
 3

TOMSK POLYTECHNIC UNIVERSITY

S. A. Lopatkin, V. I. Reizlin

COMPUTER TECHNOLOGIES
IN SCIENCE AND EDUCATION

Textbook

Tomsk Polytechnic University Publishing House
2008

UDC 681.3.06(075.8)
BBC 32.973.�73

L89

Lopatkin S. A.
L 89 Computer Technologies in Science and Education: Textbook /

S. A. Lopatkin, V. I. Reizlin. – Tomsk: TPU Publishing House, 2008. –
235 p.

ISBN 5-98298-203-2

The concept of information technology, its stages of development,

problems of applying, types of information technologies are considered
in this textbook. The basics of programming in a high-level programming
language C++ are set out. The manual contains the following parts:
program structure, data type, operators, statements, functions, storage
class and variables visibility, operations with arrays, classes, and basics
of object-oriented programming.

The textbook is developed in the framework of Innovative
Educational Programme of TPU on the direction “Power-saving, basic,
special, and industrial discharge, radiation, and plasma-beam technologies”.
The manual is prepared at the High Voltage Technology and Electrophysics
and Informatics and System Design departments of TPU. The manual
is intended for students of Master’s programme on a specialty 140200
“Technology and Physics of High Voltage”.

UDC 681.3.06(075.8)
BBC 32.973.�73

Reviewer
Doctor of Physics and Mathematics,
Professor of Tomsk State University

A. I. Potekaev

ISBN 5-98298-203-2
© Lopatkin S. A., Reizlin V. I., 2008
© Tomsk Polytechnic University, 2008
© Design. Tomsk Polytechnic University

Publishing House, 2008

 3

CONTENTS

INTRODUCTION ...9

UNIT 1

1. INFORMATION TECHNOLOGIES..11
1.1. A DEFINITION OF INFORMATION TECHNOLOGY11

A New IT ...11
The Toolbox of IT ...12
The Way IT Correlates with Information System.........................13

1.2. THE STAGES OF IT DEVELOPMENT...13
The Type of Tasks and Information Processing............................13
Problems Facing the Society Informatization14
The Advantage of Computer Technology14
The Types of Technology Toolbox ...15

1.3. THE PROBLEMS OF IT USE ...16
The Methodology of IT Use ..16
Variants of IT Implementation into an Enterprise.........................18

1.4. TYPES OF IT ...19
IT of Data Processing ..19
Management IT..21
Office Automation IT ..22
Decision Making IT...27
Expert Systems IT ...32

QUESTIONS ...36

UNIT 2

2. THE FUNDAMENTALS OF C++ LANGUAGE39
2.1. THE FIRST PROGRAMS..39
2.2. THE LANGUAGE ALPHABET ...40
2.3. COMMENTS..41
2.4. DATA TYPES ..42

 4

2.5. INTEGER DATA TYPE ..43
char or Symbol Type...43
int Type (Equivalent short int) ..44
unsigned int Type ..44
long (long int) Type...44

2.6. FLOATING-POINT DATA TYPES..45
2.7. STRING CONSTANTS, OR LITERALS..45
2.8. A PREPROCESSOR STATEMENT DEFINE46
2.9. DECLARATIONS..46
2.10. CONST MODIFIER..47

3. EXPRESSIONS ...48
3.1. ASSIGNMENT OPERATOR AND EXPRESSION48
3.2. ARITHMETIC OPERATORS ...49
3.3. RELATION OPERATORS ..50
3.4. LOGICAL OPERATORS...50
3.5. BITWISE OPERATORS..51
3.6. SHIFTS ...52
3.7. INCREMENT AND DECREMENT OPERATORS ++ AND --53
3.8. TERNARY OR CONDITIONAL OPERATOR54
3.9. SEQUENCING OF OPERATORS ..54
3.10. OPERATOR PRECEDENCE AND CALCULATION

ORDER ...55

4. STATEMENTS..57
4.1. EMPTY STATEMENT ..57
4.2. COMPOUND STATEMENT...57
4.3. DECLARATIONS..57
4.4. CONDITIONAL STATEMENT ..57
4.5. THE SWITCH STATEMENT ..58
4.6. THE WHILE STATEMENT...61
4.7. THE LOOP DO–WHILE WITH POST-CONDITION61
4.8. THE FOR LOOP STATEMENT..62
4.9. THE STATEMENT OF UNCONDITIONAL JUMP............................64
4.10. THE BREAK STATEMENT ..64
4.11. THE CONTINUE STATEMENT...64
4.12. THE RETURN STATEMENT..65

5. THE SIZEOF OPERATOR ...66

6. DECLARATIONS AND DEFINITIONS ...67

 5

7. NAME RESOLUTION..68
7.1. NAME RESOLUTION IN A LOCAL SCOPE

(BLOCK)...68
7.2. NAME RESOLUTION IN A FUNCTION ..69
7.3. NAME RESOLUTION IN FUNCTION TEMPLATE

DEFINITIONS (FUNCTION PROTOTYPE)..69
7.4. NAME RESOLUTION IN A FILE..69
7.5. NAME RESOLUTION IN CLASS SCOPE ..69

8. VISIBILITY SCOPE ...70

9. MEMORY CLASSES ...72

10. OBJECT AND TYPE DECLARATION...74

11. TYPE NAMES...75

12. A SYNONYM OF A TYPE NAME ...76

13. TYPE CONVERSION RULES...77
13.1. EXPLICIT CONVERSIONS..77
13.2. IMPLICIT CONVERSIONS OF A STANDARD

BASE TYPES ...78
13.3. THE CONVERSION OF DERIVED STANDARD

TYPES...79

14. POINTERS ..80
14.1. DEFINITION OF POINTERS ...80
14.2. POINTERS AND ARRAYS ..81
14.3. ADDRESS ARITHMETIC...83
14.4. SYMBOL ARRAYS AND STRINGS ...83
14.5. MULTIDIMENSIONAL ARRAYS...85
14.6. POINTERS AND MULTIDIMENSIONAL ARRAYS.......................86

