98� , 

where � 
98  is a complex dielectric permittivity. 
Because the time and coordinates of vectors E

�
, H

�
 and D

�
 are only in the 

exponent, then it’s easy to establish the equivalence of the following operations: 
  !HkiHrot
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Then the equations for fast-alternating fields are transformed as: 
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 (20.18) 
Let’s write down the resulting set of equations: 
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since vectors k
�

 and H
�

 are mutually orthogonal. 
Assume that � 
 0098 . Then vectors k

�
 and E

�
 are also mutually perpen-

dicular and from the first two equations it follows that E
�

 and H
�

 are orthogo-
nal. Thus, as well as in vacuum, electromagnetic waves are transverse. 

Substituting  !EkcH
���

,
9

�  in the expression  ! � 
E
c

Hk
���

989
��, , gives 
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9G 8 9

9 9
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that is 
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989 . (20.21) 

From equation 20.21 it follows that electromagnetic waves can propa-
gate in the medium, if their propagation vector is related to the frequency by 
the formula 

 � 
989
2

2
2

c
k � , (20.22) 

where kk
�

� . 
In the substance, transparent to the wave, when 

 � 
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 � 
 � 
98989898 ������� i  (20.23) 
with � 
 0��� 98i , we get 

 � 
989
c

k � . (20.24) 

For the waves of optical range the value 88 ��  is a index of refrac-
tion. If 00��8  the propagation vector k

�
 becomes complex: 

 kikk �����
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, (20.25) 
where k �

�
 and k ��

�
 are real values. 

Squaring both parts of equation (20.25) and taking into consideration 
(20.24) and (20.23), we obtain 
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In general, for two vectors there are only two equations, and there is the 
freedom in choosing these vectors. If vectors k �

�
 and k ��

�
 have the same direc-

tion, then relations (20.27) determine uniquely their moduli. 
Let  

 kek ���
��

, kek �����
��

, (20.28) 
then we find 
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Let  
 kek ��

� , (20.30) 
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where  

 � 
ixn
c

k ��
9 . (20.31) 

On the other hand 
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kikek �����
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. (20.32) 

From the equality 
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we find 
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From here we obtain 

 
2

88 ��
�n , (20.34) 

 
2

88 ��
�x , (20.35) 

where 

 22 888 ����� , 

 88 ���n . 
If � 
98  is a complex value, then k  is an absorption ratio of the medium. 

What will happen if at some value of 099 �  dielectric permittivity is � 
 00 �98 ? 
From the system of equations 20.19 there is a solution at which 0�H

�
 

and E
�

|| k
�

, if � 
 00 �98 . 
Consequently, there can be pure electric alternating fields, called longi-

tudinal waves, in the medium. Under our consideration there is no relation 
between wave vectors k

�
 and frequency 09 , but there can be such relation, 

when we account not only for the frequent dispersion of dielectric permittiv-
ity but also for the spatial dispersion. Then 
 � 
988 ��

,k� . (20.36) 
And the condition � 
 00 �98  will turns into 

 � 
 0, 0 �98 k
�

, (20.37) 

hence the relation between the frequency and the wave vector in longitudinal 
waves follows. 
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Chapter 3 
RADIATION OF CHARGED PARTICLES IN VACUUM,  

MEDIA AND PERIODIC STRUCTURES 

21. Electromagnetic field of a fast charged particle in medium.  
Vavilov and Cherenkov’s radiation 
Let a fast particle with a charge e  move at a constant velocity approach-

ing to the velocity of light in a transparent isotropic medium. While moving 
the particle loses the energy, of course (for the disturbance, ionization of the 
medium atoms, radiation, etc.), but in the first approximation its motion can 
be regarded as uniform. Thus, electromagnetic field is made by a uniformly 
moving outside charge: 
 )(),( tvretrext

���
�� �� , 

 )(),( tvrvetrjext
�����

�� � . 

Maxwell’s equations have the following form: 
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and 
 HB

��
=� , 1�= , ED

��
8� . 

To find the characteristics of the electromagnetic field let’s expand the 
intensities � 
trE ,�

�
 and � 
trH ,�

�
 and other values in Fourier integral: 

 � 

� 


� 
 � 

 
 �� 9G
�
9

�
G 9G ,

22
, 3

����� ��
EeddtrE tri , 

 � 

� 


� 
 � 

 
 �� 9G
�
9

�
G 9G ,

22
, 3

����� ��
HeddtrH tri , 

 � 

� 


� 
 � 

 
 �� 9G
�
9

�
G 9G ,

22
, 3

����� ��
DeddtrD tri , 



 115
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For Fourier-images of the densities of the outside charges and currents we get 
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G9��9G �� 2, . (21.3) 
The relation  
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, ,cH EG 9 G G 9
9

* '� �) &
� �� � �  (21.4) 

follows from the first equation of the set of equations (21.1).  
Taking the Fourier-image of the third equation of set (21.1) and taking 

into account expression (21.3), we get 
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or 
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Using the constraint equation  
 ED

��
8� , 

we get for the Fourier-images 
 � 
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9G89G ,, ����

ED � , (21.6) 

and from equation ��4�Ddiv
�

 we have 
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or 
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Let’s transform the first addend in the right part (21.5): 
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The scalar product of vectors � 
Ek
��

, containing (21.7), has the form 
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From equations (21.4) – (21.8) it directly follows 
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After some simple manipulations 
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We finally get 
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The Fourier-image of the intensity of the magnetic field is connected 
with � 
9G ,�

�
E  according to formula (21.4): 

 � 
 � 
 !9GG
9

9G ,,, �����
EcH � . 

We find the coordinate dependences of the fields using the Fourier trans-
formations. 

The obtained expressions will be used to find the loss of energy spent on 
Cherenkov’s radiation. The Vavilov-Cherenkov’s radiation arises when a fast 
charged particle passes in a transparent medium at speed 

n
cv 2 , where 8�n  

is the index of medium refraction. This radiation is nothing but the radiation of 
the medium atoms, polarized by a passing particle. It isn’t connected with the 
particle acceleration, which takes place for example by bremsstrahlung. Thus it 
doesn’t depend on the particle mass and is conditioned by its speed v� , charge 
e  and dielectric permittivity 8  (that is by the properties of the medium). 

Usually, the asymptotic expressions for � 
trE ,�
�

, � 
trH ,�
�

 are calculated 
then Undo- a Pointing’s vector is drawn, and with its help the intensity of 
electromagnetic radiation (Cherenkov’s radiation) is found. 

But we will give a different derivation. 
The energy loss of a particle is conditioned by the works of the force 

acting on the particle from the field induced by the particle. Let’s choose the 
axis Z  in the direction M� . 
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Then the energy loss per a way unit 
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with the intensity taken in the point of the particle location. 
From the Fourier transformation 
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we find 
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While calculating the integrals in the three-dimensional space let’s em-
ploy cylindrical coordinates: 
 cos ,x qG ��  

 sin ,y qG ��  

 zz GG � , 
as a result we get 
 3 ,zd d d qdqdG G G �� �
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 222222 qzzyx ����� GGGGG . 

Formula (21.11) will take the form 
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Here we used the property of � -function 
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 � 01 f
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which in other form means 
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The latter relation allows us to calculate the integral with the integration 
variable zk : 
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G
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We are interested not only in the energy loss per a way unit due to Cher-
enkov’s radiation but also in the energy loss due to Cherenkov’s radiation in 
a unit interval of frequencies in the vicinity of a given frequency value 9 : 
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Thus, 
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  (21.14) 

The medium is thought to be transparent, that is, � 
98Jm  is rather small. 
One can put � 
98Re  in the factors before the integrals instead of � 
98  and to 
use the relation 
 � 
 � 
 � 
99898 2ReRe n��� . 

As for the integrand expression, it will have a singular point if we ne-
glect 8Jm ,  
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with 
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2
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v
cn 2�98 . (21.16) 

If the condition 2

2
2

v
cn 2  is not fulfilled, there is no singular point, the ad-

dends in the curly brackets are reduced and 0
2

�
dzd
Wd

9
, that is, there is no 

Cherenkov’s radiation. 
The condition 
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2
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v
cn 2�98  (21.17) 

or its equivalent 

 
n
cv 2  (21.18) 

acts as a threshold condition for Cherenkov’s radiation to appear. 
In the state of thermodynamic equilibrium the medium always absorbs 

and � 
 � 
 02��� 9898Jm  (remember that 0
8

2 >
��

�� ESdiv
��

�
89  for 02��8 ). 
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Let the condition 2

2
2

v
cn 2  be fulfilled. 

The result depends on the way the singular point, which is on the way 
of integration, is bypassed. In our case the singular point of the first term 
of the subintegral function is not on the real axis but is shifted upwards 
(as � 
 0298Jm ), therefore, one can put 
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Let’s introduce a new variable x  instead of q : 
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Let’s use the well-known relation  
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This operator identity should be understood as: 
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At 0�a  we get from (21.22) 
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Here 
 � ax
dxP  is an integral in the sense of the principal value. 

The expression in the curly brackets (21.20) is easily calculated 
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and we finally get 
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It follows from formula (21.24) that the intensity of radiation doesn’t 
depend on the mass of the transiting particle and is conditioned only by its 
speed and charge as well as by the optical properties of the medium. The ra-
diation, which appears at a given point of the gildepath, propagates at angle 3  
with respect to the speed of the particle, where 

 
nv
c

�3cos . (21.25) 

It follows from the fact that absolute magnitude G�  in the case when the 

expression (21.16) � 
 2

2
2

v
cn 2�98  is defined by a singular point of the de-

nominator in expression (21.11) 
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Expression 3GG cos��z  is found by � -function 
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and is equal to 
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That’s why 
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c  is calculated from the proportions: 
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The radiation intensity due to a way unit takes the form 
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Condition 
n
cv 2  means that the particle speed exceeds the phase velocity 

of the propagation of electromagnetic disturbance in the medium. The parti-
cle “detaches itself” from the field it has created, making free electromag-
netic field-radiation. The condition for Cherenkov’s radiation to appear can 

be fulfilled if � 
 2

2
2

v
cn 2�98  or � 
 129n , that is why it falls at the visible and 

ultra-violet parts of spectrum, as namely for these frequencies � 
 129n . 
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The particular properties of Cherenkov’s radiation led to the creation 
of the fast-particle detector (Cherenkov’s indicators) which allows defining the 
absolute magnitudes and the directed speed of fast particles and their charge. 

If particles pass the medium at a given speed with known 8 , the light 
will be radiated at the Cherenkov’s angle 

 
8@

3 1cos ��
nv
c

c . 

Measuring of angle c3  allows us to define v . 
Since dielectric permittivity depends on frequency � 
988 � , the light ra-

diation of different wave length (frequency) will be radiated at slightly dif-
ferent angles.  

Let’s draw a typical dispersion curve � 
98  with a range of anomalous 
dispersion in the upper end of the frequency interval. 

The conditions for Cherenkov’s radiation to appear are 

 � 
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2
2

v
cn 2�98  

or 
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 2

1
@

98 2 .  

The fact is that the media have a strong absorbing property in the 
anomalous dispersion range. That is why, the maximum of Cherenkov’s ra-
diation is lower than the resonance frequency 09 . To select a small frequency 
interval and to increase the accuracy in speed measuring a narrow-band filter 
is applied. For the narrow part 1T@  a gas can be used as a medium, then the 
dielectric permittivity differs from 1 slightly, and the value � 
1�8  can vary 
within wide limits changing the gas pressure. The counters using Cher-
enkov’s radiation are widely used in experimental physics. In the particle 
physics they serve as speed meters. They work as mass-spectrometers in 
combination with a device for impulse determination; they also serve as dis-
criminators to detect undesirable slow particles. 

22. Lienard-Wiehert’s potentials and the field of a point charge 
The task of finding an alternating field in vacuum by given charge distribu-

tion � 
tr ,��  and current distribution is solved by calculating the retarded potentials: 
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where rrR ���
���

; r�  is a radius vector of the observation point, r ��  is a radius 
vector of the field source, Vd �  is the volume element of the field source. 

One can introduce the notations: 
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In case of point charge e  in point � 
tz ��  moving at speed � 
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, it corre-

sponds to 
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The four-dimensional potential 
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where 
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In this case after taking the volume integral with the help of � 
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one can show that 
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where 
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Integration over td �  can be taken using the properties of � -function 
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Let’s introduce the function 
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Then 
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 is an instantaneous speed of the particle; � 
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It follows from formula (22.14) that  
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The potentials (22.15) are called Lienard-Wiehert’s potentials. 
For the non-relativistic case 0,@  and 1,G  we get common non-

relativistic formulas. 
To calculate fields E

�
 and B

�
 we use formula (22.9): 
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While calculating the fields, the coordinates of the observation point are 

included only in R , that is why 
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As a result we get 
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Integrating by parts the terms with tf ��� , we get 
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Noting that  
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and making td �  differentiation of vector n�  in (22.21) and (22.22) where it is 
included, we get 
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It follows from relations (22.24) and (22.25), that 
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and note, that both parts are taken taking into account the delay. 
Using 
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After some transformations we obtain  
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The expression for E
�

 consists only of the part containing speed @
�

 and 

of the part depending on acceleration. The first part is static, decreases 2

1~
R

, 

the second part is the radiation field and BE
��

- , and this part 
R
1~ . 

23. Full power radiated by an accelerating charge.  
Larmor’s formula and its relativistic generalization 

Let an accelerating charge be observed in a system where its velocity 
is mach smaller than velocity of light. If @ <<1 then according to the 
formula (22.29) the electric field intensity becomes 
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since G 14 . 
When the radiation angular distribution is studied in the relativistic 

case, one should distinguish between “intensity” and “power” of radiation. 
The radiation intensity dI  in a solid angle �d  can be calculated by means 
of Umov-Poynting's vector 

 2

4 4 4a a a
c c cS EB E nE E
� � �

* '* ' * '� � �) & ) &) &
� � � � � ��  (23.2) 

and equals 
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The quantity �ddI /  presents the electromagnetic energy flux inside of the 
unit solid angle measured in a fixed system. One can easily show that it does not 
equal to the speed of the particle energy loss because of radiating in the unit 

solid angle in a chosen direction 
��

�
dtd

d 82

, where td �  is an interval of the delayed 

time. During the time dt  an observer would register the energy dt
d
dI

�
�
�

�
�
�

�
 which 

obviously equals to an energy emitted by the particle during the time dt� : 
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An amount of the particle energy loss in a unit time is called power of 
radiation 

 .
td

dW
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8  (23.5) 

So, the intensity and the power of radiation in a unit solid angle are 
coupled by the following relation 
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In contrast to the intensity the power is an invariant quantity, i.e. it has 
the same form in different inertial systems. 

From the invariance of 
td

d
�

�
8  follows 

 0 ,dd
dt d

88
?

� � �
�

 (23.7) 

where 08d  represents an energy in the concomitant coordinate system. 
In a general case time intervals td �  and ?d  are coupled by the following 

relation 
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and since in the concomitant system v=0 then .dt d?� �  
Using formulas (23.6) and (23.7) we find  

 
 �
�

�
�

�� d
d
dI

td
dW 08 . (23.9) 

The expression (23.9) also means that  
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From the formula (23.3) we obtain the following one 
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where the electric field intensity in the concomitant system is defined by 
(23.1) and depends only on the acceleration. Denoting an angle between v��  
and n�  as 3  from (23.10) we obtain the following formula for power of radia-
tion in a unit solid angle 
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By the way, as it follows from (23.1), the radiation is polarized in the 
plain of vectors v��  and n� . 

Integrating (23.9) over all solid angles we obtain the full instantaneous power 
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So, famous Larmor’s formula for non-relativistic accelerating charge is derived. 
Larmor’s formula can also be written as follows: 
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where m  is the mass, p�  is the impulse of a charged particle. 

If 
;

? tdd
�

�  is an increment of the proper time, then the relativistic gener-

alization of Larmor’s formula is 
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where 
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Here the following relations were used @;m�p � , mc;8 �  and 
22422 cpcm �

��8 . 
After calculating the derivates 
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and 

 � 
;@
?? d

dmc
d
dp

� , (23.17) 

taking into account that 
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we get 
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This is the relativistic generalization of Larmor’s formula discovered by 
Lienard in 1898. 

Let’s consider the task about the motion of a charged particle with 
charge e  and mass m  in the external electric and magnetic field. The particle 
moves with acceleration under the influence of the force 

 1F e E B
c

�� $* '� � 5� #) &� "

� � ��  (23.21) 

and as a result of radiation it loses the energy 
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where radiation power W  is given by the formula: 
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It is convenient to transform the formula for power so that it includes ex-
ternal fields E

�
 and B

�
. 

For this purpose let’s write down the law of motion of a relativistic par-
ticle under the action of force (23.14): 
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In the further calculations we will need the relativistic relations for full 
energy and particle impulse: 
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and 
 42222 cmcp ��

�8 , (23.27) 

where 
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1
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;
�

�  and c
�@ � . 

Multiplying scalarly velocity vector ��  by both parts of (23.24), we get 
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Differentiating both parts of the relation (23.27) with respect to time, we obtain 
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where the last part of the equality is obtained by using the motion law 
(23.24), formula �;

�� mp �  and equality (23.28). 
Let’s square both parts of equality (23.24): 
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We get one more useful relation. 
From formula (23.25) after time differentiation we find 
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By comparing (23.30) and (23.32) we conclude that 
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According to formula (23.31) we write 
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It is easy to check that the left-hand side of (23.34) is exactly the expres-
sion in braces 
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in formula (23.23) for power W , that is why 
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Let a particle move in the cyclic accelerator in a constant magnetic field 
� . In this case 0�E

�
, B

��
-�  and one can write 
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In the non-relativistic case � 
14;  the pulsatance equals  
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and radius 0R��  is equal to 
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Expressing from (23.38) the magnetic field through the radius of the or-
bit 0R , we get a classical Larmor’s formula: 
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In the relativistic case 

 
mc

eBecB
mc
eB

;8
@9 ���� 21 , (23.40) 



 131

 
Be

mcR @; 2

0 � . (23.41) 

As a result we get a relativistic Lienard’s formula for the intensity of ra-
diation of a fast particle moving in a constant magnetic field: 
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It follows from the Lienard’s formula that there occurs rapid energy 
waste of the electron moving along the circle: radiating power W is propor-
tional to the fourth degree of the energy. 

24. The application of relativistic formula for radiation power  
to the calculation of energy loss in the accelerators of charged particles 
From the relation (23.14) it follows that at a given external force (a given 

speed of impulse change) 2

1~
m

W  that is the influence of radiation effects is most 

considerable for �e . Further we will consider only the radiation of electrons. 

The radiation in a linear accelerator 
The basic diagram of the acceleration of charged particles in linear ac-

celerator is shown in Fig. 24.1�. 

 
Fig. 24.1. Linear and circular accelerators: 

a) linear accelerator; b) cyclotron 

Motion is one-dimensional and from formulas (23.14) and (23.15) it fol-
lows that: 
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As the speed of an impulse change is equal to the energy change per 
a way unit, then 
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It is easy to show if we write 
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Thus, in the one-dimensional case  
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But 
dx
dE  depends only on the external forces, W  doesn’t depend on E  or p . 

Let’s find the ratio of radiation power to the power from the external sources: 
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where cmre
131082,2 ��� . 

The losses of radiation are inessential, if energy gain E�  at distance 
erx ��  doesn’t exceed MeVmc 511,02 � , that is if the gain is less than 

mMeV /102 14� . Usually, energy gain in a linear accelerator is mMeVE /10T� . 
Thus, the energy losses in a linear accelerator are negligible. 
 