15. DYNAMIC MEMORY MANAGEMENT OPERATORS.....................88
15.1. THE OPERATOR NEW FOR MEMORY

ALLOCATION...88
15.2. THE OPERATOR DELETE FOR MEMORY

DEALLOCATION ...89

ADVICE...91

EXERCISES ..93

 6

UNIT 3

16. FUNCTIONS ...97
16.1. FUNCTION DEFINITION AND CALL ...97
16.2. ARGUMENT PASSING ..99
16.3. MULTIDIMENSIONAL ARRAYS PASSING.................................101
16.4. THE POINTERS TO THE FUNCTIONS..103
16.5. REFERENCES ...105
16.6. REFERENCES AS FUNCTION PARAMETERS106
16.7. THE ARGUMENTS BY DEFAULT...107
16.8. FUNCTION OVERLOADING ..107
16.9. FUNCTION TEMPLATES ..109

ADVICE...112

EXERCISES ..113

UNIT 4

17. CLASSES ..115
17.1. DECLARATION OF CLASSES..115
17.2. CONSTRUCTORS...118
17.3. DESTRUCTORS ..121
17.4. STATIC MEMBERS OF THE CLASS ...122
17.5. THIS POINTER ..123
17.6. STATIC MEMBER FUNCTIONS...124
17.7. THE POINTERS TO THE CLASS MEMBERS126
17.8. INITIALIZING OF DATA MEMBERS OF THE

CLASS ..126
Initializing of the Members of the Abstract Types......................126
Initializing of the Constants...127

17.9. THE COPY CONSTRUCTOR AND ASSIGNMENT
OPERATOR..128

17.10. FRIENDLY FUNCTIONS ...130
17.11. CONSTRUCTOR AND OPERATOR NEW....................................133

18. INHERITANCE...134
18.1. CONSTRUCTION OF A DERIVED CLASS134
18.2. PROTECTED CLASS MEMBERS ...135
18.3. CONTROL OF THE ACCESS LEVEL TO THE

MEMBERS OF THE CLASS ..136

 7

18.4. A SEQUENCE OF CONSTRUCTOR AND
DESTRUCTOR CALL DURING CONSTRUCTING
OF THE DERIVED CLASS BASED ON ONE BASE
CLASS ..137

18.5. TYPE CONVERSION..138

19. POLYMORPHISM..140
19.1. EARLY AND LATE BINDING ..140
19.2. VIRTUAL FUNCTIONS ...141
19.3. ABSTRACT CLASSES ...146

20. ENUMERATIONS..148

ADVICE...151

EXERCISES ..153

UNIT 5

21. OVERLOADING OF STANDARD OPERATORS.............................156
21.1. THE BASIC DEFINITIONS AND PROPERTIES............................156
21.2. THE OPERATORS NEW AND DELETE FOR THE

ABSTRACT TYPES ..160
The Use of new when Creating a Dynamic Object
of the Abstract Type ..160
The Operator delete ...161

21.3. TYPE CONVERSION..161

22. SOME PECULIARITIES OF OVERLOADED OPERATORS...........165
22.1. OPERATOR = ..165
21.2. OPERATOR []...167

ADVICE...173

EXERCISES ..174

UNIT 6

23. CLASSES AND TEMPLATES ..177

24. DYNAMIC DATA STRUCTURES..180
24.1. LISTS..180

 8

24.2. THE OPERATIONS OVER UNIDIRECTIONAL
LISTS ..183

Implementation of the List ..184
24.3. DOUBLE-LINKED AND CIRCULAR LISTS186
24.4. THE CIRCULAR LIST OPERATIONS..188

Element Insertion...188
Element Deletion ...188
Element Search ..188

24.5. STACKS ...189
Stack Realization through the Array ...189
Stack Realization through the Dynamic Chain
of Links..191

24.6. BINARY TREES..194
Definition and Construction ..194

24.7. TABLES ...197

ADVICE...202

EXERCISES ..203

C++ GLOSSARY ...206

APPENDIX
PUNCTUATION MARKS AND SPECIAL SYMBOLS...........................227
CONTROL SEQUENCES ..228
DATA TYPES ...229
OPERATORS PRECEDENCE AND THE EXECUTION
ORDER ..230
C++ KEYWORDS...231
STANDARD FUNCTIONS ..232

REFERENCES...233

 9

INTRODUCTION
New information technologies are wider and wider used in all fields of

life, including science and education. One of the important aspects of infor-
mation technologies is programming in high level languages. The greatest
part of this manual is devoted to programming in one of the modern
programming language C++.

C++ was developed on the basis of language C by Bjarn Stroustrup.
The authorship of language C belongs to Denis Ritchy, the research worker
of AT&AT Bell Laboratories (1970). At first the programming language C
was created for setting up and supporting an operational system UNIX.
Before all the programs of this system were written either in Assembler lan-
guage or B language, designed by Ken Tompson, a creator of UNIX. C is
a language of general-purpose. It can be used for designing various programs,
but its popularity was associated with operational system UNIX. It was
necessary to design programs in C language to support UNIX system.
C language and UNIX system fitted each other so well, that soon almost all
commercial programs for UNIX proved to be written in C. This language
gained such popularity that it was adjusted to other operational systems.
Nevertheless, C language had some imperfections.

The peculiarity of C language is that it has retained many features of
low level languages. These all present its weak and strong points at the same
time. Programming language C can control the computer memory like
assembler. On the other hand, C possesses the features of high level language,
so designing and reading programs in it much easier than in the assembler
language. C is outstanding for designing system programs, but understanding
programs in C for other purposes often more difficult than in other high level
languages. C language also has fewer capabilities for program autocheck than
some other languages of high level.