The radiation in cylindrical accelerators 
The basic diagram of the acceleration of charged particles in a cylindri-

cal accelerator is shown in Fig. 24.1b, 24.2�, 24.2b. 
 

 
Fig. 24.2. Charged particle accelerators: 

a) microtron; b) synchrotron 
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In these installations, the direction of impulse p�  changes fast during the 
particle motion in an orbit, and the energy change per one turn is small: 
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with 
�
@9 c

� , �  is an orbital radius. 

The losses of energy for the radiation per one turn is 
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At 14@  one can use the formula 
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For calculating the radiation power in cylindrical accelerators it is con-
venient to use the formula 
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In the biggest electronic accelerators radiation power is 0,1 W  per 1 A=  
of beam current. The radiation can be detected easily(synchrotron radiation). 

25. Angular distribution of radiation of an accelerating particle 
In the non-relativistic case for an accelerating charged particle the elec-

tric field depends on the acceleration: 
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where index ret by the bracket shows that the field is calculated at the moment 
� 

c
tRtt
�

��� . The energy flow, determined by the Umov-Pointing’s vector 
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inside space angle �d  at far distances from the particle is equal to 
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where 3  is the angle between acceleration ���  and vector n� , directed to the 
point of observation. Thus, the angle dependence of radiation is described by 
simple dependence 32sin . 

Let’s consider the field of a relativistic particle at far distances from an 
accelerating charge. In this case in the expression for electric field intensity 
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one can leave only the second term. 
The first term presents a quasistationary field, which doesn’t contain ac-

celeration @�
�

 and is proportional to 2R . The energy flow in this quasistation-
ary field within the solid angle �d  decreases if R  increases as 2

1
R . 

The energy flow per unit solid angle for the second term is equal to 
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and depends on R  only through the time argument � 

c

tRtt ���� . In other 
words, the energy flows through the area elements �dR 2  within the chosen 
space angle �d , which are at different distances from the particle, is the same 
at the corresponding moments of time (taking into account the terminal ve-
locity of the energy transfer). And the electromagnetic field propagates from 
the particle that induced it to infinity.  

Under these conditions there arises the radiation field which detaches 
from its source. In the case of quasistationary fields it doesn’t occur. The 
quasistationary field always remains connected with the particle and doesn’t 
produce the flow propagating to infinity. 

Analyzing formula (25.5) we note that the relativistic effects are due to 
two factors. The first is connected with the mutual position of vectors @

�
 and 

@�
�

; the second one is bound up with the transition from the coordinate frame 
where the particle is at rest to the laboratory coordinate frame, as a result 
there appear exponential orders in the denominator: 
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For the ultra-relativistic particles the angle distribution is defined just by 
the dependence on G . 

Let’s transform formula (25.5). Squaring 
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Let’s consider some special cases 
1. The non-relativistic particle, 1>>@ . Neglecting the terms of order @ , we get 
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where 3  is the angle between the acceleration and the direction n�  to the point 
of observation. The radiation is distributed symmetrically with respect to the 
direction ���  and is maximal in the direction perpendicular to the direction ��� . 
2. An ultra-relativistic particle, 1

1
1

2
22
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@
; , the acceleration ���  and the 

velocity are parallel: ��
��� || . Let’s denote the angle between n�  and ��  by 3 . 

From (25.6) we get in this approximation 
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If 1cos 43 , then the denominator is small under this condition, and almost 
all the radiation is concentrated in the area of small 3 , though � 
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If at small angles we restrict ourselves to the expansions 22sin 33 4 , 
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233 �4  and if we take into account that c~� , we get 
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The radiation is in the cone with the resolution of some ;1 . 
3. The ultra-relativistic particle, the acceleration is perpendicular to veloc-

ity: ��
��� - . From formula (25.6) we get 
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Here 3  is the angle between n�  and �� , �  is the horizontal angle of vector 
n�  with the plane where the vectors ��  and ���  are. The intensity is symmetrical 
only with the respect to plane ��

��
�  and it turns to zero in two directions of 

this plane which make the angle )/arccos( cv�3  with the velocity. 
The distribution (25.10), as well as (25.8), is focused in the forward di-

rection and for small 3  has the form: 
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The product nS ��
�  is an energy flow per unit of time through a unit area 

element, and this energy flow is produced by the charge radiation in moment 
� 
 ctRtt ���� . It is registered in the point of observation in moment t . If it is 

necessary to define the energy radiated for a finite time of the acceleration 
from 1Tt ��  to 2Tt �� , it is needed to take the integral: 
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In this connection it is interesting to know the value 
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which presents the intensity of the energy radiated through a unit surface per 
unit of the proper time of the charge. The power radiated per unit solid angle 
is defined by the relation 
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If the charge accelerates only in the interval during which @
�

 and @�
�

 
don’t change essentially by the direction and the magnitude, and the observa-
tion point is so far that n�  and R  change non-essentially, value � 
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d
tdI  will be 

proportional to the angular distribution of the radiated energy: 
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�) Consider a special case of rectilinear motion � 
��
��� || . From the for-

mula (25.15) we get 
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At 1>>@  this relation reduces to Larmor’s formula: 
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Fig. 25.1. Radiation distribution of a charge accelerating in the direction of motion 

The dependence of radiation intensity on the angle is shown in Fig. 25.1, 
for the non-relativistic case � 
04@  and for the ultra-relativistic case � 
1T@ . 

In Fig. 25.2 it is shown schematically the radiation distribution for 
a slow non-relativistic particle, which moves in the linear accelerator. There 
is no radiation propagated along the direction of acceleration. 

 

 
Fig. 25.2. Radiation distribution for a slow no relativistic particle moving  

in the linear accelerator 

In Fig. 25.3 it is shown schematically synchrotron radiation for a relativ-
istic particles, which moves in the circular acceleration. 

The angle for which the radiation intensity is maximal is equal to 
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The angle for which the radiation intensity is maximal is equal to 
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Fig. 25.3. The scheme of generation and registration of synchrotron radiation 

In the limit 0,@  
;

3
2
1

max ,  and intensity 8
max ~ ;

�d
dI . At 5,0�@  (it corre-

sponds to 80~eT  keV we get [� 2,38max3 . For the relativistic particle angle 

E
mc 2

max ~3 , that is it is very small. That is why all radiation is concentrated in a nar-

row cone along the direction of motion. In this case we get from (16) an approximate 

formula (using the expansion  !522
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10cos1,sin ;3;3�33 �
�

4�
�
�

�
�
� �4

c
): 

 � 
 � 

� 
522

2
8

3

22

1
8

3;

3;;�
� �

4
�

�
c

e
d

tdI � . (25.17) 

The value 1�;  is used as a natural unit for measuring angles. 
Fig. 25.4 shows the angle dependence of radiation intensity (25.17), for which 

the angles are taken in units of 1�; . The maximum of distribution is 1

2
1 �� ;3 , and 

a half of intensity corresponds to 123,0 �� ;3  and 191,0 �� ;3 . 
In the relativistic limiting case � 
1,@  the mean-square value of the an-

gle is  

 E
mc 212 �� �;3 . (25.18) 

The intensity distribution in angle shown in Fig. 25.4 is typical and in-
dependent of the positioning of vectors @

�
 and @�

�
. 

calculate the total radiation power by the formula: 
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�) Let’s derivate the formula for the angular distribution of radiation at a 
momentary motion of the charge along the circle. �

�
��

�
� - @@

��� . 
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Fig. 25.4. Angular radiation distribution for the relativistic particle 

Let’s bind up the coordinate origin with the moving particle with the di-
rection of instant speed @

�
 coinciding with the direction of axis z , and the di-

rection of acceleration @�
�

 with the direction of axis x  (see Fig. 25.5). 
 

 
Fig. 25.5. The position of a moving particle in the chosen coordinate fram 

Unit vector n� , directed to the observation point is characterized by an-
gles 3  and �  in the spherical coordinates. 

From formula (25.10) taking into account that � 
 � 

�
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�

�
d
dIn

d
tdI @

��1 , we get 

for the angular distribution 
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Like in the previous case studied in point �), there is a typical relativistic 
radiation concentration in the direction of motion. 

Considering angle 3  to be small and 11 >>�; , one can expand into Tay-
lor series by 3  and 2�; : 
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and to present approximately the angle distribution of the radiation intensity: 
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The total intensity is obtained if one integrates over all the angles (25.20): 
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At the motion in a circle (when the velocity is perpendicular to accelera-
tion) �; ��

�
m

dt
pd

� . That is why formula (25.22) will take the following form 
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The motion in a linear accelerator is rectilinear and the radiation inten-
sity is equal to 
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As the impulse change is equal to the force given the value of the ap-
plied force we find, that the radiation at a transverse acceleration is 2;  times 
more than at a longitudinal acceleration. 

26. The charge radiation at arbitrary ultra-relativistic motion 
The radiation of an accelerating ultra-relativistic particle at an arbitrary 

moment of time can be thought to be a coherent superposition of radiations 
which are due to the components of the acceleration vector, parallel and per-
pendicular velocity: 
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where 2~ -
-
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d
dI , 2
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dI

 and ||��� ������ �� - . 

But, as it was stated above, if the longitudinal and transverse forces which 
cause the accelerations ||���  and -���  correspondingly are of the same order, the ra-
diation intensity is defined only by the transverse component of acceleration -��� . 

One can say, that at every moment the radiation coincides with that of the 
charge that moves along the arc of the circle having the instant radius of curvature: 
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22 � . (26.2) 
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The angle distribution of radiation is described in this case by formulas and 
at an arbitrary moment it presents the radiation stretched in the shape of a needle-
shaped cone with the axis of symmetry which is both a tangent to the path and the 
vector of the instant speed in the point where the particle is at this moment. 

 
Fig. 26.1. Time and frequency characteristics of a moving particle 

At the detector D  the particle radiation falls during t� , that is why all 
the frequencies will be presented in the radiation spectrum up to the critical 
frequency 

tc �
1~9 . 

The observer will register the radiation as a flash when the vector of the 
instant speed is directed to the detector, or as a succession of flashes if the 
particle motion is periodical like in the synchrotron (Fig. 26.1). 

At the angle resolution of the ray of order 1�;  the way passed by the par-
ticle for the time t �� , is 1~ ������ ;�� tct  (Fig. 26.2), where �  is an instant 
radius of curvature and consequently: 

 ;
�

ct ~�� . (26.3) 
 

 
Fig. 26.2. To the derivation of formula (26.3) 

And for the observer the time interval of observation will be 

 t
td

dtt �
�

� ~ . (26.4) 
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As 

 
2

1~
;

G��td
dt , (26.5) 

the duration of the flash of radiation registered by the detector is 

 ct �; 3~ �� . (26.6) 

From the Fourier integral used to analyze impulses or wave packets of 
finite sizes, it follows that will be presented spectral components up to criti-
cal frequency �\  in the impulse of duration t�  (Fig. 26.1): 

 3~1~ ;�9 �
�
��

�
�

�
c

t� . (26.7) 

If a particle makes a circular motion like in the cyclic accelerator, then the 
value �

�  is equal to pulsatance 09 . At an arbitrary motion it is also a character-

istic frequency of motion. At the ultra-relativistic motion of a particle 2mcE 22  
the spectrum of radiation spreads up to the frequency, which is equal to 
 3

0;99 Dc , (26.8) 

that is much bigger ( 3;  times) than basic frequency Thus, for the synchrotron 
for 200 MeV 400~max;  and 0

7106 99 ��c . The basic frequency is 8
0 103 ��9  

Hz or the corresponding wavelength is 1000 A . That is why, though the basic 
frequency is in the area of ~ 100 MHz, the radiation spectrum spreads out in 
the visible region. Further we will study the nature of the angle distribution of 
radiation for different spectral components and the frequency dependence of 
the total energy of radiation. 

27. Spectral and angular distribution  
of the energy radiated by accelerating charges 
The total energy radiated per unit of the solid angle is defined as 
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, (27.1) 

where 
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and E
�

 is the intensity of the electric field, measured at far distances from the 
accelerating charge in so that the area of acceleration is seen at a small solid 
angle. Here we consider the instant power or strength of radiation per a unit 
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of the solid angle, which depends on time in the laboratory reference frame. 
That is � 


�d
tdI , in contrast to � 


�
�

d
tdI , studied in section 25. This necessity is 

caused by a frequent need to know the spectrum of radiation from observer’s 
point of view. Besides, let’s assume that the total radiated energy is finite. 
The supposition about the observation at far distances allows us to take into 
account only the part connected with acceleration and to drop the part dealing 
with a uniform motion of the charge in the expression for intensity E

�
: 
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where index ret by bracket means that the value is calculated for the moment  

 � 

c

tRtt ���� . 

The expression (27.1) can be written with the help of Fourier transfor-
mation as an integral over frequencies. 

To do it we introduce the amplitude � 
9f
�

 of function � 
tf
�
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And the inversed transformation  
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Taking into account all the transformations, formula (27.1) can be pre-
sented in the form  
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Using the integral representation of Dirac’s � -function 
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we transform the expression (27.6) to the form 
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Negative frequencies having no physical sense, it is necessary to take 
positive frequencies integration in (27.8). It means that  
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If � 
tf
�

 is a real value, then 
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 � 
 � 
99 *ff
��

�� , (27.10) 

as it follows from (27.2) and (27.5), therefore 

 � 
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The value � 

�d

dI 9  is equal to the energy radiated per unit of the space an-

gle in a unit interval of frequencies or to spectral intensity of radiation per 
unit of the space angle. Thus, the relationship between the measurement of 
the radiation energy in time and its frequency spectrum is established. 

From formulas (27.2)–(27.4) we find 

 � 

� 


dt
nn

e
c

ef

t

ti

�

1�

1� �
�
�

�

�

�
�
�

�

�
%&
'

()
* 5�5

� 
 32

2

8 G

@@

�
9 \

�����
�

. (27.12) 

Let’s change to variable td � : 
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In this case 
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and formula (27.12) takes the form 
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As it is supposed that the observation point is quite far from the area 
where the charged particle moves (see Fig. 27.1), it is possible to consider 
that unit vector n�  doesn’t change in due course and 
 � 
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trnrtR ����D� ��1 . (27.15) 

If we drop constant phase factor c
ir

e  in (27.14), which appears after the 
substitution of (27.15) into (27.14) and doesn’t play any role, as 
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� , then, taking into account the relations above and dropping 

the dashes to simplify the formula, we get 
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If the law of the charge motion is set, then the dependence � 
tr�  is known 
and one can find � 
t@

�
 and � 
t@�

�
, that is why the integral in (27.16) is calcu-

lated as a function of the frequency \  and the function of direction to the ob-
servation point n� . 

 
Fig. 27.1. The position of a radiating particle  

and the observation point P with respect to the coordinate origin O 

Substituting (27.16) into (27.11), we find 
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The convenience of expression (27.17) is that the integral is taken only 
over the time interval where acceleration 00@�

�
. 

The expression becomes simpler if one uses the relation 
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which is directly proved by the time value differentiation 
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In this case the multiplier before the exponent in (27.17) is the exact dif-
ferential. Taking integral by parts and assuming that @�

�
 vanishes at the begin-

ning and at the end of the integration we get for the spectral intensity 
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We note that in expressions (27.17) and (27.20) the radiation polarization is 
defined by the direction of vector integral. To define the radiation intensity with 
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a given polarization it is necessary to find the scalar product of the integral per 
unit vector of a given polarization before computing the squared module. 

28. Spectral and angular distribution of radiation  
for continuous distribution of moving charges and moments 
In the above section we got the expression for the spectral and angle dis-

tributions of the energy radiated by the accelerated charges: 
�) for a single charge: 

 
� 
 � 


� 


� 
. /
2

2 22

22 ;
4

nr t
i t

cdI ef e n n dt
d c

99 99 @
�

� ��1 �� �� �
� �

�1

� � 5 5
� 


��
� �� �

 (28.1) 

b) for a group of N  of accelerated charges (with substitution): 
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c) in the limiting case of continuous distribution of charges: 
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where k
c
n ��

�
9  is a wave vector, � 
trj ,�

�
 is a current density. 

As a result we get 
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The radiation of the moving moment 
Let’s use the fact that the rotor of magnetization vector � 
trM ,�

�
 is related 

to the current: 
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Let’s show that after the substitution of (28.5) into (28.4) it is possible to 
obtain the relation for � 
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For that we notice that 

 � 
 !
F"

F
#
$

F�

F
�
�

%
%
&

'

(
(
)

*
%
&

'
(
)

*
5�55�55

�
�
�

�
�
� �

�L�
�
�

�
�
� �

�
c
xnti

c
xnti

M eMnncetxJnn
����

�������� 99
, . 

Here the operator �
�

 acts on M
�

. 
If we use tensor notations to denote the vector product of two vectors: 
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, 

where ie  are the unit vectors, ijk8  is a antisymmetrical tensor of the 3rd rank, 
the expression (28.6) can be written in the form  
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By virtue of the identity 
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And the general Gauss’s theorem: 
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as 
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we get 
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In the above formulas tensor jSR  has form njSemnempnn 8888 6@6  and doesn’t 
change in due course at sufficiently great distances of the observation point 
from the area of the particles having magnetic moment M

�
. Noting that 
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and formula (28.7) taking into account (28.8)–(28.12) takes the form 
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Thus, the relations (28.4) and (28.6) are equivalent if  
 � 
trMrotcjj M ,�
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�� . 

29. Radiation spectrum of the relativistic particle  
at an instant motion along the circle 
As was established above, the ultra-relativistic particle at arbitrary ac-

celeration radiates in the same way as the charge moving at constant speed �  
along the circle with radius �  equal to the instant radius of curvature: 

 
�
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2

� . 

To compare let’s remember the known formula for the centripetal accel-
eration of a particle which moves in a circle of constant radius � : 

 
�
��

2

�� �a , 

when vector ��  changes its direction but doesn’t change in magnitude. 
The radiation propagates in the narrow cone the axis of which is directed 

along vector ��  and is registered by the observer as a short impulse of radia-
tion, which appears while a needle-shape ray passes the observation point. To 
define the frequency and angular distribution of energy it is necessary to 
compute the integral in the expression for spectral intensity 
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As the duration of radiation impulse given by the formulae 
 1~sin~ ��� ;�3�tc , 

 ;
�

ct ~��  

is very small, it is necessary to know speed @
�

 and position � 
tr�  of the particle 
on the small curve of the path where the tangent is approximately directed to 
the observation point. 

Fig. 29.1 shows the chosen reference system. 
 

 
Fig. 29.1. The position of piece of trajectory and of the instant radius of the curve 

of the accelerating relativistic charged particle velosity of prticle ��  

 
Fig. 29.2. The position of piece of trajectory of the particle in plane XOY 

The segment of the path and the instant radius of curvature �  lie in 
plane xy (Fig. 29.2), vector n�  is in plane xz, ||e�  is a unit vector in the direction 
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of axis Oy � 
2|| ee ��
� , 2ene ���

5�-  is the vector of normal polarization approxi-
mately corresponding to the polarization perpendicular to the orbital plane. 

The latter statement is valid only for small angles 3 , but the radiation in-
tensity has a noticeable value namely for these angles. Let’s remind that vec-

tor 
R
Rn
�

�
�  is directed to the observation point from the point where the charge 

is. In the well-known book “Particle Accelerator Physics” by Helmut 
Wiedemann, in the chapter devoted to the synchrotron radiation, vector R

�
 

is directed from the observer to the point where the point is. That is why vec-
tor n�  in that book has the opposite sign. 

Suppose that at the moment of time 0�t  the particle was in the coordinate 
origin. Computing the double vector product in the integration element we get 
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Here the following expressions are used 
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with 
 33 sin,cos �� zx nn , (29.4) 
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Radius vector � 
tr�  is drawn from the coordinate origin in plane � 
yx,  to 
the point where the particle is (Fig. 29.2), and is equal to 
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The exponent in the integration element turns out to be equal to 
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As we study the instant motion it is possible to limit oneself to the time in-
terval close to 0�t  and to small angles 3 . Making the expansion of the trigono-
metric functions in a power series in small parameters �

� t  and 3 , we obtain: 
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Assuming that 
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we get the following expression 
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Using the evaluation relations 
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ct ~  and 2
1

2~ 33 , 

one can show that the neglected terms of the expansion with respect to the 
others 2~ �; .  

Further we write 
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Substituting (29.11) into (29.12) in the integration element and introduc-
ing the amplitudes 
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we find the expression for the angle distribution of the spectral intensity pre-
sented in the form of expansion by unit vectors of polarization: 
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We made expansion in a series in small time intervals, but the limits of inte-
gration spread up to 1O . It may seem to contradict to the accepted approximation, 
but it is necessary to take into account that for most of frequencies the phase is a 
quickly oscillating function. That is why the integration element differs from zero 
only within the time interval that is considerably less than the interval necessary to 
justify the assumptions at the trigonometric functions expansions in a series in time. 
That is why the upper and lower limits of integration are taken correspondingly 

1O , without making an essential error. The accepted approximation fails to fulfill 
only at frequencies 

�
99 c

�0~ , but for the relativistic particles practically the 

whole radiation spectrum corresponds to considerably higher frequencies.  
In expressions (29.13)–(29.14) let’s change to new variable 
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The expressions with these notations are  
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The integral included in (29.17) and (29.18), are expressed through the 
modified Bessel functions 

3
1K  and 

3
2K : 
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The behavior of these functions depends on the parameter 
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In formula (29.11) parameter ^  is expressed through Larmor frequency 

�
�9 �L , which is related to the characteristic parameter – the critical photon 

frequency 
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Intensity of radiation in any direction at motion in area of the big fre-
quencies sharply falls. 

Functions 
3

1K  and 
3

2K  are finite at small values of the argument and 

exponentially decrease at large values of the argument. 
29.1. Spectral distribution of synchrotron radiation 
On the basis of formulas (29.15)–(29.22) we get the following expres-

sion for the energy of the synchrotron radiation propagating per unit of solid 
angle and falling to a unit interval of frequencies: 
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where in the first part of the equation the classical particle radius is used  

 2

2

mc
erC � , (29.24) 

with the rest energy 2mc  and the cutoff frequency of the radiation spectrum 
is C9  (29.22). 

From the formula (29.15), the radial spectrum is conditioned by contri-
butions of two components of orthogonal polarization, one of which lies in 
the plane of the particle path, and the other is almost parallel to the deflecting 
magnetic field. 

If we denote the unit vector of polarization �ee ��
�||  and �ee ��

�- , as it is ac-
cepted in the literature, the first addend in (29.23), proportional to � 
^2

3
2K , is condi-

tioned by � -mode, and the second by � -polarization mode. � -mode corresponds 
to the radiation polarized in the orbit plane, � -mode corresponds to the radiation 
polarized perpendicular to this plane. For these two modes not only the contribu-
tions into the spectral intensity are different but also the distributions in space. 
Fig. 29.3 shows the diagrams of direction for � - and � -modes of polarization. 

 
Fig. 29.3. �- and � -modes of polarization 

29.2. Angular distribution of synchrotron radiation 
Let’s return to the expression (29.23): 
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As was noted, the first addend in the square brackets corresponds to the 
radiation polarized in the orbit plane, and the second component is perpen-
dicular to this plane. 

Let’s calculate the angular distribution by the energy: 
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If we take the integral by all the angles, then one can note that the en-
ergy of radiation with polarization parallel to the orbit plane is 7 times greater 
than the energy of the radiation with the perpendicular polarization. 

Thus, the radiation of the relativistic moving charge is mostly though not 
fully polarized in the plane of motion. In the case of the non-relativistic mo-
tion, the radiation is fully polarized in the plane of motion. 

Let’s give the angular distribution of the radiation intensity at different 
frequencies. At frequencies of order �9  the radiation is concentrated in angle 
area 1~ �; . For C99 >>  the sizes of the angle area are big and for high fre-
quencies they are less.  

If we integrate expression (29.23) by the angles � 
 � 
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 d

d
dII 99 , then we 

get the radiation power 
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The radiation described by the relations (29.23) and (29.26), is called 
synchrotron radiation (it was first observed in the electronic synchrotron in 
1948). The Fig. 29.4 shows the dependence of the synchrotron radiation in-
tensity (in units c

e ;2
 on frequency 9  (in units �9 )). 

 

 

Fig. 29.4. The dependence of the synchrotron radiation intensity (in units c
e ;2

) 
on frequency 9  (in units �9 ) 
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At the periodic motion in a circle the radiation spectrum is in fact dis-
crete and consists of the set of frequencies multiple of the basic frequency 

�
9 �

�0 . The charged particle periodically repeats its motion with the fre-

quency 
��2

cv �  turns per second. That is why it is more simpler to talk about 

the angular distribution of the radiation power on the n-harmonic but not 
about the radiation energy in a unit interval of frequencies at the particle pass. 

The corresponding formulas have the form: 
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The theoretical relations were compared with the experimental data. For 
that the radiation spectrums were averaged by the period of acceleration cycle, 
as the energy of the electrons constantly increases. At maximal energy 80 
MeV the radiation spectrum is in the range from the basic frequency 9

0 10D9  

Hertz to 16104�9  Hertz (
�
A1700�	 ). The radiation has a blue-white color in 

the visible area. The results of measurements are in agreement with the theory. 
The synchrotron radiation was observed while investigating the sunspots and 

the Crab nebula whose radiation spectrum is in the space beginning in the area of 
radio frequencies up to the far ultra-violet area, and the radiation is strongly polar-
ized. Such radiation may be given by the electrons with 1210�E  eV at the motion 
in a circular or spiral orbit in the magnetic field 410~ �  gauss. 

30. The theory of synchrotron radiation (SR) 
30.1. Spectral-angular distribution of power. Shott’s formula 
Let’s introduce the function characterizing the distribution of the spec-

tral intensity at frequency 9  and within the space angle � 
 � 
, ,
, ,

dI
W

d
9 3 X

9 3 ��
�

, 

where 3  and �  are spherical angles of a unit vector, which are directed in the 
direction of electromagnetic wave propagation. The total radiation power, 
that is the energy radiated by an electron per unit of time, equals  
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� . (30.1) 

Due to its quasidiscreteness it is convenient to characterize the synchro-
tron radiation by the number of harmonic of radiation frequency. 
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 8MM99 /0 ecB�� , (30.2) 

where 
2

2

1 @
8

�
�

mc  is the total energy of a relativistic electron, 09  is the cyclo-

tron frequency equal to the frequency of electron motion in magnetic field. 
Then the expression for total radiation power can be presented as a sum by 
the number of harmonics v : 
 � 
, .v

v
W d W 3 �� �� 
�  (30.3) 

Let an electron move in a constant magnetic field directed along axis z  
(Fig. 30.1), and the motion occurs in plane (x, y). 

 

 
Fig. 30.1. To calculation of the radiation of an electron moving along the circle 

The path of the electron is a circle: 
 ?9SSS ��� ,sin,cos 00 RyRx , (30.4) 

where � 
?0R  defines the position of an electron in the orbit of radius 0R , 

R
�9 �  is the angular speed of the electron, ?  is time. 
If we neglect the force of radiation friction, considering that the radia-

tion slightly influences on the electron motion, then the power of radiation 
can be written through –the Umov-Pointing’s vector that includes the elec-
tromagnetic fields of radiation induced by the charge: 
 ���� radrad

����
DD , : 

  !dSBEcW 
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Let’s define the radiation fields at moment t  at point p  of the wave 
zone with coordinates , ,r 3 � . Usually the wave zone is considered to be an 
area the size of which is much bigger of the effective sizes of the frame 
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(for example, the radius of orbit of the electron gyrating in the magnetic 
field). As we saw before, physically it means the isolation of the transverse 
part of the electromagnetic field from the general expressions for the fields 
of the moving charge. Actually SR is also observed near the plane of the 
electron orbit, which has macroscopic sizes. The analysis of the notion 
“wave zone” in this case shows that the wave zone starts with the distances 
that exceed the effective length of radiation 

 � 
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2
32

0 1 ����22 ;@	 RRr eff , (30.6) 

that is why SR can be observed (when 1>>; ) at the distances less than the 
radius of the orbit. 

The electric and magnetic fields are defined through vector potential �
�
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The boundary condition in the point of observation is specified as a 
common condition of Sommerfild’s radiation, which describes the waves 
propagating from the source, that is, the delayed potential is taken as a solu-
tion of the wave equation: 
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In the wave zone 
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where /r cI 9 �� � . 
For vector potential the approximate expression is got: 
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Let’s expand �  – function in Fourier series 
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Taking into account that the integration should be limited by the period 
of electron motion, we get 

 � 
�
�1

�1�

��
M

MXM ieAA
��

. (30.12) 



 158

This expression takes the following form with Fourier-component � 
MA
�
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In expressions (30.12) and (30.13) the following expressions are used 
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Writing the speed projections in the spherical coordinate system, we get 
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where � 
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xJxJ vv �,  is Bessel’s function and its x derivative, with 
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As a result the field components in the spherical coordinate system are 
defined: 
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Let’s calculate the angular distribution of the radiation power by Point-
ing’s vector integral, which follows from the definition of power  
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Let’s average this expression over the period of revolution of the elec-
tron using the relations: 

 ,
0 0

1 1 1cos cos sin sin ,
2

T T

v vv v dt v v dt
T T

� � � � � ��� �� �
 
  

 
0

1 sin cos 0.
T

v v dt
T

� � ��
  (30.19) 

As a result we get Shott’s formula: 
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which presents the spectral and angular distribution of power of SI system. 
The total power is found in the form 

 � 
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30.2. Polarization characteristics of SR 
Shott’s formula was obtained as an exact solution of the task about the 

radiation of a charge moving in a circle by methods of classical electrody-
namics. The classical electrodynamics considers the radiation to be a con-
tinuous emission of electromagnetic waves by an accelerating charge. in 
quantum theory of SR one should replace Shott’s formula by another one 
which takes into account quantum amendments in super-strong magnetic 
fields and for big values of the electron energy. The polarization characteris-
tics of SR were taken into account later while creating the quantum theory of 
SR. To describe two independent states of the linear polarization of SR the 
vector potential A

�
 is expanded in unit vectors of polarization �e�  and �e� , 

which are orthogonal to each other and in unit wave vector k̂
�

, coinciding in 
the direction with Umov-Pointing’s vector. 

The total power of radiation can be presented in the form 
 �� WWW �� . (30.22) 

To describe the circular polarization of SR the vector potential is written 
in the following way: 
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where complex vectors � 
 � 
1O�le l
�  are related to unit vectors �e�  and �e�  by the 

formulas 
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Value 1�l  corresponds to the left polarization and 1��l  corresponds to 
the right one. The total radiation power equals 
 11 ��� WWW . (30.25) 

The generalization of Shott’s formula, taking into account the polariza-
tion characteristics of SR, is given by the formula: 
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The power of � -component of linear polarization with 1��l , 0��l  is 
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And the power of � -component with 0��l , 1��l  is 
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To find the power of the circularly polarized radiation it is necessary to take 

2
1

�� �� ll  for the right circular polarization and 
2

1
��� �� ll  for the left one. 

At a fixed number of harmonic, the proportion of the amplitudes charac-
terizing linear polarization equals to 
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At 2
�3 �  the radiation is completely linearly polarized and vector of 

electric field E
�

 oscillates in the orbital plane and �W -component equals 0.  
The scheme of the position of vectors �E

�
 and �E

�
, which are components 

of linear polarization, is presented in Fig. 30.2.  

 
Fig. 30.2. The scheme of vector �E  and �E  disposition,  

which are components of linear polarization 

Above the orbital plane (as 20 �3 >> ) the synchrotron radiation has the 

left elliptic polarization, and under the orbital plane (as �3� >>2 ) it has the 
right one. The total power of radiation can be found if the summation in 
(30.27) and (30.28) is made by the number of harmonics and the integration 
is by the space angle: 
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As a result we get 
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In the ultra-relativistic case of electron motion SR has a strongly ex-
pressed linear polarization. If 1,@  
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In the non-relativistic case as 0,@  SR is also polarized: 
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which is the well-known Larmor’s formula for the dipole radiation. 
30.3. The properties of angular distribution of SR 
Let’s sum in formulas (30.26) over the number of harmonic v . It can be 

done using the relations 
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As a result we get 
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and the total power equals  
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where  
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The angular distribution for the total power at the non-relativistic limit equals  
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It is the characteristic distribution of the radiation power for non-
relativistic particles. If 1,@ , 11 2 >>� @  the maximal value of the power is in 
the plane of the electron orbit: 
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Fig. (30.3) shows the scheme of angular distribution of SR in the non-
relativistic and relativistic cases. In this case angle opening ; , inside of 
which the radiation takes place, is small: 

 � 
 1221~ ���� ;8@S� mc . (30.43) 

 
Fig. 30.3. The scheme of angular distribution of SR power: 

a) nonrelativistic motion; b) relativistic motion 

This can be checked by getting in the denominator (17): 
 S��3 �� 2 . (30.44) 
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It means that 

 21~ @S� � . (30.46) 

The form of angular distribution can be understood on the basis of the 
relativistic formula of angle transformation 
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� , (30.47) 

where S �  is the angle between the direction of radiation and the vector of the 
particle speed in K �  frame, where the particle is at rest, and S  is the angle at 
which the radiation in the laboratory reference frame K  is observed. For the 
maximum of dipole radiation 2

�S �� . As a result we get 

 � 
 1221~sin ����� ;@S�S E
mc . (30.48) 

The angle of the cone in which the radiation is concentrated, is very 
small. For example, for a synchrotron with the energy 300 MeV the speed �  
equals 0,9999987�, where � is the light velocity and [� 1,0S� . 

If we present the polarization components �� ,W  as 

 
� 


� 
 �
�

� 
 df
R

ceW ii 1
2

522

42

132
^

@�

@ , (30.49) 

where 
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and 
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the dependence of the linear and circular polarization of SR on the angle (on 
parameter 1^ ) has the form (Fig. 30.4). 

Here the index i  takes the values: ��i  � 
0,1 �� �� ll , ��i  � 
1,0 �� �� ll  – 
the components of the linear polarization; 1O�i  � 
2121 ����� ���� llll  – 
the components of the right and left circular polarization. The total power of radia-
tion is obtained by summing  
 110 ����� fffff �� . 
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Fig. 30.4. The dependence of linear 

(a) and circular; (b) polarization on the radiation angle 

 
Fig. 30.5. The comparison of experimental and theoretical data for angular 

distribution of SR power iW  ( �� ,�i ; 408 , 250nm E MeV )	 � �  

Fig. 30.6 and Fig. 30.7 show the instant distributions of the total power 
of SR (profile) and �W . 

According to Fig. 30.4, � -component of the linear polarization has the 
maximum in the plane of the electron orbit (at 01 �^ ), and � -component 
in this case turns to 0 . � -component has the maximum at 524^ . The com-
ponents of the circular polarization have the maximum at 34,01 O�^ . Thus, in 
the plane of rotation orbit SR is fully polarized. The experiment made on the 
synchrotron FIAN (see Fig. 30.5), justifies good agreement with the theory of 
SR, though at 2�3 � , the radiation power of � -component of SR doesn’t 
vanish. It is conditioned by the fact that the vector of instant speed of the 
electron deviates from the orbital plane owing to the betatron oscillation. 
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Fig. 30.6. Instant distribution of SR power (in profile) 

  
Fig. 30.7. Instant distribution of SR power of � -component of polarization 

(the fourth peak is not shown) 

30.4. Spectral distribution of SR 
Let’s integrate Shott’s formula � 
3,vW  over angle 3 . As a result we get 
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122 . (30.52) 

This formula shows the dependence on the number of harmonic, that is, 
it corresponds to the observation of SR at the frequency 099 v� . 
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In the non-relativistic case 0,@  taking into account asymptotic expres-
sions for Bessel’s function 

 � 
 � 

� 
 � 
 � 


� 
!122,!22
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vvJ
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v
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@@@@  (30.53) 

we get 
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cevW
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vnonrel @ . (30.54) 

It means that the maximal radiation falls at the basic harmonic 1�v  (di-
pole radiation). 

In relativistic case 1,@  from the properties of Bessel’s function � 
zJ n  

if 122n  and zn ~  has the maximum at point 3
1

8,0 zzn �� , that is, the func-
tion � 
@vJ v 22  is maximal in point 

 � 
 3
1

28,022 @@ vvv �� , 
which corresponds to 

 � 
 � 
 3
1

3
12 82,0112 vv ��4� @@  

or 

 23
2

1~ @�
�v , 

that is why 

 � 
 � 
 3
2

2
32

max 1 ;8@ ���4
�

mcv . (30.55) 

This specific peculiarity of SR was first marked by L.A. Arzimovich and 
I.J. Pomeranchuk. 

30.5. Coherence of SR 

30.5.1. The coherence of SR at even distribution of electrons in a circle 
The classical theory of SR, some results of which were described above, re-

fers to the radiation of one electron moving in a circular orbit in magnetic field. 
In practice there are 1312 1010 �  electrons in the accelerators and accumu-

lating rings at the same time (see Fig. 30.8). They fill either the whole orbit 
as in the betatron or formed into separate bunches as in the synchrotron. In 
this case the power of radiation depends on the interference of the waves 
emitted by separate electrons and there arises a coherent synchrotron radia-
tion, when the radiation power of N electrons doesn’t equal the sum of radia-
tion powers of every electron separately. 

Let N  electrons radiate, which are distributed in an orbit in an arbitrary 
way and move at the same speed. According to the formulas for the electric 
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and magnetic vectors of radiation field of the charge in the wave zone, when 
there is a rotation of N  electrons in a circle, we get 

 � 
 � 

2

1 1

2 sin cos ,
N

v j
v j

eE H vJ v v
rR� 3
@ @ 3 � S

1

� �

�� � ���  (30.56) 

where jS  is the initial phase of the j th electron. 

 
Fig. 30.8. Basic elements of accumulating ring: 

1) HF-element; 2) injector �e ; 3) injector _e ; 4) focusing magnet; 
5) defocusing magnet; 6) vacuum chamber 

Then the radiation power of N  electrons for the harmonic v  differs from 
� 
vW  by factor of coherence NS : 

 � 
 � 
 NN SvWvW � , (30.57) 
where 
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jjN vNS

��
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��� ���
1 1

cos SS . (30.58) 

In case of a chaotic distribution of the electrons on the orbit the value of 
the sum equals zero and the radiation of the electron isn’t coherent, that is, it 
doesn’t depend on the radiation of the other particles. In this case 
 NS N � , (30.59) 
and the radiation energy of N  electrons equals the sum of the energy radiated 
by the separate particles: 
 � 
 � 
vNWvWN � . (30.60) 

Suppose the particles are distributed uniformly on the circle, with the 
angle between the neighboring electrons being equal to N

�2 . Then we get 
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If SN
v � , the coherence factor doesn’t equal to zero only when S is 

a whole number, that is, if the number of harmonics is multiple of the number 
of the electrons. For NS  we get 
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The radiation power in this case equals 
 � 
 � 
vWNvWN

2� . (30.63) 
The total power is equal to 
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where 
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The analysis of this formula, based on the approximation of Bessel’s 
function for small values of the argument in the no relativistic case ( 0,@ ), 
leads to the formula: 
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@@ . (30.66) 

According to this formula, the radiation is maximal only for the case 
of one electron motion ( 1�N ). The contribution of other electrons leads to 
a strong decrease of the general power. Thus, in the non-relativistic case the 
coherent radiation is strongly suppressed in comparison with the radiation 
of one electron. 