To overcome disadvantages of C, B. Stroustrup (AT&AT Bell Labora-
tories) in 1980 developed programming language C++ on its basis.
The greater part of C is a subset of C++ language, thus, most of C programs

 10

are also C++ programs. The text in C language can be used in programs in
C++. Also, it is possible to refer to functions library of C language. The main
difference of C++ and C is realization of object-oriented technique of
programming, which is extremely powerful modern programming method.

In fact, the specification of AT&T C++ release 2.0 became a language
standard after several years of using C++. It was also designed under
the direction of B. Stroustrup. Today there is a committee in the National
Institute of Standards (NIST) that deals with C++ language (X3J16).
The description of the language with comments, edited in 1990, was accepted
by NIST committee as a basic material for normalization of C++. The last
version of the standard is dated on 26th of May 1994. At present a realization
of the language in Visual C++, Borland C++ x.x, Borland C++ Builder x
and other systems have become widespread. The manual is focused on
Borland C++ 3.1 – 5.x. version.

 11

1. INFORMATION TECHNOLOGIES

1.1. A DEFINITION OF INFORMATION TECHNOLOGY

The term “technology” has a root “techne” from Greek that means
“art, mastery, skill”, meaning nothing but processes. “Process” implies a de-
finite combination of actions, directed to achieve a certain aim. The process
must be defined by a strategy, chosen by a person, and must be realized by
means of the set of different means and methods. “Material fabrication
technology” implies a process, defined by the aggregate of treatment means
and methods, fabrication, change of a state, properties, form of a material or
raw. Technology changes the quality and initial state of a material in an effort
to obtain a material product. The aim of the material fabrication technology is
a product release that satisfies the demand of people and system.

Information is one of the most valuable resources of the society together
with such traditional material resources as oil, gas, minerals etc. It means that
the process of information treatment by analogy with that treatment of material
resources can be described as technology. According to this, it is possible to
give the following definition for information technology (IT).

Information technology is a process, using the system of means and me-
thods for collecting, processing and transmission of data (initial information) in
order to obtain the information of a new quality about the state of an object, proc-
ess or phenomenon (information product).

A New IT
IT is the most essential constituent of the information resources use of

the society. By now, it has passed several evolutionary stages. The stages
change was mainly due to scientific-and-engineering progress, appearing of
new engineering devices of information organization. In modern society,
a personal computer (PC) has become the main engineering means of infor-
mation organization technology. PC influenced greatly the concept of con-
struction and use of processing as well as the quality of obtained information.

UNIT 1

 12

The introduction of PC into information domain and application of telecom-
munication facilities have determined a new stage of IT development. Con-
sequently, one of the following synonymous attributes – “new”, “computer”
or “modern” – have changed IT name when joining to it. The definition
“new” highlights not an evolutionary but innovative character of this tech-
nology. Its introduction changes considerably the content of different kinds
of activity in organizations. The notion of “new” IT includes communication
technologies, providing information transmission by different means – tele-
phone, telegraph, telecommunication, fax, etc.

Thus, new IT is an information technology with user-friendly inter-
face, including PC and telecommunication facilities. The definition “com-
puter” highlights the idea that the main engineering means of its realization
is a computer. There are three basic principles of a new (computer) IT:

� real time (conversational) mode of operating with computer;
� integration (splicing, interrelation) with other software products;
� flexibility of the data changing process as well as problem definition

changing process.
Apparently, the most precise notion must be “new IT” not “computer

IT”, as new IT is shown in its technology structure, which is based not only
on the use of computers, but also other engineering means, especially those,
providing telecommunication.

The Toolbox of IT
The realization of engineering process of material manufacturing is

carried out by means of different engineering facilities. They include: equip-
ment, engineering tools (lathes), tools, pipelines and others.

The engineering devices for information fabrication are hardware,
software, and mathematical support of this process. They process the initial
information into the information of a new quality. Let’s pick out software
products in these context and call them as a toolbox, or more exactly IT
software tools.

IT software tools is one or several interrelated software products for
a definite computer type, which work technique allows to achieve the object, set
by a user

It is possible to use widespread software product types for PC as a
toolbox. They are as following: word processor (editor), desktop publishing
(DTP), electronic worksheets, data manager, electronic notebooks, electronic
calendars, information systems of functionality (financial, bookkeeping, mar-
keting, etc.), expert systems and so on.

 13

The Way IT Correlates with Information System
IT is intimately connected with information systems, which are the basic

medium for IT. At first sight it may seem that the introduced IT and systems
definitions are too similar. However, this is not the case. IT is a process, con-
sisting of well-regulated rules of performance of operations, actions, stages of
different degrees of complexity with data, storing in computers. The main pur-
pose of IT is to obtain necessary information for a user as a result of task-
oriented actions in initial information processing.

Information system is a medium, which constituents are computers,
multicomputer systems, software products, databases, people, engineering
and software means of all kinds and so forth. The main purpose of informa-
tion system is organization of information storage and transmission.

Realization of information system functions is not possible without
knowing IT which is oriented at it. IT can exist beyond information system
domain.

So, IT is a more capacious notion, reflecting the contemporary idea
about the process of information transformation in society.

Summing up all above-mentioned, we suggest some narrower definitions
of an information system and IT than those, introduced earlier. IT – is a collec-
tion of well-defined purposeful actions of the staff in information processing on
computers. Information system is a person-computer system for support of
decision making and software product manufacturing, which uses computer IT.

1.2. THE STAGES OF IT DEVELOPMENT

There are several viewpoints at the IT development with the use of
computers that determine its stages based on different features. A common
approach is that a new stage of IT development has begun when computers
appear. The main purpose is satisfaction of information needs of a person both
in professional and domestic field. Therefore, there are several criteria for divi-
sion of IT development into stages. These criteria are as discussed below.

The Type of Tasks and Information Processing
The first stage (1960–1970s) is data processing in a computer center in

a state of multiple-access. The main tendency of IT development is automa-
tion of operating routine actions of a person.

The 2nd stage (since 1980s) is a creation of the IT which are focused on
solution of strategic tasks.

 14

Problems Facing the Society Informatization
The first stage (up to the end of 1960s) is characterized by the problem

of the processing the data of great volumes when there are computer hard-
ware of limited capacities.

The 2nd stage (up to the end of 1970s) is connected with distribution of
IBM/360 series computers and is characterized by the problem of software
lagging behind the level of hardware development.

The 3rd stage (beginning with 1980s) is remarkable for computer
becoming a tool of an amateurish user, and information systems have become
the means of supporting when making his/her decisions. The problems are
ultimate satisfying the user’s needs and creation of the appropriate interface
when working in computer medium.

The 4th stage (beginning with 1990s) concerns the current technology
creation of interorganizational connections and information systems.
The problems of this stage are numerous. The most essential are:

� elaboration of agreements and establishment of standards, protocols for
computer communication;

� organization of the access to strategical information;
� organization of the information security and safety.

The Advantage of Computer Technology
The 1st stage (beginning with 1960s) is characterized by quite efficient

information processing when performing traditional operations oriented
toward centralized resource sharing of computer centres. The main criterion of
efficiency evaluation of created information systems was the difference
between funds spent on designing and those saved as a result of implementation.
The major problem at this stage was psychological, that is, poor interaction of
users, for whom these information systems had been created, and computer
designers because of difference of opinions and understanding of the current
problems. Consequently, the systems that users conceived poorly, had been
created, and in spite of their quite great capability, were not used in full power.

The 2nd stage (in the middle of 1970s) is connected with the advent of
personal computers (PC). The method of information system creation
changed. The orientation is shifted to the individual user’s side for support
his/her decision making. The user is interested in the current development,
the contact with the designer is established, and mutual understanding
appears between both groups of specialists. At this stage decentralized data
processing, based on the solution of local tasks and on the operation with data
bases at user’s workplace, is used together with centralized data processing,
typical for the 1st stage.

 15

The 3rd stage (beginning with 1990s) is connected with the notion of
the analysis of strategical advantages in business and is based on the
achievements of telecommunication technology of distributed information
processing. Information systems are aimed not only at efficiency increase of
data processing and assistance to a manager. The appropriate information
technologies must help organization to withstand competitive activity and to
score an advantage.

The Types of Technology Toolbox
The 1st stage (up to the second half of XIX century) is “handheld” IT,

which toolbox consisted of a pen, ink-pot, book. The communication was ful-
filled manually by means of sending letters, bags, and dispatches by post.
The main purpose of technology is representation of the information in a re-
quired form.

The 2nd stage (since the end of XIX century) is a “mechanical” tech-
nology, which toolbox consisted of a typewriter, telephone, dictating machine
and delivery of mail, instrumented by enhanced means. The main technology
purpose is presentation of the information in the required form by more con-
venient means.

The 3rd stage (1940–1960s of XX century) is an “electric” technology,
which toolbox consisted of large computers and appropriate software, electric
typewriters, Xeroxes, portable dictating machines.

The purpose of technology changes and the accent in IT starts to shift
from the form of information presentation to formation of its content.

The 4th stage is “electronic” technology, which toolbox is large com-
puters and automated control system (ACS), created on their base and infor-
mation storage and retrieval system (IRS), equipped with wide range of
common- and special-purpose software complexes. The technology focus
shifts even greater to forming of intensional side of information for manage-
ment of different spheres of life, especially to organization of analytical
work. A great number of objective and human factors didn’t allow to solve
problems, facing a new IT concept. However, the experience of formation of
intensional side of management information was obtained and professional,
psychological, and social bases were prepared for transition to a new stage of
technology development.

The 5th stage is “computer” (“new”) technology, which basic toolbox
is a personal computer with wide range of standard software products of dif-
ferent assignment. At this stage the process of ACS personalization takes
place, which becomes apparent when creating expert support systems of de-
cision making for certain specialists. Such systems have integrated elements

 16

of analysis and intelligence for different levels of management and are realized
in PC and use telecommunication. Owing to the transition to the microprocessor
basis, the technique of domestic, cultural and other assignments are subjected
to considerable changes. Global and local computer networks are widely used
in different fields.

1.3. THE PROBLEMS OF IT USE

It is quite natural that IT become out of date and they are replaced by
the new ones. For instance, the work technique on PC at user’s workplace
took the place of batch processing technique on a large computer in computer
centre. Telegraph handed down near all its functions to a telephone. The tele-
phone is forced out gradually by Internet service.

When introducing a new IT into organizations, it is necessary to assess
the risk of being behind the rivals as a result of IT inevitable decay with time,
as software products, in comparison with other kinds of material products,
have an extremely high replacement by new versions or types. The periods of
replacement vary from several months up to one year.

In case this factor is not considered in the process of new IT introduc-
tion, it is probably that by the moment of completion of an enterprise transi-
tion to a new IT, IT will have already become outdated, and measures of its
upgrading will have to be assumed. Such misfortunes of IT introduction are
usually connected with imperfection of hardware. Whereas the main reason
of failures is the absence or weak work up of IT use methodology.

The Methodology of IT Use
Centralized information processing in computer centres was the first

historically existing technology. The prominent computer centres (CC) of
multiple-access were created and were equipped with big computers (in Rus-
sia – electronic computers ES). The application of such electronic computers
allowed to process data bulks of input information and to obtain different
types of software products on this basis, which were afterwards transmitted to
users. Such processing is caused by insufficient equipping enterprises and
organizations with computing machinery in 1960–1970s.

The advantages of methodology of centralized information processing are:
� the possibility of user to apply to data bulks in the form of databases

and to software products of extensive nomenclature;
� relative simple to introduce the methodological solutions in develop-

ment and improvement of IT owing to their centralized acceptance.