In the ultra-relativistic case where 11 2 >>� @ , the analysis shows that the 
coherence can take place for not very large N  ( 3;>>N ), that is, for the long-
wave part of the spectrum. 

In the limiting case of big concentrations of the electrons for 3~ ;N , 
when the number of particles has the order of the critical harmonic number, 
all the radiation is suppressed. 

It is appropriate to mention here that the circular current, which can 
be considered an electron motion in a circle with 1,N , does not radiate. 

Does the phenomenon of coherence of SR arise in case of motion 
of separate bunches which don’t fill in the whole orbit but only its part? 
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30.5.2. SR coherence in case of motion of separate electron bunches 
Let the electrons fill only a part of the orbit, that is, we consider the mo-

tion of electrons forming in the space into some bunch.  
Let’s write the coherent factor NS  in the form 
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where 
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Supposing that all the electrons are independent and are distributed in 
the bunch symmetrically with respect to some average position (on the azi-
muth equal to zero), one can get 
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  (30.69) 

Here � 
9 �  is the probability that the electrons are in the orbit in the in-
terval of angles from �  to d� �� . Further one can consider the cases: 

�) the uniform distribution in some interval �: 
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1 , 2 2

;
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j
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� T T�
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 (30.70) 

b) Gaussian distribution 
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For case a) we get 
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For case b) we get 
 � 
222 6v

v ef �� . (30.73) 
In both cases the radiation power of the bunch equals the sum of coher-

ent and non-coherent parts: 
 � 
 � 
 � 
 � 
 � 
 � 
vfNvWNvWvWvWvW cohnoncoh

N
2���� . (30.74) 

The total power of radiation loss can be calculated by summing the ex-
pression for � 
vWN  by all harmonics v . 
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One can conclude from the form of dependence of vf  on the harmonic 
number in the examples of uniform and Gaussian distributions, that the 
maximal coherent radiation of the bunch falls to the range of wave lengths of 
order of the bunch size (that is, the region of low harmonics). The total 
power, obtained by the integration over the spectrum for both studied cases 
of the uniform and Gaussian distribution of electrons by the azimuth within 
the bunch, is given by the following expressions: 
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It turns out that the power of the coherent radiation is not very sensible 
to the kind of form-factors of coherence vf , which describes the charge dis-
tribution in the bunch. In the long-wave range the coherent radiation power 
of the bunch, which has angular sizes 6 , is in proportional to 3

4�6  and 
doesn’t depend on the particle energy. 

It should be noted that the coherent synchrotron radiation is greatly in-
fluenced by the conducting shielding surfaces, which are parallel to the 
bunch. Physically it is explained by the interference and mutual decay of the 
fields induced by the particle and its image in the conducting surfaces. 

Fig. 30.9 shows the spectral distribution of SR power taking into account 
the coherent part of the radiation. It is seen that the radiation is non-coherent 
in the region of high frequencies and has the maximum near 
 3

|| ;99 D� p . (30.77) 

 
Fig. 30.9. Spectral distribution of SR power.  

Coherent part of radiation is taken into account (coherent/ no coherent radiation) 
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The X-radiation with the wavelength ~ 0,2 nm corresponds to this fre-
quency. In the long-wave part of the spectrum the wavelength becomes com-
parable with the bunch sizes and all the electrons radiate coherently. The ra-
diation power, shown in the Fig. above, depending on the frequency corre-
sponds to Gaussian case of distribution by the azimuth about 0� �  in bunch 
of 1110�N  electrons. 

The coherent radiation phenomenon shows up not only in the synchro-
tron but also in other kinds of radiation. The common feature for all kinds of 
coherent radiation is the fact that an electron bunch with the length less than 
the radiating wavelength radiates coherently. Such a bunch radiates as a sin-
gle whole and the radiation power is given by the formula: 
 WNW e

coh
bunch

2� , (30.78) 
where W is the radiation power of one electron. If the expression for W con-
tains the squared charge of electron 2e , then the expression for coh

bunchW  contains 
� 
2

eN . If the electrons are not grouped in bunches, they radiate independently, 
They have random phases, and the radiation fields mutually suppress each 
other because of the interference of separate electrons. In this case 
 WNW e

noncoh
bunch � . (30.79) 

If we take into account that 1110~eN  electrons participate in an accelera-
tion cycle, a great increase in radiating power is possible owing to the coher-
ence factor at the same current of accelerator. The indispensable condition 
should be the following: the particles should be grouped into bunches at the 
distances less than the length of the wave radiated by them. In this sense the 
hopes are set on the undulator as a source of great radiation power by making 
such bunches of electrons. 

But it is a difficult task to make the coherent bunches for millimeter and 
submillimeter wave lengths. Moreover this task seemed to be impossible to 
solve for the optical wave lengths. 

The investigations showed that there arises the phenomenon of self-
modulation at the motion of electrons in the undulator, and these particles at 
the same time are influenced by the field of the light wave (by the laser). In 
other words, the self-modulation is a longitudinal grouping of the electrons 
leading to the coherent bunches with the length of order of optical wave. 
Moreover the electron grouping can occur when there is no influence of the 
external electromagnetic wave, that is, when there is no cavity resonator but 
there is a “inoculating” wave of spontaneous radiation, which is possible 
when using the single-pass laser. 

The phenomenon of self-enhancement of the spontaneous radiation 
is due to the properties of undulator: when the electrons pass through a long 
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(~ tens of meters) undulator, first they radiate non-coherently, and the radia-
tion power equals 
 WNW e

tot �� . (30.80) 
Due to the grouping mechanism there arises a phase correlation. It 

means that random initial fields of spontaneous radiation are intensified due 
to the interference, and the total radiation power becomes a coherent one: 
 WNW e

tot �� 2 . (30.81) 
The mechanism of self-enhancement of the spontaneous radiation under-

lies the strong source – the undulator of large length, which is in the special 
channel of the accumulating ring. 

30.5.3. The coherent length of radiation 
An important role in the theory of the relativistic particle radiation is 

played by the notion of the length of radiation formation or the coherent 
length. This notion is used in the qualitative analysis of different kinds of ra-
diation. Spectral-angular energy density W , radiated by a particle with the 
charge e  for all the period of motion in the path � 
tr�  at speed � 
t�

�  in vacuum 
can be written in the form 

 � 
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where 9  and k
�

 are the frequency and the wave vector of the radiated elec-

tromagnetic waves �
�
�

�
�
� �

c
k 9 , . /21 ,eee ���

�  is the unit vector of polarization which 

has two components orthogonal to wave vector k
�

, �d  is the solid angle, in 
which the radiation is directed and � 
9,kj

��
 is the Fourier-component of the 

particle current 
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9�9 exp, . (30.83) 

The above given formulas can be obtained by computing the Pointing’s 
vector flux through the sphere which is sufficiently far from the charge. This 
distance should be such that the charge field in every point of the sphere can 
be considered as a plane wave of the radiation. However, for the relativistic 
particles this distance should be greater than not only the wave length 	 , but 
also greater than the quantity called the coherent length: 
 2;	�cohl , (30.84) 

 � 
2mcE�; . (30.85) 
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The expression for the coherent length can be derived using the follow-
ing considerations. If the radiation of a relativistic particle occurs, it doesn’t 
happen instantly: the particle and the wave should diverge at least at a dis-
tance equal to the wave length. As c~� , the radiation is mostly directed for-
wards in the direction of the particle motion. That is why the particle has time 
to pass the distance 
 cohcoh tl �4 . (30.86) 

The coherence time is defined in the following way. According to (30.83) 
the particle current is the source of the elementary wave with phase � 
t k r t� 9� � �

� � . 
The radiation field can be considered the result of the interference of such waves. 
The difference in the phase of elementary waves does not exceed � , if they are 
emitted by the particle in the direction k

�
 for the time of coherence: 

 �9
� ��ktcoh �� , (30.87) 

which is found from the relation 
 � 
 � 
 .t kr t k t� 9 9 �� � � �

� � ��  (30.88) 

Setting in (30.88) � ��  and cohtt � , we get the formula (30.87). For time 
coht  the particle passes the way according to (30.86) and (30.87) 

 
�9

��
��k

lcoh �
� . (30.89) 

Considering k
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 close to the direction �� , we have 
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Thus, the coherent length in the relativistic case equals 
 2;	�cohl . (30.91) 

31. The characteristics of radiation in the wiggler and the undulator 
The monochromaticity and spectral-angular density of the energy of the 

synchrotron radiation can be essentially increased if one uses the magnetic 
field periodic in space. In this case the electron moves a periodic path, for ex-
ample the sinusoid (curve). For SR the effective length of radiation formation 
is a small path section 1�D� ;S� RRl . The arc length of the radiation forma-
tion has the order of the field period at one electron pass in the undulator. 

When the magnetic field changes according to the sinusoidal law the 
path of electron in the flat undulator is close to the sinusoid. And in the spiral 
undulator the electron moves in a spiral. 
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Fig. 31.1. The scheme of the flat undulator 

 
Fig. 31.2. The scheme of the spiral undulator:  
1 – beam of electrons; 2 – undulator radiation 

During the sinusoidal motion along the axis Ox at a longitudinal speed 
||@
�

 the electron radiates the filed � 
kE
��

1  on the first period, � 
kE
��

2  on the sec-
ond one. 

Let’s denote the angle between wave vector k
�

 and velocity ||@
�

 by 3 . 
The travel time of the electron through the first period is 

 
c

dt
@

�� 1 , (31.1) 

and the travel time of the electromagnetic wave from the first period to the 
initial position of the wave front from the second period equals  

 
c

dt 3cos
2 �� . (31.2) 
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The difference in phase of two wave packets is denoted by � : 

 � 
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That is why, one can write 
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Analogously one obtains 
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Let’s find the total field of the periodical structure containing N elements 
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that is 
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The spectral-angular distribution of the radiation intensity of the fields, 
made at N-periods equals 

 � 
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where G is the proportionality factor in the expression for the intensity distri-
bution. 

It is obvious that 

 � 
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is the spectral-angular distribution of the radiation intensity made at one period. 
Let’s evaluate the resonance factor NF : 
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Radiation is maximal when 02
� ,  and 
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In this case we obtain 
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 2NFN , . (31.12) 
Thus, when the resonance condition is satisfied 

 � 
2 1 cos 2d m� � @ 3 �
	

� � � , (31.13) 

where m is a whole number, the spectral-angular density of the radiation in-
creases 2N  times in comparison with one period. 

The fundamental role in the theory of the electron radiation in the peri-
odical structures is played by parameter K, which presents the proportion of 
angle S  to the effective radiation angle 1�; : 

 ,K S ;�  (31.14) 

� is the maximal angle between a tangent to a trajectory and the average 
speed of a particle @

�
. 

For the undulator 
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For a sinusoid path 
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 �x@ @ = ( 2@ – -
2@ )1/2 (31.17) 

with const�@ . 
Averaging over the period of oscillations, we find 

 2

2
22

22
1

;
S@@ K

��- , (31.18) 

 2

2
2

222
||

21
1

2
1

;
;;@@@

KK �
�������

�
�

- . (31.19) 

In the undulators in reference system K � , where the period-average 
speed of a particle equals zero, the particle oscillates at non-relativistic 1>>K  
or slightly-relativistic � 
1~K  speed. That is why the particle in reference 
frame K �  can radiate electromagnetic waves only with the frequency 9� , 
equal to the frequency of oscillations 09� . Since all the processes in the refer-
ence frame K �  proceed more slowly than in the laboratory frame 
 1

00
��� ;99 , (31.20) 

where T
�9 2

0 �  is the frequency of oscillations in reference frame K. 
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The frequency of radiation registered due to the Doppler’s effect de-
pends on the angle 3  between the direction of observation and axis Ox, along 
which the particle moves at speed ||@ : 
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For the relativistic case 
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Form this we obtain for the wave length at 0�3  
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At 310,10 �� ;K  and 4�d  cm, we have 410��	  cm, i. e. the electron 
emits the visual light in the undulator. 

Depending on the value of parameter K  ( 1>>K , 14K  or 122K ) the angu-
lar and spectral characteristics of the undulator radiation can essentially change. 

The devices, in which 1K T  and the number of periods 2~ 10 10N E , are 
called undulators, and the devices in which 1K 22 , and the number of periods 

1 3N � E  are called wigglers. These names derive from the English words (undu-
late – “wavy” and to wiggle – to move in small side-to-side or turning movements). 

Further we shall result some formulas and estimations of characteristics of 
radiation in the wiggler and undulators, taken of work Bazylev and Zhevago [15]. 
Thus relativistic units are used: 1,�	  1m � , 1.c �  In these units 2 1 / 137e 4 , unit of 
length / mc	 , a time unit 2/ mc	 , an energy unit 2mc , unit of frequency of radia-
tion 2 /mc 	 , unit of a magnetic (electric) field 2 5/2 3/2/ .m c 	  For reception of formu-
las in usual units it is necessary to proceed preliminary to dimensionless variables 

On the basis of the formula 

 
3�

9
9

cos1
0

x�
� . (31.24) 

One can conclude that a certain frequency is radiated in the endless un-
dulator with a harmonic field on condition 1>>K  and at a fixed value of an-
gle 3  to the axis of the undulator. 

For the real undulator with length L  the radiation line has a finite width: 

 
NL

d 999 �D� , (31.25) 

where d is the period and N is the number of periods of the field.  
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The radiation in the undulator can be not only at frequency (1), but also 
at the other harmonics multiple of the basic frequency. 

That is why the radiation spectrum consists not of one but of a series of 
equidistant lines. 

At number of periods 2104N  it is possible to obtain the radiation in the 
undulator with a natural width of the line  

 � 
 � 


N
11 99 D� , (31.26) 

where index 1 refers to the first harmonic. 
This radiation is directed in the solid angle: 
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D�� . (31.27) 

For average number of photons dt
dN ; , emitted per unit of time at fre-

quencies from � 
 21
max9  to � 
1

max9  one can obtain the approximate expression 
if the power of radiation 
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where 
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T

xBxBz
�2sin�  (31.29) 

is divided by the average energy of the photon: 
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2

1
max9

9 4 . (31.30) 

We get the total number of the photons emitted by one electron in the undu-
lator if we multiply the value dt

dN ;  by the time of the undulator transit TN�? : 

 � 
22 22 1 .23
KN e K N; �4 �  (31.31) 

Having divided expression (7) by 9  we obtain the average spectral 

density of radiation dt
dN ; . If we divide dt

dN ;  by the space angle (4), we ob-
tain the following approximate expression for the spectral-angular density of 
the radiation energy 

 2222
2

3
1~ NKe

dd
Wd ;

9 �
. (31.32) 
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At value 122K  the motion in reference frame K �  becomes ultra-relativistic 
and the maximal radiation is shifted to a higher number of harmonic: 

 2222
2

3
1~ NKe

dd
Wd ;

9 �
. (31.33) 

Frequency � 
19  at 122K  is 2
2K  times less than the same frequency 

in the undulator at 14K . One can draw a conclusion that the maximal density 
of the radiation intension in the wiggler corresponds to the frequencies: 

 � 
 22
0

1

2
2~ ;;99 eBK � , (31.34) 

which don’t depend on the period of the magnetic structure and coincide with 
the frequencies of the synchrotron radiation in constant magnetic field which 
equals 

2
~ B . The fact is, that in the wiggler, as well as in the synchrotron, 

the radiation if formed at length cohl , which is much (~ effn  times) less than 
the period of the magnetic structure (and for SI system – the radius of the or-
bit curvature). 

In the wiggler at certain angle 3  a relatively large number of lines is ra-
diated which correspond to such harmonics n , that 

 � 
 22
0

1

2
2~ ;;99 eBK � . (31.35) 

Every line has the width 
 nNnn /)()( 99 4� ,  
where 
 nn )1()( 99 � . (31.36) 

If we divide the power of radiation (31.28) by the characteristic energy of 
photon � 
n9	  (9), we will obtain the average number of the photons emitted in 
unit of time, dt

dN ;  with energy in the range of � 
n9�	 . Multiplying dt
dN ;  by 

time of the wiggler pass TN�? , we obtain the total number of the photons, 
;N , emitted by one electron in the wiggler with N periods in the interval: 

 KNeN 2

3
2~ �; . (31.37) 

The relativistic particle radiates in the range of angle 1�; . If we talk about 
the radiation in the wiggler in the plane perpendicular to the plane of the particle 
oscillation, the effective angle where the radiation is concentrated equals  
 1~ �;I eff . (31.38) 
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The radiation in the wiggler is within the angle in the plane of the os-
cillation 
 1�� ;S K . (31.39) 

The spectral-angular distribution of the radiation energy of one electron in 
the wiggler is given by the formula, as it follows from the previous proportions: 

 Ne
dd
Wd 22

2

2
1

3
1~ ;

9 �
. (31.40) 

If we compare (31.40) with the corresponding expression for SI, the 
value given (31.40) turns out to be 2N times larger. Such an increase is 
achieved because of the overlapping of the radiation cones from different 
sections of the particle orbit. 

In the conclusion let’s cite some formulas derived in the strict theory of 
the undulator radiation. 

Only the odd harmonics at angle 0�3  to the undulator axis are radiated 
for the flat undulator with the sinusoid field. In this case the spectral-angular 
density of the intensity is given by the expressions 
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where 
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 � 
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and the prime by the sum means that the summation is done only by the odd 
harmonics n . The spectral distribution of the radiation in the sinusoid mag-
netic field has the form: 
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where 
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0
22 9;9^ � ; 3224 BeI ;�  is the power of radiation (see formulas (31.29)–(31.30)). 
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For the endless undulator � 
1,N  

 � 
 � 
22213 ^^^ ���f . (31.46) 

The numerical integration of expression �ddId 92  by the solid angles 
leads to the expression  
 � 
^99 FeddI 0

22� , (31.47) 
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At 5,0�K  the radiation spectrum slightly differs by the shape from the 
dipole approximation. For the increase of K  the spectrum approaches the 
spectrum of the synchrotron radiation. 

The spectral-angular density of the radiation intensity of electron in the 
spiral magnetic field has the form: 
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where the following notations are introduced 
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Fig. 31.3. The coherent waves radiated by the electron during its pass through 

a periodical structure (undulators, crystal and so forth) 
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Along the axis of the spiral undulator � 
0�3  only the first harmonic is 
radiated � 
1�n  with the spectral-angular density of intensity 
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where � 
0~
11 �� 3^^ . 

Let’s mark the polarization characteristics of the radiation in the undula-
tors. The radiation in the undulator with the sinusoid filed at fixed angle 3  to the 
axis of the undulator is completely flat polarized. The polarization in the spiral 
undulator becomes elliptic in a general case and at 0�3  it becomes circular. 

32. Short survey of radiation sources using relativistic electrons 
When the synchrotron radiation was discovered one started to investigate 

other radiation effects caused by interaction of relativistic electrons with medium. 
 

  
Fig. 32.1. Compton scattering Fig. 32.2. The synchrotron radiation 

In spite of detailed theoretical and experimental examinations of these 
phenomena they started to be regarded as radiation sources not long ago. 
It also refers to the well known Compton scattering shown schematically in 
Fig. 32.1. Thankl to the creation of electrons with high intensity and large-
power lasers of the Compton scattering becomes a new interesting source of 
pulsating x-ray radiation. The other effects based on the interaction with me-
dium can be conventionally divided into two classes. The first class includes 
such phenomena that can be investigated by analogy with synchrotron radia-
tion Fig. 32.2 and undulator radiation, which is closely related to it. 

Radiation arises when an electron passes through a crystal in the field 
of planes and axes of the crystal. In this case the periodical crossing of crystal-
lographic planes by the electron leads to the path disturbance and to the emitting 
of coherent bremsstrahlung CB which is schematically shown in Fig. 32.3. 

If a particle moves almost parallel to such axis or plane, it can be “cap-
tured” in the mode of stable undulator path along this axis or the plane. The 
result is emission of channeling radiation (CHR) shown in Fig. 32.4. 



 183

  
Fig. 32.3. The coherent bremsstrahlung Fig. 32.4. Channeling radiation 

The second class includes the radiations in medium caused by electri-
cal field of the particle. In its nature they are close to the Vavilov-
Cherenkov’s effect. 

Transition radiation (TR) arises when a moving charged particle crosses 
the boundaries of two media with different dielectric and magnetic properties 
(Fig. 32.5). 

 

  
Fig. 32.5. Transition radiation Fig. 32.6. Parametrical X-rays 

In this way parametric X-rays (PXR) (Fig. 32.6) can be regarded as the 
combination of two radiations: 1) transition radiation which appears at parti-
cle cross of a crystal surface and reflected by crystallographic planes at 
Bragg’s angles 2) the radiation emitted inside the crystal.  

 
Fig. 32.7. Smith-Purcell radiation 

Smith-Purcell’s effect (Fig. 32.7) implies that the radiation arises when a 
charged particle passes near and parallel to the surface of a metal diffraction 
grating. This radiation also belongs to the second class though it can be ex-
plained by applying classical diffraction theory to the diffraction of the waves 
quickly decreasing as the distance extends. These waves relate to the cou-
lomb field of a relativistic charged particle. 
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32.1. Channeling Radiation 
The channeling radiation arises, when the charged particle passes 

through a crystal along a symmetry axis. The channeling can be axial (along 
a nuclear chain) or planar (between nuclear planes). The basic idea by theo-
retical consideration of the phenomenon of the channeling consists that the 
true potential of atoms of a crystal is replaced with the potential averaged on 
coordinates of atoms in the crystal axis or plane (speak accordingly about ax-
ial and planar channeling). Such approach is most comprehensible, if the par-
ticle falls on an axis or a plane under a small angle. As forces of an attraction 
(and for positively charged particle – repulsive force) are directed by atoms 
to one party there is a smooth change of a direction of an impulse of a parti-
cle because of collision with the big number of atoms of an axis or a plane. In 
a case of electrons the potential of a chain of atoms is drawing and a particle 
or crosses a chain, or (when energy of its transversal movement does not suf-
fice for overcoming of a potential barrier) makes fluctuations about a chain 
and, hence, passes through area of thermal fluctuations of atoms of a chain. 
Thanks to possibility of collision of a particle with the atom which has devi-
ated position of balance, there is a strong instability of its movement in con-
tinuous potential. If the particle has, for example, the initial orbital moment 
concerning an axis z it any time will be kept outside of area u>� (because 
of action of a centrifugal barrier). Thus instability of movement in continuous 
potential is shown only at the account of not elastic scattering on the elec-
trons of a crystal. For an ideal crystal (atoms – the motionless centre 
of a static force field located strictly periodically) the particle, moving under 
a small angle to a chain, “does not feel” influence of individual atoms and the 
chain potential can be averaged on longitudinal coordinate z.  

The average potential looks like 

 2 21( ) ( ,V z
d

� � �
1

�1

� �
  (32.1�) 

where ( )r�  – potential of separate atom, d  – distance between atoms. 
In the same way it is possible to arrive, when the particle falls under 

a small angle on crystal plane.  
Positively charged particles are reflected by the potential of a plane av-

eraged on co-ordinates y  � z  ���� of a plane 

 2 2 21( ) ( )V x x d
S

� � �� �

 , (32.1b) 

where S  is the area falling to one atom in plane . /zy,�� . 
Negatively charged particles makes oscillation about a plane and their 

movement on equilibrium trajectories in the potential of )(xV  ����� is less 



 185

steady in comparison with movement of positively charged particles which 
oscillate between the next planes. The matter is that positrons do not ap-
proach close to fluctuating atoms of a plane. 

Movement channeling particles and their radiation is influenced by the 
form of continuous potentials, depth of the potential wells and height of the 
barriers limiting their transversal movement. 

At the heart of calculations of continuous potentials lay known approach 
for the isolated atoms: 

Thomas-Fermi, Thomas-Fermi-Dirak, H�rtry-Fok with various analyti-
cal approximations (on Moliere, on Firsov, etc.). 

All expressions, which turn out by means of specified above approxima-
tions appear, very difficult to use them in analytical calculations of spectra 
and other characteristics at channeling. 

In their many cases it is possible with sufficient accuracy $ 25 % replace 
in simple modeling potentials  

So for plane channeling positrons the continuous potential looks like 
a parabola almost everywhere within the channel 

 2 2
0( ) / 2V x m x� � . (32.2a) 

For electrons the average potential of a plane can be presented in the 
form of Peshle-Teller potential.  

 2
0( ) /V x V ch x b�� � , (32.2b) 

where crystal potential 

 3
0 10 10 .V eV� E  

In the classical approach the problem about radiation of electrons and 
positrons at their scattering on crystal axes is reduced to a problem about par-
ticle movement in two-dimensional Coulomb potential:  
 ( ) / .V � 6 �� �  (32.2c) 

On distances �  from an axis, smaller amplitudes of thermal fluctuations, 
the average potential can be presented in parabolic potential 

 2( ) .V � @��  (32.2d) 

For channeling it is necessary, that particles have been focused in rela-
tion to an axis of a crystal within angle, smaller, than Lindhart angle 

 0
L

V
E

3 � , (32.3) 

approximately in 10 times. 
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The critical angle is defined by value of potential barrier 3
0 10 10V eV4 E , 

and it is limited because of thermal fluctuations. Usually size 0 ~ 100V eV  for 
middle and easy elements and 0 ~ 1000V eV  for the heavy elements. 

That channeling it was observed at 1eE MeV� , it is necessary that the 
crystal has been focused concerning a bunch with accuracy 1 %. 

The channeling it is not periodical in relation to a lattice; periodicity de-
pends on depth of potential. 

Channeling radiation is similar to the undulator radiation with small val-
ues of K parameter and has the spectrum 
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with 
 max9 9> , (32.5) 
where 
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is the frequency of oscillations and n  is the number of a harmonic, sr  is a mini-
mal distance on which electron comes nearer to an axis, that is radius of shielding. 

The quantity 0I  depends on the fact if there occurs the flat or axial chan-
neling and also on the kind of a particle – a positron or an electron. The ra-
diation intensity has the same angular dependence as the undulator radiation: 

 � 
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Channeling radiation is promising as an object of the scientific research 
and must be taken into account while solving applied tasks. 
< The radiation spectrum contains the information about the non-coherent 

scattering of electrons in the crystal lattice, which is of some interest for 
electronic microscopics, X-ray methods of the crystal research, etc. 

< The interaction potentials of the electrons and positrons with the crystal 
lattice is defined (for the diamond, silicon and others) to within 1 % of 
the spectrum. 

< It is possible to get information about the electronic density of different 
crystal structures, about the background spectrum. 

< There were experimental studies of anisotropy of the thermal oscilla-
tions and their correlation with the help of channeling radiation. 
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< With the help of channeling radiation it is possible to study defects in 
crystals for example to define their location, concentration, kinds and 
forms. And this method is not destructive in comparison to the method 
of ion beams. 

< The radiation of the x-ray range allows conducting the researches of the 
ultra-short processes ~ tens picoseconds. 

< It is possible to create a high power beam source of radiation of x-ray 
and gamma ranges. 

< At an optimum choice of the crystal thickness and at a certain energy the 
positron spectrum is highly monoenergetic, which presents a certain in-
terest for nuclear spectroscopy and medicine. 

< It is possible to irradiate different parts of a body at different depths by 
changing the photon energy, varying the positron energy and the crystal. 

< The radiation can be applied for detection of the particles of ultra-high 
energies. 
32.2. The coherent bremsstrahlung 
If the medium is crystal-like, apart from the bremsstrahlung, caused by 

the scattering of the charged particle on the medium nucleus, the periodic 
grating can induce an additional coherent bremsstrahlung. 

Then the cross-section for the bremsstrahlung is modified and has the form 
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 � 
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22 , (32.8) 

where � 
;� 0  is the section of the bremsstrahlung. 
The first exponent is Deby-Valler’s factor which is responsible for the 

thermal motion of N  atoms in the crystal, 2a  is the mean-square amplitude, 

d
g �2

�  is the period of the orbit lattice, 2

gS �  is the factor of the crystal-like 

structure, �  is the volume of a unit cell, k
�

 is the wave vector. 
The radiation is highly polarized and has a sharp maximum near the axis 

of the electron bunch. 
32.3. Transition radiation 
Transition radiation arises when the particle moves uniformly and line-

arly in the non-homogeneous medium, or in the non-homogeneous medium 
and/or changing in time, or when such medium is spread near the path of the 
charged particle. In the general case transition radiation can exist simultane-
ously and interfere with Cherenkov’s radiation and with the radiation which 
appears at the accelerating motion of the particle (the bremsstrahlung, syn-
chrotron and others). If the particle moves at constant speed 
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 n
c>� , 

then the Vavilov and Cherenkov’s radiation does not arise. But if 1�n , there 
should be no radiation at all. For the radiation to appear in vacuum it is nec-
essary that the charge (or multipole) accelerate, i. e. parameter �

�  character-
izing the radiation should change. If there is a transparent medium, then this 
parameter has the form c

n
� ph

�� �  and it equals the proportion of the parti-

cle velocity to phase velocity of light � 
9n�� ph � . Thus, in the presence of the 

medium, parameter c
n�  can change not only as a result of speed change � , 

but also at the expense of the change along the path of the index of refraction. 
Even at const��  the radiation arises because index of refraction n  changes. 
For the absorbing but not magnetic medium the role of he index of refraction 
n  is played by G8 in �� , where 8  is the complex dielectric permittivity 
of the medium. The simplest task of such type is the crossing of the border 
of two media (or the border of vacuum and medium). It is possible to give an 
obvious explanation of the reason why transition radiation appears while the 
charge crosses the border. The electromagnetic field of the first medium can 
be presented as the field of the charge itself and as the field of its image mov-
ing in the second medium towards the charge. While crossing the border it is 
as if the particle and its image “are annihilated” or get transformed, which 
leads to the radiation. If the second medium is an ideal mirror, the charge and 
its image will be fully “annihilated” (see Fig. 32.8). 

 
Fig. 32.8. The generation of transition radiation 

Let the particle with charge e  move from the medium with dielectric per-
mittivity 18 , into the medium with dielectric permittivity 28 . At a normal fall to 
the flat border (Fig.) the task is solved quite easily. As usual, at first field � 
trE ,�

�
 

is found, which presents the proper field of a particle and the field of radiation. 
The transition to Fourier-images of the fields and the current of the particle with 
the help of expansion in Fourier integrals allows us to calculate the spectral-



 189

angular distribution of radiation in a standard way 
�dd

Wd
9

2

. Without getting into 

details of the calculation let's give the expression for 
�dd

Wd
9

2

, which presents the 

energy emitted by the electron per unit intervals of frequencies and of the solid 
angle in the direction at angle 13 , with respect to the direction of the particle mo-
tion, and the radiation is registered in area (1): 
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The expression for 
�dd

Wd
9

2

, registrating the radiation in the forward di-

rection (i. e. in the area 2) follows from the previous expression with a mu-
tual exchange of the indexes 21 +  and the change of the speed @  to @� . 
The frequency spectrum lies from the microwave range up to the frequency 

ezNc ?�;9 4> , where N  is the density of the atoms of the medium and z  is 
the atomic number. For the transition from vacuum � 
11 �8  into metal 
� 
1,28  spectral-angular distribution has the form: 
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The radiation maximum falls to the angle ;@3 1� . Integrating by the 

angles, we get spectral radiation distribution: 
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for 122; . 
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TASKS 

Task � 1 
Topics: Mathematical apparatus of the field theory Vector algebra and tensor 

algebra Vector analysis 
1. Give the definitions of vector, second-rank tensor and S-rank tensor 

in three-dimensional space. 
2. Give the definitions of polar axial vectors 
3. Give the definition for a fully antisymmetric unit three-rank tensor ijk8 . 

4. Write the expression for the components of vector product  !BA
��

 and rot 
� 
B r

� �  with the help tensor ijk8 . Point out the way these values are trans-
formed at rotations and reflexions. 

5. Prove the equalities: 
�) kminknimlmnikl ����88 �� ; 
b) imklmikl �88 2� ; 
c) 6�iklikl88 . 

6. Write in the invariant vector form: 
�) tmrnstplmpirsinl cbaa8888 ; 

b) mtiknrstplmpkrsinl ccbbaa ���8888 . 

7. Prove the identities with the help of operator �
�

 and using the rules of 
derivation and vector multiplication without going to the projections onto 
reference axis. Functions CBA

���
,,,,S�  are the functions of coordinates: 

�) � 
 ;grad grad grad�S � S S �� �  
b) ;div A divA A grad� � �� �� �

� �
� � �

� � �  

c) ;rot A rotA A grad� � �� � * '� � ( %� � ) &
� �

� � �  

d) ;A Bdiv B rotA A rotB* ') & � �
� � � �� �

 
e) � 
 ;rot A B AdivB B divA B A A B* ' � �� �( %) & � �

� � � �� � � �� �
� � � � �� � � � � � �  

f) � 
 � 
 � 
 .grad AA B ArotB B rotA B A A B* ' * '� � � � �� � ��) & ) &
� � � � � �� � � � � � �  
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8. Prove the identities: 
�) ;C grad A B A C B B C A� � � � � �� � � � � �

� � � � � �
� � � � �� � � ��

� � � � � �� � � � �  

b) ;C A B A C B B C A� � * ' � � � �� � � � � �( %� � ) & � � � �
�� � 5 �� � 5 ��

� � � � � �� � � � � �  

c) ;A B A B B divA� � � �� � � �
� � � �
�� � �� �

� � �� � � � �  

d) � 
 ;A B rotC B A C A B C� � � �� � � �
� � � �

5 � � � �� � � ��
� � � � � �� � � � �  

e) ;A B A B A rotB A divB� � � �� � � �
� � � �

5� 5 � �� � 5 � �
� � � �� � � � � �  

f) .A B A divB A B A rotB B rotA� � � �� � � �
� � � �
�5 5 � � � �� � 5 � 5

� � � � �� � � � � � �  

9. Calculate � 
 � 
 � 
 � 
 � 
, , ,grad r div r r rot r r a r r� � � ��
�� � � � , where a�  – a con-

stant vector. 
10. Calculate div and rot of vectors � 
 ,a r b�

�� �  � 
 ,a r r�
� � �  ,a r* ') &

� �  � 
 !,r a r� 5
� � �  

r ar* ') &5
� �� , where a�  and b

�
 are constant vectors. 

11. Calculate 
� 
 � 
 � 
 � 
 � 
 � 
 � 
 � 
 � 
 � 
, , , , .grad A r r grad A r B r div r A r rot r A r a r A r� � �� � �

� � � � �� �� � � � � � � �  

12. Calculate 3r
rpgrad
��

 and  !
3r
rprot
��

, where p�  is a constant vector, using the 

expression for grad and rot in spherical coordinates. 
 

Reference literature 
1. Tamm I.E. Basic Theory of Electricity. – Moscow: Nauka, 1989. – 504 p. 
2. Batygin V.V. and Toptygin I.N. Problems in Electrodynamics. – Mos-

cow: Nauka, 1970. – 504 p.  

Task � 2 
Topic: Electrostatics and magnetostatics in vacuum 
1. What is the main aim of electrostatics? 
2. Write Coulomb’s law for small charges. 
3. Write the interaction force for two charge systems distributed with vol-

ume density � 
1 r� �  and � 
2 r� � . Present this force through the integral 
of electric field intensity � 
rE ��

, made by system (2), and � 
r�1� . 
4. Derive Maxwell’s equation for electrostatics, using the integral Gauss' law 

and Ostrogradsky-Gauss’ theorem � 
...�Ediv
�

 and Stoke theorem � 
...�Erot
�

. 
5. Show that Poisson’s equation ��� 42 ���  follows from Maxwell’s equa-

tion, and �gradE ��
�

, where � 
 � 




��
�

R
Vdrr

�� �� , rrR ���
���

. 
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6. Formulate Ampere and Bio-Savar’s laws in differential form and ex-
plain their physical sense. 
Write the interaction force between two closed currents I1 and I2. Go 
to bulk currents. 

7. Write Maxwell’s equation for magnetostatics. 
Make sure that ArotB

��
� , 

where 

 
R
VdrjcA ��
� )(1 ���

 

and 

 j
c

A
�� �42 ��� . 

8. Write potentials � 
r��  and � 
rA ��
 in dipole approximation. 

9. Find the intensity E
�

 of electric field, whose potential �  is equal to: 
�) ;a b r* '

( %) &
�
�� �  

b) ;a r k r* '* '
( %( %) & ) &

�� � �  

c) � 
 � 
cos ;a r r�� � �  

d) ;d r
r

� �
�  

vectors a� , b
�

, k
�

, d
�

 don not depend on coordinates and time. 
10. Is it possible to create the electrostatic field in space with intensity 

baE
���

5�  
where a�  is a constant vector? 

11. While calculating the rotor and divergence of magnetic field B
�

, make 
sure that the expression in magnetostatics 

 � 
 � 
 � 


 ��

���5�� 3

1

rr
Vdrrrj

cB r ��
����� �  

satisfies Maxwell’s equations. 
 
Reference literature 

1. Tamm I.E. Basic Theory of Electricity. – Moscow: Nauka, 1989. – 
504 p. 

2. Sivuhin D.V. The General Course of Physics. – Moscow: Fizmatlit, 
2002. – Vol 3. Electricity. – 656 p. 
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Task � 3 
Topics: Alternating electromagnetic field. The electromagnetic induction law.  

Maxwell’s equations for alternating electromagnetic  
field and their solution. Retarded potential 

1. Explain the cause of e.m.f. occurrence in a moving conductor in magnetic 
field. Write the mathematic expression of the phenomenon of electro-
magnetic induction in integral and differential forms. At what expense 
does the e.m.f. appear in a closed motionless conductor in magnetic field? 

2. Maxwell’s displacement current. Its physical sense. 
3. Write Maxwell’s set of equations in differential form for alternating 

electric and magnetic fields. What laws experimentally proved underlie 
these equations? 

4. Write Maxwell’s set of equations for alternating fields in integral form. 
5. How are Maxwell’s equations solved? Write the equations which are 

satisfied by scalar and vector potentials of electromagnetic field with 
additional Lorenz’ condition imposed on these potentials. How does the 
condition look like? 

6. What physical principle is connected with the choice of electromagnetic 
potentials satisfying D`Alamber’s equation in the form of retarded po-
tentials? Explain the physical sence of such choice. 