 17

The disadvantages of such methodology are evident:
� limited responsibility of inferior staff, who do not assist online obtaining

information by a user. Thus they impede the accuracy of making man-
agement decisions;

� limitation of user’s capabilities in the process of information obtaining
and use.
Decentralized information processing is connected with the advent of

PC in the 1980s and development of telecommunication means. It pressed
considerably the preceding technology as it gives the user a lot of opportuni-
ties at work with information without limiting his/her initiative.

The advantages of such methodology are:
� structure flexibility, providing freedom to the user’s initiatives;
� responsibility raising of inferior staff;
� reduction of the need in using a central computer and correspondingly

in monitoring computer centre;
� better realization of constructive potential of a user due to the means of

computer connection.
However, this methodology has its disadvantages:

� the complexity of standardization because of the great number of
unique designs;

� user’s psychological aversion of standards and finished software prod-
ucts, recommended by the computer centre;

� inequality in development of the local IT level, that first of all is
determined by the skill level of a definite employee.
The described advantages and disadvantages of centralized and decen-

tralized IT led to the necessity of reasonable application of this or that
approach. Such approach can be called rational methodology and the way of
responsibilities distribution will be the following:

� a computer centre must be responsible for elaboration of the general
strategy of IT use, help users both at work and in education, set up the
standards and specify the policy of software engineering means appli-
cation;

� a staff, using IT, must follow the instructions of the computer centre,
implement the development of its local systems and technologies in
accordance with the general plan of organization.
Rational methodology of IT use allows to achieve greater flexibility, to

support general standards, fulfil the compatibility of local software products,
reduce the activity duplication and so on.

 18

Variants of IT Implementation into an Enterprise
When applying IT into this or that enterprise, it is necessary to choose

one of two basic concepts of organization structure and the role of computer
information processing in it.

The first concept is oriented at existing structure of an enterprise. IT is
adjusted to organization structure, and only enhancement of operation modes
takes place. Service lines are weakely developed, only working places are
rationalized. The distribution of functions takes place among technical workers
and specialists. The degree of risk of new IT introduction is minimal, as
the expenses are insignificant and organizational structure of an enterprise
does not change.

The main disadvantage of such strategy is necessity of continuous varia-
tion of the information presentation form, adapted to specific technological
methods and hardware. Any operative decision “gets stuck” at different stages
of IT.

The advantages of the strategy are a minimal degree of risk and
expenses.

The second concept is oriented at the future structure of an enterprise.
It is assumed that the existing system must be upgraded.

A given strategy is connected with maximal communication develop-
ment and designing of new organizational interrelationships. The productiv-
ity of the organizational structure of an enterprise increases as database
records are distributed rationally, the volume of information, circulating in
system channels, reduces and the equilibrium among current tasks is
achieved.

The main disadvantages of this approach:
� considerable expenses at the first stage, connected with development of

general conception and inspection of all enterprise subdivisions;
� the presence of psychological tensity, caused by assumed changes in

an enterprise structure and as a consequence by changes in staff list
and job responsibilities.
The advantages of a given strategy:

� rationalization of enterprise organizational structure;
� maximal employment of all workers;
� high professional skill;
� integration of professional functions due to the use of computer net-

works.
A new IT at enterprises must be such that the information levels and

subsystems, processing this information are connected by one information
array. At the same time, two demands raise. First, the system structure of

 19

information organization must correspond to the distribution of authority at
an enterprise. Second, the information inside the system must function in
a way to reflect the levels of management as fully as possible.

1.4. TYPES OF IT

IT of Data Processing

Description and Function
IT of data processing is intended for solution well structured tasks, for

which there are necessary input data, and algorithms and other standard proce-
dures of their processing are well known. This technology is applied at
the level of operating (executive) activities of the staff of low qualification in
an effort to automatize some routine repetitive operations of administrative
work. That is why IT and system implementation at this level will considerable
increase working efficiency of the staff, relieve people of routine operations,
and possibly, even lead to the necessity of reducing the number of workers.

At the level of operational activity, the following problems should be
solved:

� data processing in the operations made by an enterprise;
� making of periodical monitoring reports about the state of enterprise

work;
� obtaining the answers to various current queries and their registration

as paper documents or reports.
The examples of routine operations are:

� the operation of correspondence test of reserve level of indicated goods
at a warehouse with the standard. When the reserve level lowers,
the order is given to the supplier with indication of necessary goods
and the delivery date;

� the operation of goods selling by the enterprise as a result of which is
an outgoing document for the customer in the form of a cheque or
receipt.
The example of monitoring report is:

� everyday report about the income and payment in cash by a bank,
formed to monitor the balance of available cash.
The example of query:

� the query to the staff database, which allows to obtain the data about
the requirements to candidates for taking a definite post.
There are several peculiarities, connected with data processing, distin-

guishing the given technology from others:

 20

� performing the tasks of data processing, necessary for the certain

enterprise. The law charges every enterprise to have and store the data
of its activity, which can be used as means of providing and supporting
of supervision. Therefore all enterprises must have a data processing
system and corresponding IT;

� solution of well-structured tasks only, for which an algorithm can be
developed;

� performing the standard processing procedures. The existing standards
determine typical data processing procedures and assign their obser-
vance by the organizations of all types;

� performing the main processing procedures automatically with mini-
mal participation of a human;

� the use of the detailed data. The records of the enterprise activity have
detailed nature, admitting the audit. In the process of audit the enter-
prise activity is checked chronologically from the beginning of the pe-
riod to the end and vice versa;

� the accent is on the chronology of the events;
� minimal assistance from the other levels specialists is required in solu-

tion the problems.

Basic Components
The basic components of data processing IT can be represented in the

following way:
Data collection. As an enterprise manufactures production, each its

activity is accompanied by corresponding data records. Usually the enterprise
activities, concerning external environment, are marked particularly as
the operations, performed by the enterprise.