7. A conductor having a cusp form 2kxy �  is in a homogeneous magnetic 
field B

�
, perpendicular to plane XY . A shunt is transferred with a con-

stant acceleration a  from the vertex of the parabola, and the initial ve-
locity is 00 �� . Find the e.m.f. of the induction in the developed contour 
as the function of coordinate y. 
 

Direction 
Let’s denote ifme 8�... . Let’s choose normal line n�  to the plane of the 

contour in the direction of vector B
�

. Then the change of magnetic flux Xd  
can be connected with change of vector flux B

�
 (from one side) through sur-

face dS
�

, made by the shunt and the contour in the form of parabola, and from 
the other side i8 . 

 

Reference literature 
1. Jackson J.D. Classical Electrodynamics. – 3rd ed. – New York: John 

Wiley & Sons, Inc., 1999. 
2. Sivuhin D.V. The General Course of Physics. – Moscow: Nauka, 2002. 

– Vol 3. Electricity. – 656 p. 
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Task � 4 
Topic: Relativistic mechanics and electrodynamics 

1. System K �  moves relative to system K  at a velocity V
�

 along axis x, 
measured in system K. Write: 
�) direct and backward Lorentz transform for coordinates and time with 

the help of Lorentz matrix; 
b) relativistic law of composition of velocities; 
c) formulas of Lorentz transform at an arbitrary direction of velocity V

�
 

with respect to the coordinate frame. 

2. Prove (show) that a four-dimensional element of volume dtdzdydx  is in-
variant with respect to Lorentz transform. 

3. A beam of light is contained in the element of a space angle �d . Show 
that Lorentz transform leaves invariant value �d29 . 

4. Write Lorentz transform for impulse and energy. 

5. Let a particle move at a velocity �� . Let's incorporate symbols �
�@
��

�  and 

21
1
@

;
�

� . Write the expressions for a full energy of the particle, rest 

energy and particle impulse with the help of these symbols. What relation 
are the energy and the impulse of a relativistic particle connected with? 

6. During the experiment the impulse and the energy of a particle were 
found. Find its speed and mass. 

7. What is the path of a relativistic particle with mass m  and charge q, in-
coming in a cross magnetic field with induction constB �

�
 at a velocity � ? 

8. Write Lorentz transform for fields E
�

 and B
�

 (system K �  moves respect 
to K  at a velocity @�

�� c� ; a relativistic factor has form 211 @; �� ). 
Considering that speed ��  is directed in an arbitrary way, write Lorentz 
transform for ||E �

�
, ||B�

�
 and -E

�
, -B

�
 where indexes ||  and -  denote parallel-

ism and perpendicularity to velocity �� . 

 
References 

1. Ugarov V.A. Special Theory of R elativity. – Moscow: Editorial URSS, 
2005. – 384 p. 

2. Bredov M.M., Rumjantsev V.V., Toptygin I.N. Classical Electrodynam-
ics. – Moscow: Nauka, 1985. – 400 p. 
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Task � 5 
Topic: Maxwell’s equations in media 
1. What is the difference of microscopic and macroscopic approaches to 

the description of electromagnetic phenomena in media? 
2. Write the set of Maxwell’s microscopic equations. 
3. Give the definition of a physically small volume V�  and physically 

small interval of time t� . Give examples. 
4. Describe the basic stages of small substance volume and time averaging 

of Maxwell’s equations. 
5. Write the expression for a central tendency of some component of elec-

tromagnetic field. 
6. How do Maxwell’s equations look like after the averaging in the pres-

ence of induced and offside densities of charges and currents? 
7. State the connection of an induced charges and currents with specific 

dipole moments. 

�) Show that current j
�

 is the sum of 2 currents: polarization current 
t
P

7
7
�

 

and current Mrot
�

, conditioned by closed micro currents in substance. 
b) Using the formula for a full magnetic moment of a body 

 
 5�
 dVjr
c

dVM
���

2
1 , 

where Mrotj ��
��

(in the absence of induced charges), show that 
 M�M

��
�� . 

c) Using the formula 

 ,Pj � rot Mt
7� � �7

� ��  

derive Maxwell’s equations in the form 

 t
BcErot 7

7��
��

, extPEdiv ��� 44 �� �
�
��

�
�

��
, 

 
�
�
��

�
��

�
��

�
� �

7
7��� PE
tcextj

c
MBrot

�����
��� 4144

, 
 0�Bdiv

�
. 

d) Write Maxwell’s equations incorporating two new vectors 
 ...�D

�
 

 ...�H
�

 
e) Write Maxwell’s equation after averaging in the presence of free 

bounded and offside densities of charges and currents. 
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f) Write the constraint equations which should be use to add Maxwell’s 
equations. 

8. Using Maxwell’s equations with exterior currents and charges and con-
stitutive equations (constraint equations), 
derive the equations 

 0���
7
7 EjSdivt

���9 , 

where ...�S
�

 Pointing vector in macroscopic electrodynamics, 
...�9  energy density of electromagnetic field in substance. 

Discuss the physical sense of this equation. 
9. Write the energy conservation laws in macroscopic electrodynamics in 

integral form. 
 

References 
1. Bredov M.M., Rumyantsev V.V., Toptygin I.N. Classical Electrody-

namics. – Moscow: Nauka, 1985. – P. 190–199. 
2. Galitsky V.>., Ermachenko V.M. Macroscopic electrodynamics. – 

Moscow: Vysshaya Shkola, 1988. – 159 p. 
3. Pamyatnyh @.�., Turov @.�. Basic Electrodynamics of Material Me-

dium in Alternating and Non-uniform Fields. – Moscow: Nauka, Phys-
matlit, 2000. – 204 p. 

Task � 6 
Topic: Complex dielectric permittivity of a rarefied indifferent gas 
1. Considering the interaction of an electromagnetic wave with atoms of 

indifferent gas it is possible to get units of volume for a dipole moment 
 � 
,P Nd t�

��
 

where � 
td
�

 – dipole moment of atom. 
Using the connection 

 � 
 4D E E P8 9 �� � �
� � � �

, 

find � 
98 , having stated the dependence P
�

 on E
�

. 
For that use the oscillator model, on the basis of which it is possible to 
write the equation of motion for a dipole moment. 
The motion equation for a dipole moment has the form 

 ,0

2
2
0

ti
eE

m
eddd

9
9;

�
���

������  (1) 

where � 
tred ��
�  – dipole moment of atom and � 
tr�  – vector of an electron 

bias relative to the field, 09  – oscillator frequency, component d�
�

;  char-
acterizes oscillation damping. 
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2. Discuss under what conditions it is possible to write equation (1). 
3. Supposing that the solution of equation (1) has the form 
 tiedd 9��� 0

��
, 

find this solution in the form 
 � 
  ! � 


0… … i td E E e 9 S� � �� � � �
� � �

, 
where S – phases difference between the oscillations of vectors d

�
 and E

�
, 

which depends on 0,, 9;9 , charge e and mass m of an electron in an atom. 
Define form d

�
 and S . 

Draw the dependence diagram S  on 9  for the regions: 

a) 0,
2

0 99�S TTT ; 

b) 
2
�S �  in resonance; 

c) 1TTTT 99�S�
0,

2
. 

4. Write the expressions for vectors 
 , 4P Nd D E P�� � �

�� � � �  
and find the expression for dielectric permittivity � 
98 , from the congru-
ence c � 
ED

��
98� . 

5. Supposing 
 � 
 8898 ����� i , 

find the form 8 �  � 8 ��  and draw the dependence diagram � 
98 �  and � 
98 ��  
on the frequency. 
Direction: incorporate the symbol 

 
m
Ne

p
242 �9 � , 

where P9  – plasma frequency. 
6. Find the form � 
98  at 00 �9  and 0�; . 
7. Using the integral law of energy conservation in the absence of free 

charges find as the sign of total flow of electromagnetic energy 

� dVSdiv�

�
 is connected with 

 � 
 � 
9898 ���Jm ,  
and 

 
�
T

dt�



�
0

1 ,  

where 
 is a period of electromagnetic wave. Discuss the result,  
that is, reveal physical sense � 
9898 ���)(Jm . 
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Using the integral law of energy conservation in the absence of free 
charges find as the sign of total flow of electromagnetic energy 


 ��� dVSwd�
��  is connected with 

 � 
 � 
9898 ���Jm ,  
and 

 
�
T

dt�



�
0

1 ,  

where 
 is a period of electromagnetic wave. Discuss the result, that is, 
reveal physical sense � 
9898 ���)(Jm . 
 

Reference literature 
1. Ryazanov M.I. Introductory Electrodynamics of Condensed Matter. – 

Moscow: Physmatlit, 2002. – 320 p.  

Task � 7 
Topics: Dielectric permittivity of medium.  

Dispersion relations of Kramers-Kronig 
1. Write the integral relation between induction vector � 
tD

�
 and field intensity 

� 
tE
�

. Expanding the fields in Fourier integral, derive the constraint equation 
 � 
 � 
 � 
9989 ED

��
� , 

where � 
98  – dielectric permittiivity. 
2. Thinking that 
 � 
 � 
 � 
989898 ����� i , 

state the kind of functions � 
98�  and � 
98 �� , written through function � 
?f . 
Discuss the physical sense of function � 
?f  and its properties. 

3. Study the function of a complex variable � 
z8 . Write the integral Cauchy 
formula for function � 
 1�z8  and explain the choice of integration contour 
for analytic function 1)( �z8 . 

4. Using the integral Cauchy formula for function � 
 1�z8  and properties of 
parity of function � 
98 �  � � 
98 �� , derive dispersion relation of Kramers-
Kronig (including the media, which are conductors). 

5. Discuss the way Kramers-Kronig relations are used to get the informa-
tion about the dielectric permittivity of substances. 

6. Dielectric permittivity of substance � 
98  is connected with complex sus-
ceptibility by relation 

 � 
 1 ( ) ( ).i8 9 I 9 I 9� ��� � �  
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According to quantum theory of photon scattering, the susceptibil-
ity of an isotropic substance is expressed through the amplitude of pho-
ton scattering on the substance atoms at zero angle 

 � 
 � 
4 0 ,N f�I 9 9� �  

where N is the number of atoms in a unit of volume. Using the optic 
theorem, express the imaginary part of sensitivity through the photon-
absorption cross-section � 
9� tt0 . 

Write dispersion relations of Kramers-Kronig for susceptibility 
� 
9I ��  and � 
9I � . 

7. Read and make notes from the books cited further about the dependence 
of dielectric permeability 8  (or susceptiability I � ) on the frequency 
(or wave length). 

8. Read and make notes from Ch. Kittel. Introduction to Solid State Phys-
ics. Ch.7 the following parts: 

Dielectric polarizability (derive the formula of Clausius-Massoti), 
measuring of dielectric coefficient. Dipole relaxation and dielectric loss. 
Complex dielectric coefficient and the loss angle. 
 

Reference literature 
1. Bredov M.M., Rumyantsev V.V., Toptygin I.N. Classical Electrody-

namics. – Moscow: Nauka, 1985. – 400 p. 
2. Kittel Ch. Introduction to Solid State Physics. – M.: Fizmatlit, 1963. – 696 p. 
3. Bazylev V.A. and Zhevago N.K. Radiation of High Energy Particles 

in a Medium and External Fields. – Moscow: Nauka, 1987. – 272 p. 
4. Galicky V.M., VYermachenko.M. Macroscopic electrodynamics. –

Moscow: Higher school, 1988. – 159 p. 
5. Denisov V.I. Introduction to Electrodynamics of Material Media. – 

Moscow: University Press, 1999. – 168 p. 
6. Ryazanov M.I. Introductory Electrodynamics of Condensed Matter. – 

Moscow: Physmatlit, 2002. – 320 p. 

Task � 8� 
Topic: Lienard-Wiehert potentials and the field of a point charge 
1. The task of finding the alternating electromagnetic field is solved by 

finding delayed potentials 

 � 
 

���

�
�
�
�

�
�
�
�

�

R

dV
c
Rtrj

trA
C

,
, 1

��
�� , 

 � 
 1
,

,
C

Rr t dV
cr t R

�
�

� �
� �
� �

� ��
� 


�
� � , 
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where rrR ���
�� , r�  – radius-vector of the observation point, r ��  – radius-

vector of the field source, 'dV  – the volume element of the field source. 
Incorporate four-dimensional symbols for the potentials, current 

density and velocity. Write the expression of four-dimensional current 
density for a point charge �, which is in point � 
'tr�  and moves at a speed 

� 
'tc@
� . Avoiding volume integration with the help of � -function, show 

that the four-dimensional vector potential has the form 

 � 
 � 

� 


� 
, .
t R t

A r t e t t dt
R t c
=

=

@
�

� �� �
� �� � �� �� � �



�  (1) 

2. Using (1), write the expression for vector and scalar potentials � 
trA ,�
�

 and 
� 
tr ,��  correspondingly. 

3. Using the formulas 

 t
A

c
gradE

7
7��� 1�

�

, 
 ArotB

��
� , 

having made sure beforehand that 
 

R
ngrad

7
7�

� , 

were 
 

R
Rn
�

�
� , 

get the relations 

 � 
 � 
 � 
 � 
2

1, ,f t
nE r t e f t n f t dt
R cR

� @ � �
* '� �� � � � �( %) &


� �� � �  (2) 

 � 
 � 
 � 
2

1, .f t

f t
B r t e n f t dt

R cR
�

@ � �

�* '
* ' � �� � � �( %) &

) &



�� � �  (3) 

Here the symbol is incorporated 

 � 
 � 
'' ' .R t
f t t

c
� �  (4) 

Let’s denote also 
 11 1 .

' '
df dR n k
dt c dt

@� � � � �
��  (5) 

4. Integrating by parts in the integral, containing � 
tftf �� �� , and using the 
property of � -function 

 � 
 � 
 ! � 


� 
 6

6�

�%
%
%

&

'

(
(
(

)

*
��


xfdx
df

xgdxxfxg  (6) 
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write (2) and (3) in the form 

 2

1( , ) ;
ret

n d nE r t e
R c dt R

@
G G G

* '� ��
� �( %� ��( %� �) &

�� �� �  )2( �  

 
2

1( , ) .
ret

n ndB r t e
R c dt R

@ @

G G G

* '� �* ' * ') & ) &( %� �� �
�( %� �
� �) &

� �� �
� �  )3( �  

5. Make sure that 

 1
'

.
n ndn

c dt R

@* '* '
( %( %) &) &�

�� ��
 (7) 

And differentiating vector n�  by 'dt  in (2') and (3') where it is really 
included, get 

 2 2 2 2

1 1( , ) ;
ret

n n d dE r t e
R c dt R R c dt R

@ @
G G G G G G

* '� �� �� � � �( %� �� �� �� �( %� �) &

� �� �� �  )2( ��  

 2 2

1( , ) .
ret

dB r t e n
R c dt R
@ @

G G G

* '� $� �F F� ( � � %� #� ��( %F� �F "�) &

� �� � �  )3( ��  

Show that 
 B n E� * '�) &

� �� . 

6. Using the expression 

 @@ ���
�

'dt
d  

and having made sure beforehand that 

 � 
 21 ,d Rk R n n
c dt c

@ @ @� � �
�

� �� � �  

after some transformations, carry formulas (2'') and (3'') to the form 

 
ret

Rtd
d

cRRtd
d

c
n

R
netrE

%
%
&

'

(
(
)

*
��
�

�
��
�

�
�

���
�
�

�
�
�

�
��

G
@

GG
@

GGG

������ 11),( 2222  )8( �  

or 

 � 
 � 
� 
 � 
. /
2

3 2 3

1
,

ret
ret

n e nE r t e n
k R c k R

@ @
@ @

* '� � * '( %� � 5 � 5( %( % ) &) &

�� � � �� � � �  )8( ��  

and 
 .B nE* '� ) &

� ��  

Discuss the physical sense of the 1st and the 2nd addends in ).8( ��  
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Reference literature 
1. Jackson J.D. Classical Electrodynamics. – New York, London: Wiley, 

1962. – 656 p.  
2. Bredov M.M., Rumyantsev V.V., and Toptygin I.N. Classical Electro-

dynamics. – Moscow: Nauka, 1985. – 400 p. 

Task � 8b 
Topic: Total power, radiating by an accelerating charge Larmor’s formula 

and its relativistic generalization. The radiation loss of energy in accelerators 
1. Using the expression for electromagnetic field � 
t,rE ��

, incorporated with 
(through) Lienard-Wiehert potentials (taking into account only the ra-
diation field of an accelerating charge), 

Calculate the instant energy flux 
 ...S �

�
 

and energy flux inside the space angle �d  at a far distance from the particle 
 ���

��� dRnSdI 2  
Write the expression for dI  in non-relativistic approximation 1>>@  

and 1~G , incorporating the angle 3  between n�  and @
�

. 
Derive Larmor’s formula for the radiation intensity 

 
2 2

3

2 .
3

dI e aI d
d c

� �� � �� ��� �
  (1) 

2. Having written formula (1) in the form 

 
2

2 3

2 .
3

e dp dpI
m c dt dt

� �� �� �
� �

� �
 (2) 

It is possible to come to its relativistic generalization 

 
2

2 3

2 ,
3

dp dpeI
m c d d

= =

? ?
� �

� �� �
� �

 (3) 

where  

 .inv
d
dp

d
dp

���
�

�
��
�

�
�

??
==  

and ?  – intrinsic time in the system, which is connected with the particle. 
Using the relativistic relation for impulse ;@ cmp

��
� , energy 2mcE ;�  and 

 22422 cpcmE �
��  

show that 

 
2

2
22

2

2 1
�
�
�

�
�
���

�
�

�
�
���

�
�

�
�
���

�
�

�
�
����

�

�
��
�

�
�

?
@

?????
==

d
dp

d
pd

d
dE

cd
pd

d
dp

d
dp ��

. 
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After finding derivates 
 � 
 �

�
��

�
��� @;

?
�;

8?

���

d
dmcm

d
d

d
pd  

and 
 � 
,dp dmc

d d
;@

? ?
�  

taking into account that 
21

1
@

;
�

� , 22 @@
�

� , @@@@ ���� � < 

 
'

,',
' dt

pd
d

pddtd
dt
d ����
�

;
?;

?@@ ���
��
�

�

�

��
�

�

�  

and the relation 

 � 
  !  ! � 
222
2

@@@@@@@@@@ ��������������
���5�5�5 , 

derive the formula 

 � 

"
#
$

�
�
� 5����

�

�
��
�

�
�

2
2226 @@@;

??
== �����cm

d
dp

d
dp

 

and Lienard’s formula 

 %
&

'
(
)

*
�
�
��

�
� 5��

2
26

2

3
2 @@@; �����

c
eI , 

which is the relativistic generalization of Larmor’s formula. 
3. Show that the radiation intensity of electrons in the linear accelerator 

is determined by the formula 

 
2

32

2

3
2

�
�
�

�
�
��

dx
dE

cm
eI , 

where � – energy, x is the pathway. 
The radiation loss of energy per one turn in the cyclic accelerator 

is given by the formula 

 � 
 � 
 !
� 
�

���E���E
�

�
4

21085,8 ��� . 

Calculate E�  for the synchrotron with 5~maxE  GeV, � = 10 �. 
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Task � 9 
Topic: Angular distribution of an accelerating charge 
1. Velocity ��  of a relativistic particle at some moment of time t �  is parallel 

to its acceleration ��� . The instant distribution of radiation intensity is 
given by formula 25.8 

 
� 
63

222

cos14
sin

3@�
3�

�
�

� c
e

d
dI ��

, 

where c
�@ � , 3  is the angle between the acceleration direction and the 

direction of radiation. 
2. Draw angular (polar) diagram of radiation for the cases: 

�) 04�  � �) 00� . 
3. Find what angle 03  does the radiation maximum appear at. 

What is the limit of the angle 03  �) at 0,@ ; b) at 1,@ ? 
What angle to the velocity direction does the radiation in ultra-

relativistic case appear at? 
Thinking 1>>3  show, that formula 

�d
dI  takes the form 

 !5223

2228
3;�

3�

�
�

� �c
e

d
dI ��

, where 8;
21 mc�� , 8  – total energy of a particle. 

What cone is the radiation for an ultra-relativistic particle concen-
trated in? 

4. Find what is the total intensity of radiation 

 �
�

� 
 d
d
dII  and full speed of energy loss td

d
�� 8 . 
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Task � 10 
Topic: Synchrotron radiation 
1. Describe the basic features of the radiation of an ultra-relativistic particle mov-

ing at constant velocity �  along the circle with an instant radius of curvature � . 
Write the formula for the spectral intensity of radiation per a unit of 

space angle. How is the duration of radiation impulse t ��  connected 
with the instant radius of curvature? 

2. Let the plane of a particle path coincide with the plane XOY  and at moment 
0�t  the particle pass through the coordinate origin. Incorporating unit vec-

tors of polarization ||e�  and -e� , directed correspondingly along axis OY  and 
perpendicular to the plane of the particle path, show that the double vector 
product included in the sub integral expression for 

�d
dI  has the form 

 � 

"
#
$

�
�
�

��
�

�
��
�

�
���

�

�
��
�

�
��55 - 3

�
�

�
�@@ sincossin||

tetenn
��� . 

3. Make sure, that at a small interval of time near 0�t  and small angles 
after expanding of trigonometric functions in series by small parameters 

�
� t  and 3 , and limiting oneself to 

 21
2�

�4 ;@ , 

it is possible to get the expression for the radiation intensity in the form 
of expansion by polarization vectors 

 � 
 � 
 � 
 2
||2

22

4
99

�
99 AeAe

c
e

d
dI

-���
�

�� , 

where � 
9||A  and � 
9-A  are the amplitudes, which correspond to radia-
tion polarization in the path plane and perpendicular to the path plane 
correspondingly. 

4. Write the expressions for amplitudes � 
9||A  and � 
9-A  through modified 
Bessel’s functions 

3
1K  and 

3
2K  (Macdonald’s functions) and derive the 

expression for � 
 �ddI 9 : 

 � 
 � 
 � 
%
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'
(
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*
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���
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�

�
�
��� �
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2
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3
KK
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d
dI , 

where 

 � 
 2
3221

2
1 3;

9
9^ �D

C

, 
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and 

 
�
;9

3

2
3 c

C �  – critical frequency of a photon. 

5. What can you tell about the radiation polarization in relativistic and non-
relativistic cases? What area of angles is the radiation basically concen-
trated in at frequencies C99 ~ ? 

6. Write the derived formulas at a periodic particle motion along the circle taking 
into account that the radiation frequency 9  is aliquot to the basic frequency 09  

 099 n� , 
in the form of radiation intensity on n-th harmonic 

 
��

�d
dI n

, 
 ��nI  
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Task � 11 
Topic: The theory of synchrotron radiation 

There is a strict theory of synchrotron radiation), in particular, it is de-
rived Shott’s formula for spectral and angular distribution of power of syn-
chrotron radiation � 
3M ,W , where M  is a number of harmonic, connecting ra-
diation frequency 9  with basic frequency 09 . 
1. Show that in the relativistic case the frequency of electron rotation in constant 

magnetic field B equals to 89 ecB�0 , where 8  – total energy of electron. 
2. Study section “Theory of synchrotron radiation” paying attention to the 

way Shott’s formula is derived. Describe the basic stages of the calcula-
tions leading to this formula. Give its form and write the total power 
of radiation using Shott’s formula. 

3. What form does the total power of radiation W have (the relativistic 
generalization of Lienard’s formula)? How is it connected with Lar-
mor’s non-relativistic formula? 

4. Give the generalization of Shott’s formula, which take into account the 
polarization properties of synchrotron radiation. 
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How do � - and � -components of radiation power look like (compo-
nents of linear polarization), written through the total power of radia-
tion: �) in non-relativistic case; b) in relativistic case? 

5. Discuss the features of dependence of linear and circular polarization 
SR on the radiation angle. 

6. There are N electrons on a circular orbit at the same time. Study the in-
fluence of the interference of the fields, made by these electrons on the 
radiation intensity of n-th Fourier-harmonic. Study special cases: 
�) completely disordered arrangement of the electrons; 
b) regular array of the electrons at the angular distance N

�2  from each other; 
c) electrons are arranged in the form of a bunch, the dimensions of which are 
small in comparison with the orbit (in some cases, the result depends consid-
erably on the relation of a wave length to the dimensions of the bunch.) 

Direction: while solving task 6*, it is necessary to find beforehand 
Fourier-components of radiation field nA

�
, nB

�
 of the charge �, which 

moves along a circular path of radius � at a relativistic speed �  and to 
study the character of polarization of Fourier-components. 

7. The application of synchrotron radiation in science, medicine and engi-
neering. Give your examples. 
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Task � 12 
Topic: Undulator radiation and other kinds of the intensive  

electromagnetic radiation of relativistic electrons 
1. Mode of functioning of the undulator and wiggler. 

Compare the effective length of SI formation with the corresponding 
length of formation of undulator radiation. What conclusion can be done? 

2. How are the spectral-angular distributions of the radiation intensity from 
the field made on one and N periods of the undulator connected with 
each other? Do more detailed computations given in the lecture. 

3. The effective parameter of the undulator is K . Its connection with the 
radiation frequency and the radiated wavelength 	 . Do the correspond-
ing calculations, given in the lecture, more in details. 
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4. The electron with impulse cMeVp /500�  moves in the plane undulator 
in field kHz� 10� . 
�) What is the instant radius of the path which the electron moves along? 

Make sure that B
pR 3,00 � , where R  is measured in cm, p  – in �eV/c 

and B – in kHz. 
b) Find the synchrotron radiation loss, emitted by the electron per one 

turn on the path of radius 0R . 

c) Find the radiation loss, emitted by the electron on the curve 
02

~
R
dS , 

where the period of undulator d  = 4 cm. 
d) Calculate the undulator radiation loss per one period c

dt �� . 

e) Find the value of the undulator parameter S;�K , where 
0

~ R
dS  for 

the considered case. 
f) Evaluate the wavelength of the undulator radiation, emitted at angle 0�3  

in the reference frame (3  is the angle between the direction of the longitu-
dinal velocity ||@

�
 and the wave vector k

�
 of the electromagnetic wave.) 

5. Describe briefly the typical features of the following kinds of radiation: 
�) Compton scattering, which appear when the electrons with a great number 

of particles in the bunch scatter on the photons from a high-throughput laser  
b) coherent bremsstrahlung; 
c) channeling radiation; 
d) transition radiation; 
e) parametric X-radiation; 
f) the radiation called as Smith-Purcell’s effect in scientific literature. 

Direction: see the corresponding descriptions of these kinds of ra-
diation in the lecture and in the recommended books. 
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TESTS 

I. Electricity 

1. Which of the further mentioned characteristics does the electric field have? 
1. It influences charged particles and bodies. 
2. It has energy and inertness. 
3. It influences non-charged material bodies. 
4. It influences magnetized bodies. 
5. It is conditioned by the magnetic field changing in time. 

2. Which of the further mentioned characteristics does the electrostatic field have? 
1. It influences material bodies. 
2. It influences charged particles or bodies. 
3. It is conditioned by a magnetic filed changing in time. 
4. It influences the conductors with current. 
5. It has energy. 

3. How should the distance between point charges be changed to reduce the 
interaction force between them 4 times? 
1. To be increased 4 times. 
2. To be reduced 4 times. 
3. To be increased 16 times. 
4. To be increased 2 times. 
5. To be reduced 2 times. 

4. What determines the numerical value of intensity in a given point of electric 
field? 
1. The potential energy of a positive unit charge placed in a given point of 

the field. 
2. The potential energy of an arbitrary “trial” charge placed in a given 

point of the field. 
3. The force influencing a positive unit charge in a given point of the field. 
4. The force influencing any trial charge placed in a given point of the field. 
5. The work done while moving a positive unit charge from perpetuity to a 

given point of the field. 
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5. What determines a numerical value of potential in a given point of electrostatic 
field? 
1. The potential energy of a positive unit charge placed in a given point of 

the field. 
2. The potential energy of any trial charge placed in a given point of the 

field. 
3. The work done while moving a positive unit charge from perpetuity to a 

given point of the field. 
4. The force influencing a positive unit charge in a given point of the field. 
5. The force influencing a trial charge placed in a given point of the field. 

6. What determines the circulation of intensity vector of the electric field along 
the closed contour L? 

1. The line integral of the kind 
 �
�
�

�
�
�
�

� �

dlEdlE
�

cos . 

2. The force influencing the positive unit charge moved along the given 
contour. 

3. The line integral of the kind 
 �
�
�

�
�
�
�

� �

dlEdlqE
�

cos . 

4. The work done by the field while moving a positive unit charge along 
the given contour. 

5. The work done by the field while moving an arbitrary electric charge 
along the given contour. 

7. Which of the enumerated characteristics of the electrostatic field shows that 
this field id perpendicular? 
1. The electrostatic field influences charged particles and bodies. 
2. The work at moving a charge in the electrostatic field along the closed 

contour is equal to zero. 
3. The charge placed in a given point of the field has the only value of po-

tential energy. 
4. The circulation of intensity vector of the electrostatic field along the 

closed contour equals to zero. 
5. The electrostatic field has energy. 
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II. Electrostatics of dielectrics 

1. How does the interaction force of two point charges change at their moving 
from the medium with a relative dielectric permeability 8  into the vacuum at 
a fixed distance r between the charges? The task should be solved in SI system. 

1. It increases 8  times. 
2. It reduces 8  times. 
3. It reduces 88 0  times. 
4. It increases 88 0  times. 
5. It increases 04 88�  times. 

2. How does the interaction force of two point charges change when they 
move from vacuum into medium if the distance between them is reduced 
three times?  

1. It increases 27 times. 
2. It reduces 27 times. 
3. It increases 9 times. 
4. It reduces 243 times. 
5. It reduces 9 times. 

3. Which of the following expressions determine the intensity of the electro-
static field of a point charge (in SI system)? 

1. 2
04 rq 88� ; 2. rq 88� 04 ; 3. 24 rq � ; 

4. 2
04 rq 88�� ; 5. 24 rq �� . 

4. What is the relation between the intensities in point’s � and C of the field 
of a point charge q� ? 

(\�=�C) 
1. CA EE � ; 2. CA EE 2� ; 3. CA EE 4� ; 

4. CA EE
2
1

� ; 5. CA EE
4
1

� . 

5. Point out the answers where the unit of electric field intensity, the unit of 
intensity circulation of electric field along the given contour, the unit of sur-
face density of a charge and the unit of capacity and electric induction are in 
the following order: 

1. CN ; J ; mC ; F ; mV . 
2. mV / ; V ; 2/ mC ; F ; 2/ mC . 
3. N ; V ; � ; C ; 2/ mC . 
4. J ; F ; 2/ mC ; V ; mC / . 
5. CN / ; V ; 2mC ; F ; 2mC . 
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6. Point out the answer, which characterizes the process of dielectric polarization? 
1. The bias of molecular dipoles of the external electric field. 
2. The bias of molecular dipoles in the direction of potential gradient of 

external electric field. 
3. The dielectric acquires some charge in the electric field. 
4. The dielectric bias in the direction of external electric field. 
5. The appearance of the preferred orientation of molecular dipoles in 

electric field. 
7. What is the relation between the intensity E

�
 of electric field in dielectric 

and the intensity 0E
�

 of the external electric field? 
1. 0EE

��
� ; 2. 0EE

��
2 ; 3. 0EE

��
> ; 4. 0EE

��
� . 

8. What is the vector of dielectric polarization? 
1. The dipole moment of dielectric molecule. 
2. The vector sum of dipole moments of the molecules of the whole dielectric. 
3. The surface charge, which appears under the dielectric polarization. 
4. The vector sum of dipole moments of the dielectric molecules, which 

are divided by the unit of its volume.  
5. The vector sum of dipole moments of the dielectric molecules, which 

is referred to its mass unit. 
9. What happens in the polar dielectric when it is brought into the homogene-
ous electrostatic field? 

1. Dielectric electrization. 
2. The bias of molecular dipoles along the field. 
3. The bias of molecular dipoles against the field. 
4. The alignment of the electric moments of molecular dipoles against 

the field. 
5. The alignment of the electric moments of molecular dipoles along the 

field. 
10. Which of the following dielectric features is specific only for non-polar 
dielectrics in the absence of electric field? 

1. The sum vector of electric moments of all the dielectric molecules is 
equal to 0. 

2. The resultant vector of electric moments of molecules of the volume 
unit of dielectric equals to 0. 

3. The electric moment of every molecule is equal to 0. 
4. The electric moment of every molecule differs from 0. 
5. The resultant vector of electric moments of the molecules included in 

the mass unit of dielectric is equal to 0. 
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11. Which of the following expressions (in SI system) define the cubic en-
ergy density of electric field?  

1. 22�c ; 2. DE
2
1 ; 5. E88 0 . 

3. 
2

2��c ; 4. 2
02

1 E88 ; 

III. Current in conductors. Magnetic field 

1. Point out which of the following conditions determine the conductor resis-
tance. 

1. The emf of the source, which the conductor is connected with. 
2. The current in the circuit. 
3. The dimension and the conductor material. 
4. The potential difference at the ends of the cord.  
5. The cord voltage. 

2. Point out the answer where the unit of voltage on subcircuit, the unit of 
current density, the unit of resistivity, the unit of emf, the conduction unit and 
the unit of specific conductivity are in the following order: 

1. V ; 2mA ; mS / ; V ; m�� ; S . 
2. V ; A ; m�� ; V ; �� ; m/� . 
3. V ; A ; � ; V ; m�� ; .S  
4. V ; 2mA ; m�� ; V ; � ; 11 ��� m . 
5. V ; 2mA ; � ; V ; � ; m/� . 

3. What determines the numerical value of the magnetic moment of the con-
tour with current? 

1. Product of current multiplied by the contour length. 
2. Product of current multiplied by the contour square. 
3. Product of magnetic induction of the field by the contour square. 
4. Mechanic moment acting on the contour with current in magnetic 

field. 
5. The work performed when the contour with current turns in magnetic 

field. 
4. Point out the expression defining the circulation of the induction vector of 
magnetic field along the closed contour L: 

1. 
 �
�
�

�
�
�
�

� �

L

dlBdlB
�

cos ; 3. 

S

ndSB ; 

2. � 


L

dlB
�

; 4. 

S

ndSB . 
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5. Which of the following values determine the emf of induction, which ap-
pears in the closed contour? 

1. The value of magnetic flux through the surface limited by the given 
contour. 

2. The velocity of magnetic flux change through the surface limited by 
the contour. 

3. The contour resistance. 
4. The induction value of the external magnetic field. 
5. The velocity of induction change of the external magnetic field. 

IV. SPECIAL THEORY OF RELATIVITY 

1. Which of the formulas determines the velocity of light in the given medium?  
1. 

8=
� c

� ; 2. 
==88

�
00

1
� ; 3. 

T
R�� 2

� ;  

4. 
=

;� RT
� ; 5. �� k� . 

2. Which of the following formulas are included in Lorentz transform? 

1. 21 cu
uu

�
�

��
��

� ; 2. 
221 c

txx
�

�

�

��
� ; 3. 

22

2

1 c
cxtt

�

�

�

�
�� ; 

4. 221 cll ���� ; 5. 
�
�MM

�
�

��
c
c . 

3. Which of the following facts is postulated by the principles of relativity by 
Einstein? 

1. The velocity of light in vacuum is constant. 
2. The velocity of any motion in a given medium is less than the velocity 
of light in this medium. 
3. The laws of mechanics are invariant in inertial systems. 
4. The laws of mechanics are invariant in any systems. 
5. All the physical values are relative. 

4. What form does the formula 
22

2

1 c
cxtt

�

�

�

�
��  take for non-relativistic motions? 

1. tt �� ; 2. �
xtt ��� ; 3. �

xtt ��� ; 

4. 21 @��� ll ; 5. ll �� . 

5. What form does the formula 221 cll ����  take for non-relativistic motions? 
1. tll ���� ; 2. ll �� ; 3. tll ���� ; 
4. 21 @��� ll ; 5. ll �� . 
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6. A spaceship moves to the star, which is at the distance of 4.3 light years, 
and goes back at a speed 1000 km/h. How many days (twenty-four hours) 
will the ship clock be slow in comparison with the clocks on the Earth? The 
answer should be rounded up to a whole number and be put in the computer. 
7. How many years will pass on the Earth if it passes 10 years in the ship, 
which moves at a speed 0,99s with respect to the Earth? 

1. 20 years; 2. 99 years; 3. 10,99 years; 4. 71 years; 5. 99 years. 
8. The electrons flying out of a cyclotron have kinetic energy 0.67 MeV. 
How many percents of velocity of light is the speed of the electrons? 

1. 50; 2. 96; 3. 90; 4. 99; 5. 47. 
9. Which of the following formulas express the relativistic law of composi-
tion of speeds? 

1. 
�
�MM

�
�

��
c
c ; 2. 21 cV

V
�

��
�

��
� ;  

3. V��� �� ; 4. 
221

1

cV
cV

�

�
�� MM . 
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APPENDIX

A.1. Basic elements of the theory of field  
A.1.1. Formulas of the vector analysis 
First derivatives 

1.
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e
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e
7
7
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7
7

�
7
7

�� 321
����

.
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 � 
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The invariant determinations of divergence and rotor: 
6. 
�

�
,�

dSA
V

Adiv nV

1lim
0

�
.

7. 
�
�

,�
dlA

S
Arot lS

1lim
0

�
.

Surface derivatives: 
8.

12 nn AAADiv ��
�

.
9. )]([ 12 AAnARot

����
�� .

Derivatives of product:
10. � 
 � 
 ggradffgradggffggfgfgrad ��������

���
.

11. � 
 � 
 � 
 fgradAAdivffAAfAfAfdiv
���������

����������� )()( .
12. � 
 � 
 !  ! � 
 !  !fgradAArotfAfAfAfAfrot ���������

���������
.

13. BrotAArotBBAABBABAdiv
���������������

�������������� ][][][][ .
14. � 
 � 
 � 
 � 
 � 
 ���������������� AgradBABBABAABBABArot

��������
����������
]][[][
� 
 AdivBBdivABgradA

������
��� .

The second derivatives: 

15. 2

2

2

2

2

2
2

z
f

y
f

x
ffffgraddiv

7
7

�
7
7

�
7
7

����� .



217

16. 0�fgradrot .
17. 0�Arotdiv

�
.

18. � 
 AAdivgradAAAArotrot
�����������

������������ 2]][[ .

19. 2

2

2

2

2

2
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A
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7
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7
7

�
7
7

��
����

.

In above brought formulas f, g, A
�

, B
�

: are a functions of coordinates: 
� 
zyxff ,,�  and etc. 

Double vector product: 
20. � 
 � 
BACCABCBA

���������
����]][[ .

A.1.2. Basic orthogonal system (u1, u2, u3)
System u1 u2 u3 h1 h2 h3

Cartesian
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Spherical
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r
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Logarithmic first derivatives 
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A.2. Special theory of relativity 
A.2.1. Basic properties of space and time in the classical physics 

1. There are inertial systems concerning which the free particle (a material 
point) moves uniformly and rectilinearly. The rest condition is a special 
case of such movement. 