Data processing. For producing from the incoming data the information
reflecting the enterprise activity, the following typical operations are used:

� classification or grouping. The initial data usually have the types of codes
consisting of one or several symbols. These codes, representing definite
object features, are used for identification and grouping of records;
(The example. During salary accounting, each record includes a code

(clock number) of the worker, subdivision code, where he/she works, position,
and so on. In accordance with these codes different grouping can be formed.)

� sorting out, by means of which the sequence of records is organized;
� calculations, including arithmetic and logical operations. These opera-

tions, performed with data, give opportunity to obtain new data;
� enlargement or aggregation, serving for reduction of data quantity and

is realized in the form of computation total or average values.

 21

Data storage. Many data at the level of operational activity are neces-
sary to store for subsequent use either at this level or at different one. For
their storage, databases are created.

The reports (documents) creation. In IT of data processing, documents
must be created for the directors and the workers of the enterprise, as well as
outside partners. At the same time, the documents can be created on demand
or due to performed operation by the enterprise, as well as at the end of each
month, quarter, and year.

Management IT

Description and Function
The purpose of management IT is meeting information needs all em-

ployees of the enterprise without exceptions, who deal with decision-making.
It can be useful at any level of management. This technology is oriented at
work in the environment of management information system and is used at
worse structured problems being solved in comparison with those, solved by
means of data processing IT.

Information systems (IS) of management are ideal for satisfaction of
similar information needs of employees at different functional subsystems
(subdivisions) or enterprise management levels.

The information delivered by IS contains data about the past, present
and probable future of the enterprise. This information looks like regular or
special management reports.

For decision making at the level of supervising management, the in-
formation must be represented in aggregated form in order that the tendencies
of data changes, reasons of aroused deviations, and possible solutions are
viewed. At this stage, the following tasks of data processing are solved:

� assessment of the planned state of managed object;
� assessment of the deviations from the planned state;
� identification of the deviation reasons;
� the analysis of possible solutions and actions.

Basic Components
Management IT is directed at the making of different types of reports.
Regular reports are made in accordance with the fixed schedule, de-

termining the time of its creation (for example, monthly analysis of sales of
the company).

Special reports are made on demands of managers or when something
unplanned happened.

 22

These or those types of reports can have the form of summing, compar-
ing and emergency types of reports.

In summing reports, data are combined into separate groups, sorted out
and represented as intermediate and final results in separate areas.

Comparing reports contain data, obtained form different sources, clas-
sified according to different features, and used in the purposes of comparison.

Emergency reports contain the data of exceptional (extraordinary) cha-
racter.

The use of the reports for management support turns out to be very
effective at realization of so-called “management according to deviations.”

The management according to deviations means that the main content
of the obtained by a manager data must be deviations of the state of the enterprise
economical activity from some fixed standards (for example, from its
planned state). When using at the enterprise the principles of management
according to deviations, the following demands raise to the reports:

� the report must be made only in case this deviation took place;
� the data in the report must be sorted out according to the significance

of the index critical for this deviation;
� it is useful to represent all the deviations together for the manager to

catch the relation among them;
� it is necessary to show a quantitative deviation from the norm.

Office Automation IT

Description and Function
Historically automation began at plants and then it spread to the office,

having the purpose of automation of routine secretary work. In the course of
communication means development automation of office technologies awoke
the interest of specialists and managers, who saw here the possibility to in-
crease their labour productivity.

The aim of the office automation is not to replace existing traditional
communication system of the staff (with their meeting, phone calls and or-
ders), but only to supplement it. Automated office is attractive for managers
of all management levels at the enterprise not only because of its support
company inner contacts of staff, but also due to new communication means
with external environment.

IT of the automated office is arrangement and support of communica-
tion processes inside the company as well as with external environment on
the basis of multicomputer systems and other modern means of transmission
and operation with information.

 23

Office automated technologies are used by managers, specialists, secre-
taries and clerks; especially they are attractive for team decision of problems.
They allow to raise the labour productivity of secretaries and clerks and give
them opportunity to deal with the increasing volume of work. However, this
advantage is secondary in comparison with the possibility of automation use in
the office as a tool for problem solving. Improvements of the decisions, made
by the managers as a result of their more perfect communication, are capable
of providing the economic growth of an enterprise. Nowadays there are several
tens of software products for computers and non-computerized engineering
means, providing office automation technology (word processor, table proces-
sor, E-mail, electronic calendar, audio-mail, computer and teleconferences,
videotext, image storage), as well as special-purpose programs of management
activity (documentation running, supervision of order fulfillment, etc.) Also,
non-computerized means are widely used (audio- and video conferences,
facsimile posting, Xerox and other means of office equipment).

Basic Components
Database. A compulsory component of any technology is database.

In automated office, database concentrates the data about the enterprise pro-
duction system itself as well as in the technology of data processing at
the operation level. The information can enter the database from the outside
of the enterprise. The specialists must know the basic technological opera-
tions of the work in database medium.

For example, the information about daily selling or raw material delivery
is accumulated in the database and is transmitted to the host computer by
commercial agents of the enterprise. The information about the rate of
exchange or quotations of stock, including the stocks of the enterprise can be
received from stock exchanges every day by E-mail. This information is
updated every day in the corresponding data base array. The information
from data base comes to the input of computer applications (programs) such
as word processor, table processor, E-mail, computer conferences and so on.
Any computer application of the automated office provides the connection
among employees and with other enterprises. The information received from
the databases can be used in non-computerized technical means for informa-
tion transmission, replication, and storage.

Word processor. It is a type of application software, intended for crea-
tion and processing of textual documents. It allows to add and remove words,
move sentences and paragraphs, adjust the format, manipulate the text ele-
ments and modes and so forth. When the document is ready, the worker
rewrites it to the external memory and then prints and if necessary passes it
by the network. Thus, a manager has at his/her disposal effective type of

 24

written communication. Regular receiving of letters and reports by means of
word processor gives a manager a chance to assess the situation constantly.

Electronic mail. Electronic mail (E-mail), based on network use of com-
puters, gives the user a chance to receive, store and send messages to their part-
ners by network. In this case only one-way communication takes place. This
limitation, in the judgment of many researches, is not too important as in the
half of cases the office negotiations on the phone are aimed at receiving infor-
mation. For providing two-way communication, the messages have to be sent
and received repeatedly by E-mail or by use of another type of communication.
E-mail can provide the user with different opportunities depending on the type
of the software used. To make the message available for all users of E-mail it
should be put on the computer public bulletin board, at will it is possible to
mark that this is a private correspondence. You can also send the message with
the notification of its receiving by the addressee. When an enterprise decides to
introduce E-mail, it has two opportunities. The first one is to buy personal hard-
ware and software and create its own local multi-computer system, realizing
the function of E-mail. The second opportunity is connected with buying of the
E-mail use service, which is provided by specialized communication organizations.

Audio-mail. This is the mail for message transmission with voice. It re-
sembles E-mail, excepting that instead of the typing the message on computers
it is transmitted by the phone. Also the messages are received by the phone.
The system includes a special device for conversion of the audio signals into
digital code and vice versa, and a computer for audio messages storage in digital
form. Audio-mail is also realized in the network. The mail for the audio mes-
sage transmission can be successfully used for team decision of problems. For it,
a sender of the message must indicate the list of people, who this message is
sent to. The system will occasionally ring up all the indicated employees for
delivering the message to them. The main advantage of audio mail in compari-
son with electronic one is that it is simpler and it is not necessary to key the data.

Table processor. Along with word processor, it is a basic constituent
of informational culture of any employee and automated office technology.
Without knowing the basics of work technique in it, it is impossible to use
PC at full extent. The functions of modern software environments of table
processors allow to perform a lot of operations with data represented in table
form. Combining these operations by the common features, it is possible to
list the most numerous and widely applied groups of production operations:

� data input from both the keyboard and databases;
� data processing (sorting, resume automated formation, data copying

and transfer, different groups of calculating operations, data aggrega-
tion and so on);

 25

� information output in a printed form, in the form of imported files into
other systems, directly into the database;

� qualitative design of table forms of data representation;
� multipronged and qualitative data design in the form of diagrams and

graphs;
� performing engineering, financial, statistics calculations;
� making the mathematical simulation and a number of other auxiliary

operations;
Any modern environment of a table processor have the means of data

transmission by network.
Electronic calendar. It provides one opportunity to use a network

computer for storage and manipulation of managers and other employees
working timetable. A manager (or his/her secretary) fixes the date and time
of the meeting or other arrangements, looks through the arranged timetable,
makes changes by means of a keyboard. Hardware and software of an elec-
tronic calendar fully corresponds to similar E-mail components. In addition,
the system provides the opportunity to gain an access to the calendars of oth-
er managers. It can automatically coordinate the meeting time with their per-
sonal timetables.

The use of an electronic calendar proves to be very efficient for the
managers of the high management level, whose working days are filled for
long ahead.

Computer conferences and teleconferences. Computer conferences
use multi-computer systems for information interchange among the conferees,
solving a definite problem. Naturally, the circle of people, having the access to
this technology, is limited. The number of conferees of the computer conference
can be many times greater than those of audio and video conferences. It is possible
to meet in the literature the term “teleconference”. A teleconference includes
three types of conferences: audio, video, and computer ones.

Videotext is based on the use of a computer for receiving an imaging
of text and graphic data on the screen of the visual display unit (VDU). There
are three possibilities of information receiving in the videotext form for peo-
ple decision making:

� to create videotext files on their own computers;
� to set up a contract with specialized companies to obtain the access to

the videotext files developed by them. Such files, specially intended
for sale, can be stored on the servers of the company, which fulfilling
such services, or delivered to the client on magnetic or optical disks;

� to set up the contract with other companies for obtaining access to videotext
files.

 26

The exchange by the catalogues and pricelists of production among
companies in videotext form gains now greater popularity. As for companies
that specialize in videotext selling their services began competing with such
printed matters as newspapers and magazines. Thus, in many countries it is
possible to order a newspaper or magazine in videotext form, without men-
tioning current summaries of stock information.

Image storage. At any enterprise, it is necessary to store a great num-
ber of documents over a long period. Their number can be so great that stor-
age in the file form causes serious problems. That is why the idea to store not
the document itself, but only its image appeared, moreover, to store in
a digital form. The image storage is a perspective office technology and is
based on the use of a special device – an optical image recognizer, allowing
to transform a document or a film image into digital form for further storage
in the external computer memory. The image saved in a digital format can be
printed out or displayed at any moment in its real appearance. For image sto-
rage, optical disks are used, which have vast memories (capacities). This
way, 200 thousand pages can be recorded on a five-inch disk. It is necessary
to keep in mind, that the idea of image storage is not new. There was an at-
tempt to realize it on the base of microfilms and microfiches. The advent of a
new engineering solution – an optical disk in combination with digital image
recording – facilitated the creation of a given technology.

Audio conferences. They use audio-communication for supporting
connection between workers who are in the distant areas or between the sub-
divisions of an enterprise. The simplest technical means of audio conference
realization is a telephone communication, equipped with additional devices,
providing the participation in the conversation for more than two people.
The creation of audio conference does not necessitate the presence of a com-
puter, but it only supposes the use of two-way audio communication between
its conferees. The use of audio conferences facilitates decision making, it is
cheap and convenient. The efficiency of audio conferences increases when
meeting the following conditions:

� the employee who organizes an audio conference must provide the op-
portunity of participation for all interested parties preliminary;

� the number of the conferees should not be too great (no more than six) in
order to restrain the discussion in the limits of the problem under discussion;

� the conferees must be informed about the conference program before-
hand, for example, by means of facsimile telegraph;

� every conferee has to introduce her/himself before starting his/her speech;
� the recording of the conference and its storage must be organized;
� the recording of the conference must be printed and sent to all its conferees.