2. In any inertial coordinate system the free space from a matter is homo-
geneous and is isotropic, and time is homogeneous. 

3. Any mechanical phenomena at identical entry conditions proceed 
equally in all inertial systems (a relativity principle). 

4. Interactions between material bodies and signals with which help the in-
formation is transferred, can instantly extend (with infinite speed). 

5. Coordinates and time in two inertial systems are connected by Galilean 
transformations. 
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Let system � �  moves concerning system K  with the velocity constV �
�

 
along axis x  and at the moment of 0�t  the beginnings of co-ordinates O  and O�  
coincided, and corresponding axes were parallel. Then co-ordinates x� , y� , z�  
and time t �  in system � �  are connected with x , y , z , t  transformations Galilee 
 ttzzyyVtxx ��������� ,,, . (A.2.1) 

The time in systems K  and K  one and too, that is has absolute character. From 
Galilean transformations follow the law of addition of speeds. The ve-

locity of material point � ��  in system � �  is connected with the velocity of this 
point v�  in system K  parity 
 .,, zzyyxx vvvvVvv �������  (A.2.2) 

 
A.2.2. Basic properties of space  time and movement in the special theory 

of relativity (STR) 
1. In the STR postulate 1 remains. This is postulate of the classical me-

chanics about existence of inertial systems. 
2. Limits of applicability of the statement about homogenity and isotropy free 

space and homogenity of time extend on all physical phenomena (electro-
magnetic, thermal, processes with participation of elementary particles, etc.). 

3. The relativity principle extends on all physical phenomena. 
4. Interactions between bodies and the signals transferring the information can-

not extend with infinite speed. There is a speed limit coinciding with a ve-
locity of light in vacuum, and this speed is identical in all inertial systems of 
readout and does not depend on movement of a source or light receiver. Set 
of postulates 3 and 4 is called as a principle of a relativity of Einstein. 
 
Lorentz's transformations 
From Einstein's postulate 4 follows, that if at the moment of 0��� tt  

coordinate systems K  and K  coincided, let out from the beginning of co-
ordinates observers in K  and K  will see light in the form of the front of a 
spherical light wave described by the equation 
 022222 ���� tczyx  (A.2.3) 
and the equation  
 022222 �������� tczyx . (A.2.4) 

The assumption about the spherical form of a wave in both systems 
seems inconsistent, but this contradiction is eliminated if to accept, that 
events, simultaneous in one inertial system, are not necessarily simultaneous 
in another. Time is not the absolute size independent of spatial variables and 
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relative movement with the velocity V
�

. Having accepted it, with necessity we 
come to Lorenz’s transformations 
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If speed of movement of inertial system K  rather K  has any direction V
�

 
it is obvious, that the previous parities (A.2.3) concern components of radius-
vector r�  , perpendicular and parallel V

�
: 
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A.2.3. Relativistic transformation of velocity 

Let at the moment of t  in system K  in point � 
zyx ,,  there is a body 
of the small sizes, its position is defined by radius-vector r� . In system K  
the same body is characterized by radius-vector � 
 � 
 � 
 � 
� 
tztytxtr ��������� ,,� . 
By definition, the Cartesian components of the velocity of a body in the 
frame K  equals: 

 dt
dz

dt
dy
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zyx ��� ��� ,, , (A.2.7) 

and in the frame K: 
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Let’s differentiate (5) and divide first three parities on td � . We will re-
ceive the relativistic law of addition of velocities 
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In limit 1>>c
V  the formulas (A.2.7) pass in (A.2.8) under the law of ad-

dition of velocities in the classical mechanics. 
From transformations (A.2.5) reduction of the sizes of a body (core) in a 

longitudinal direction follows 
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And time delay in moving system. If one hours are based in system K, and 
others in � �  it agree (A.2.5) while in system � �  there will pass time interval 

12 tt �����? , in system K  there will pass more time: 

 
2

2
1 c

V
t

�

�
��

? . (A.2.11) 

For differentials it is received 

 221 cVdtd ��? . (A.2.12) 
That is in moving system time flows more slowly. Time counted on hours, 
motionless concerning some object, is called as own time of this object. Own 
time can be defined and for non-uniformly moving object, keeping for ?d  
definition (A.2.12) if under V  to understand the velocity of the inertial sys-
tem instantly accompanying given object and which in this connection, coin-
cides with the velocity of the object. 
 

A.2.4. Four-dimensional formulation of the special theory of relativity 
Relativistic electrodynamics 

Coordinates in four-dimensional space is set of sizes . /=x  where 1 ,x x�  

2 ,x y�  3x z�  – spatial coordinates and the fourth coordinate are connected 
in due course: ictx �4 . Lorentz's transformation registers by means of Lor-
entz's =ML  matrix: 

 vv xLx == �� . (A.2.13) 

Also translates components =x  set in system K , in components =x�  of system K � . 
It is supposed, that on repeating indexes v  there is summation 

� 
4,3,2,1, �v= . The matrix of transformation of Lorentz looks like 
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, (A.2.14) 

where 
21

1
@

;
�

� , 
c
V

�@  and V  – the velocity of movement of inertial sys-

tem K �  rather K  along axis x , measured in system K . Lorenz’s return trans-
formations are reduced to replacement @@ �, . Set of four sizes . /=A  which 
will be transformed as co-ordinate, is called as 4-vector components. Exam-
ples of 4-vectors are lower resulted. 
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4-vector of a particle velocity: 

 
��
�
�

�

�

��
�
�

�

�

��
��

2
2

2
2

1
,

1 c
v

ic

c
v
v

d
dx

u
�

?
=

= , (A.2.15) 

where dtrdv ��
�  – the velocity of a particle, 21 @? �� dtd  – own time of a 

particle which are invariant of transformation of Lorenz. 
 

4-vector of the energy-impulse, or the 4-momentum: 
 � 
cipp 8= ,�� , (A.2.16) 

where 
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– an impulse of a relativistic particle; 
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– the full energy connected with kinetic energy 
 and energy of rest 2
0 mc�8  

by parity 
 2mcT �� 8 . (A.2.19) 
Wave 4-vector: 
 � 
cikk 9

= ,
�

� , (A.2.20) 

where k
�

 – a wave vector and 9  – frequency in expression for a flat electro-
magnetic wave. 

 
4-vector of density of a current: 

 � 
�= icjj ,
�

� , (A.2.21) 

where j
�

 – a vector of density of a current, �  – density of charges. 
 
4-dimensional potential: 

 � 
�= iAA ,
�

� , (A.2.22) 

where A
�

 – vector, and �  – scalar potentials of an electromagnetic field. 
The 4-dimensional operator of differentiation: 
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If =A  and =B  are two 4-vectors, 

 � 
 � 
 � 
 invBABABAAB �������� ==== . (A.2.24) 

Scalar product of two 4-vectors remains invariant at Lorentz's transformation. 
In particular, length of a 4-vector-invariant concerning Lorentz's transforma-
tions. The size is invariant 
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 !2
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12 ttcrrS ����
�� . (A.2.25) 

Named an interval between events with co-ordinates � 
11 , tr�  and � 
22 , tr� . Time 
counted on hours, moving together with the given object, is called as own 
time of the given object. An interval of own time ?d  �{��}����� through 
time interval dt  ������{ K  the formula: 

 2
2

1 c
Vdtd ��? . (A.2.26) 

If any core in the system of rest has length 0l  at movement with a speed 
V  along the axis, it has in system K  length 

 22
0 1 cVll �� . (A.2.27) 

Any 4-vector =A  ������������� under the formula 

 vv ALA == �� , 

where L=M �  Lorent’s matrix. 
Components of usual velocity of a particle will be transformed under 

the formulas: 
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If a particle velocity makes with axis x  corners 3  and 3 �  in systems K  
and K � , accordingly, that 
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where 

 2 2 2
x y zv v v v� � � . (A.2.30) 

As four-dimensional acceleration is called the 4-vector 
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As wave 4-vector � 
cikk 9
= ,

�
� , phase invxk �� ==�  

 txktxk 99 ���������
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, (A.2.32) 

hence, with the account of transformations 
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follows 

 
2

22

1
,,,

c
V

kV
kkkkc

Vkk x
zzyyxx

�

�
������%&

'
()
* �

�
��

�
���� 9

99; . (A.2.34) 

With the account of that for light waves ckck 99 ����
��

, , it is possible 
to write down the received parities in the form of frequency transformation 
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(Doppler effect-displacement with the relativistic correction). 
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where 3  and 3 �  – angles which form vectors k
�

 and k �
�

 with the velocity v� . 
At 2

�3 �  it is received 

 
221 cV�
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99  (A.2.37) 

(The transversal Doppler displacement). 
 
The electromagnetic field tensor 

4-tensor the second rank is the set of quantities vA= , which at transfor-
mations of four-dimensional coordinates,

 vv xLx == ��  (A.23.8a) 
will be transformed as follows 

 6@@6== ALLA vv �� . (A.2.38b) 
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The example of 4-dimensional tensor is antisymmetric tensor of the sec-
ond-rank of an electromagnetic field in vacuum which it is possible to present 
through components of fields E

�
 and B

�
: 

 
��
�
�
�

�

�

��
�
�
�

�

�

��
��
��

�

0
0

0
0

321

312

213

123

iEiEiE
iEBB
iEBB
iEBB

F v= , (A2.39) 

where 

 
v

v
v x

A
x
A

F
7

7
�

7
7

� =

=
=  (A.2.40) 

and first index =  numbers a line, and the second v - a column. 
Maxwell Equations: 
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in the covariant form look like 
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Equations of Maxwell 
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are reduced to the four-dimensional equations 
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where 6= ,,v  – any three of numbers 1, 2, 3, 4. 
At transition from system K  to system K �  field components will be 

transformed as follows 
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Thus quantities 22 EH
��

� and HE
��

�  are invariants of the Lorentz's transfor-
mations:
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At Lorentz's general transformation from system K  to system K � , moving 
with a velocity �

�
 rather K , fields will be transformed as follows:  
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Indexes || and -  specify in parallelism and perpendicularity of fields by 
the velocity V

�
. 

Density of Lorentz force 
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it is possible to present in the form of a 4-vector 
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where 
 JEf
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�0 , (A.2.49) 

the work made by a field over charges in individual volume in unit of time. Spa-
tial part kf  defines speed of change of quantity of movement in volume units. 

Using non-uniform equations >�
������, it is possible to write down 
=f  in such form 
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and by means of electromagnetic ������� energy-impulse 
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the equations (A.2.51) will take the form 
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Components ������� vT=  can be connected with fields B
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 and E
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vT=  looks like 
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where ikT  – symmetric Maxwell stress tensor; 
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and 
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– density of an impulse of the electromagnetic field, connected with the vec-
tor Pointing S

�
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– density of energy of a field. 
Maxwell’s equations in the environment can be written down in the co-

variant form 
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where 
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and ������ M=F  the same, as for electrodynamics in vacuum. 
 

A.3. The symmetry of electrostatic and magnetostatic equations 
Electrostatics Magnetostatics 
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A.4. The experimental base for Maxwell’s equations 
The differential form of the Gaussian law in electrostatics 

 ��4��� E
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. (A.4.1) 
For electrostatics it takes place 
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. (A.4.2) 
The experimentally observed absence of the magnetic monopoles means 

that the magnetic field satisfies the equation 
 0��� �
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. (A.4.3) 

Ampere’s law is fulfilled for magnetostatics: 
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The equations (1) are (3) are always valid but the equation (2) must be 
modified in the presence of the magnetic field changing in time (the account of 
the Faraday’s law of electromagnetic induction) as well as the differential form 
of Ampere’s law (4) must be changed to satisfy the equation of continuity: 

 0���� jdt
d �� . (A.4.5) 

It is achieved by the replacement of equation (2) to  
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and equation (4) to 
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where 
t
E
7
7
�

�4
1  presents the displacement current suggested by Maxwell. 

Thus, the equations describing the dynamics of the electromagnetic field 
are based on 4 laws experimentally proved 
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 (A.4.8) 

is Gauss’ law; 
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is the modified Ampere’s law; 
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  (A.4.10) 

is the absence of monopoles; 
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is Faraday’s law. 
 

A.5. ��!"��� #���$%�� $&��'�*�� � +%�/;"  
�< =�;>>%$%� >�>@�/& $ >�>@�/; �� � %!��@*% 

������������ �������� ������� ������� �� 

�
������ ����� c  00/1 =8  
�����}������� ���
������
�"� 
����, �����	��� `

�
, � � 
��8 ,4 0 �

�
 

���
������
�� ����
	�� D
�

 D
�

0/4 8�  

�����, ��������� ������, ��
, 
��������� ��
�, ��������	�� q, � , a, j

�
, P
�

 � 
PjIq
��

,,,,
4
1

0

�
�8

 

>�"������ ����
	��, ��"����{� 
����
 bc ,

�
 � 
b,/4 0 B

�
=�  

�����}������� ��"�����"� ���� H
�

 H
�

04�=  
>�"����{� ������, 
����"���������� Mm

�� ,  � 
Mm
�� ,4/0 �=  

���
������
�� �����	�������, 
��"������ �����	������� 
(�����������{�) 

!, " !, " 

���
������
�� ��������������, 
���������������, ��"������ 
��������������� 

k,, I6  � 
1
, ,

4
k6 I

�  

�������� ������������ � 
04 8�

�
 



 231

������������� R R04�8  

��
���� C C
04

1
�8

 

����
�������� L L
0

4
=
�

 

A.6. The list of transition of numerical values of physical notions  
from SI system in Gauss system 
Designation Sign SI system Gauss system 

Length # 1 m (meter) 102 cm 
Mass m 1 kg (kilogram) 103 g 
Time t 1 s (second) 1 s 
Force F

�
 1 N (Newton) 105 dyne 

Work, energy A, ! 1 J (joule) 107 erg 
Power P 1 W (watt) 107 erg/s 
Pressure � 1 Pa (Pascal) 10 dyne/cm2 
Electric current a  1 � (ampere) 3·109 
Electric charge q 1 C (coulomb) 3·109 

Electric filed �
�

 
1 V/m (volt per 

meter) 3
1 ·10–4 

Electric potential � 1 V (volt) 
3
1 ·10–2 

Polarisation $
�

 
1 C/m2 (coulomb per 

square meter) 3·105 

Displacement D
�

 1 C/m2 (coulomb per 
square meter) 12�·105 

Capaciitance C 1 F (farad) 9·1011 cm 

Electric resistance R 1 � (ohm) 
9
1 ·10–11 s·cm–1 

Resistivity � 1 �·m (ohm-meter) 
9
1 ·10–9 s 

Conductivity R/1�C  1 S (siemens) 9·1011 cm·s–1 

Specific conductivity � 1 S/m (siemens 
per meter) 9·109 s–1 

Magnetic flux 	 1 Wb (Weber) 108 Mx (Maxwell)
Magnetic induction B

�
 1 � (Tesla) 104 Gs 

Magnetic field H
�

 1 �/m (ampere per 
meter) 4�·10–3 Oe 

Magnetisation M
�

 
1 �/m (ampere per 

meter) �4
1 ·104 Gs 

Inductance L 1 H (Henry) 109 cm 



 232

A.7. Some physical constants 
Velocity of light in vacuum 2,997924562·108 m/s = 2,997924562·1010 cm/s 
Charge of an electron 1,602·10–19 C = 4,803·10–10 cm3/2 g1/2/ s 
Planck's constant h=6,626·10–34 J·s = 6,626·10–27 erg·s 
Avogadro constant 6,022·1023 mol–1 
Boltzmann constant 1,381·10–23 J/K = 1,381·10–16 erg/K 
Gas constant 8,314· J/(mol·K) = 8,314·107 erg/(mol·K) 
Faraday constant 0,9648·105 C/mol = 9, 648·103 cm3/2g1/2/s 
Rest mass of electron 9,11·10–31 kg = 9,11·10–28 g=0,511 MeV 
Rest mass of proton 1,6727·10–27 kg = 1,6727·10–24 g 
Rest mass of neuron 1,6750·10–27 kg = 1,6750·10–24 g 

 1 eV=1,6·10–12 erg=1,6·10–19 J 

A.8. The list of some constants characterizing properties of matter 
A.8.1. Dielectric permittivity 

Dielectric � Dielectric � 
Water 81 Polyethylene 2,3 
Air 1,00058 Mica 7,5 
Wax 7,8 Spirit 26 
Kerosene 2,0 Glass 6,0 
Paraffin 2,0 Chine 6,0 
Acrylic plastic 3,5 Ebonite 2,7 

 

A.8.2. Resistivity of conductors and non-conductors 

Conductors Resistivity (at 20 °C) 
�, n�·m 

Temperature  
coefficient �, kK–1 

Non-
conductors 

Resistivity �, 
n�·m 

Aluminium 25 4,5 Paper 1010 
Tungsten 50 4,8 Paraffin 1015 
Iron 90 6,5 Mica 1013 
Aurum 20 4,0 China 1013 
Copper 16 4,3 Shellac 1014 
Plumbum 190 4,2 Ebonite 1014 
Argentum 15 4,1 Amber 1017 

A.8.3. Magnetic susceptibilities of para- and diamagnetics 

Paramagnetic K = � – 1, 10–6 Diamagnetic K = � – 1, 10–6 
Nitrogen 0,013 Hydrogen –0,063 
Air 0,38 Benzol –7,5 
Oxygen 1,9 Water –9,0 
Ebonite 14 Copper –10,3 
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Aluminium 23 Glass –12,6 
Tungsten 176 Mine salt –12,6 
Platinum 360 Quartz –15,1 
Liquid oxygen 3400 Bismuth –176 

 

A.8.4. Index of refraction n 

Gases n Liquids n Solids n 
Nitrogen 1,00030 Benzol 1,50 Diamond 2,42 
Air 1,00029 Water 1,33 Fused 1,46 
Oxygen 1,00027 Glycerin 1,47 quartz  

  Carburet 
of sulfur 1,63 Glass 

(common) 1,50 

Note. Index of refraction also depend on the length of the light wave, that is why 
the given values should be regarded as conventional. 

 

A.8.5. The edge of the absorption band  

Z Element � �, �� Z Element � �, �� 
23 V 226,8 47 Ag 48,60 
26 Fe 174,1 50 Sn 42,39 
27 Co 160,4 74 W 17,85 
28 Ni 148,6 78 Pt 15,85 
29 Cu 138,0 79 Au 15,35 
30 Zn 128,4 82 Pb 14,05 
42 Mo 61,9 92 U 10,75 

 

A.9. The scale of electromagnetic waves 

Range of Type  
of radiation Wave lengths frequencies, sec–1 

Energy 
of photons, 

eV 
; -radiation  �m 1,010 11 �> �  19103 �2  5102  
X-ray �m 1001,01010 811 :�: ��  1619 103103 �:�  25 1010 :  
Ultra-violet  �m 400010010410 78 :��: �� 1416 1075,0103 �:�  3102 :  

Visible  
7 74 10 7,5 10

4000 7500
m

�

� �� : � �
� :

 1414 104105,7 �:�  6,13 :  

Infra-red  m37 10105,7 �� :�  1114 103104 �:�  3106,1 �:  

Microwave cmm 101,01010 13 :�: ��  � 
MHz35

911

103103
103103
�:��

��:�
 53 1010 �� :  

Radiowave cmm 1010 1 �2 �  � 
MHz39 103103 ��>  510�>  
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