 27

Video conferences. They are designed for the same purposes as audio
conferences, but with the use of the video equipment. Their holding does not
need a computer. In the process of the conference its conferees, remote from
each other at a considerable distance, can see on the screen themselves and
other conferees. The sound accompaniment is transmitted simultaneously
with television image. Although video conferences can cut down transport
and travel expenses, most of the enterprises use them not only due to this rea-
son. These enterprises see in them the opportunity to involve maximal num-
ber of managers and other employees who are geographically remote from
the office into the problem solution. The most popular three configurations of
video conference design:

� one-way video and audio communication. In this case audio and video
signals move in one direction, for example, from the head of the pro-
ject to the executors;

� one-way video and two-way audio communication. Two-way audio
communication gives the conferees, receiving the image, a chance to
exchange the audio information with the conferee who transmits the
video signal;

� two-way audio and video communication. In this more expensive con-
figuration a two-way audio and video communication is used among
all the conferees, usually having the same status.
Facsimile communication. This communication is based on the use of

a fax, capable of reading a document on one end of the communication channel
and reproducing its image on the other. Facsimile communication contributes into
decision making owing to quick and simple distribution of documents to the con-
ferees, solving a definite problem, independently of their geographical position.

Decision Making IT
Description and function. The systems of decision making support and

corresponding IT, appeared due to the efforts mainly of American scientists at
the end of 1970s – at the beginning of 1980s. The wide spread of PC, a stan-
dard application package, and a successful creation of artificial intelligence fa-
cilitated it. The main peculiarity of decision making support IT is a qualita-
tively new method of organization of the interaction between a person and
a computer. Elaboration of the solution, being the main purpose of this technology,
occurs as a result of an iterative process, where the following participate:

� decision making support system in the role of a computing section and
a controlled object;

� a person as a managing section, setting the input data and assessing
the obtained result of calculation on a computer.

 28

The completion of an iterative process occurs on a person’s will. In this
case it is possible to speak about the capability of an information system
together with a user to create new information for decision making.
In addition to this peculiarity of IT of decision making support, it is possible
to point out a number of its distinguishing characteristics:

� orientation toward badly structured (formalized) tasks;
� combination of traditional methods of computer data access and

processing with capabilities of mathematical models and methods of
task solution on their base.

� orientation at amateurish computer users;
� high adaptability, providing the possibility to adjust to the peculiarities

of the available hardware and software, as well as to the user’s needs.
IT of decision making support can be used at any level of managing.

Besides, the decisions made at different levels are often have to be coordi-
nated. So the important function either of a system or technology is a coordi-
nation of people, making decisions either on different or one level of management.
Three main components belong to the system of decision making support:
database, model base and software subsystem, which consists of data base
control system (DBCS), model base control system (MBCS) and interface
control system between a user and a computer.

Database
It is an important part of IT of decision making support. Data can be

used directly by a user for calculation by means of mathematical models.
Let’s consider the data resources and their peculiarities.

1. A part of the data arrives from information system of the operational
level. These data must be preliminary processed to use them efficiently.
There are two possibilities:

� to use for data processing the enterprise DBCS that belongs to the
structure of the system of decision making support;

� to make processing outside the system of decision making support,
having created a special data base for it. This variant is more preferable
for the enterprises making a great number of commercial operations.
Processed about the enterprise operations data form files, which are
stored beyond the system of decision making support, for increasing
reliability.
2. In addition to enterprise operation data, for functioning the system of

decision making support other inside data are required, for example, the data
about the staff movement, engineering data and so on, which must be in good
time collected, set in, and supported.

 29

3. The data from external sources have a great importance, especially
for supporting of decision making at high management levels. It is important
to point among necessary external data the data about the competitors, national
and world economy. In contrast to internal data, external data are usually
bought in the organizations which specialize in their collection.

4. At present, the problem of including one more data source – docu-
ments (letters, contracts, orders and so on) into database is widely explored.
If the content of these documents is recorded in the memory and then processed
using some key characteristics (suppliers, consumers, dates, kinds of services
etc.), the system will obtain a new powerful source of information.

Data management system must possess the following capabilities:
� formation of data combinations, received from different sources by

means of using the aggregation and filtering procedures;
� fast addition or eliminating this or that data source;
� construction of logical data structure in user’s terms;
� using and manipulating unofficial data for experimental verification of

user’s operational alternatives;
� providing of complete logical independence of this database on other

operational databases, functioning within the enterprise.

Models Base
The aim of model creating is to describe and to optimize some object

or process. The use of models provides the analysis realization in the systems
of decision making support. Models based on mathematical interpretation of
the problem by means of definite algorithms assist the information discovery,
useful for making proper solutions.

The use of the models in the structure of informational systems was
initiated when statistics and financial analysis methods were being applied.
These methods were first realized by the commands of common algorithmic
languages. Later special languages have been created, allowing to model
the situations like “what will happen if..?” or “what to do in order that ..?”.
Such languages, created specially for model construction, give a chance to
construct the models of a definite type, providing the solution finding at
flexible variation of variables.

There are a lot of types of models and the ways of their classification,
for example, according to the target use, field of possible applications,
the way of variable evaluation and so on.

According to the purpose of use, the models are subdivided into optimi-
zation, aimed to finding the maxima and minima of indices (for example, man-
agers often want to know which of their actions can cause maximizing of profits

 30

or minimizing the expenses), and descriptive, describing the behavior of
a system and not intended for management purposes (optimization).

According to the way of assessment, models can be classified as
deterministic, using the variable assessment by one number at definite values
of initial variables, and stochastic, assessing the variables using several
parameters, as initial data are specified by probabilistic characteristics.

Deterministic models are more popular than stochastic ones as they are
cheaper and they are easy to use and construct. In addition, quite sufficient
information for decision making is often obtained by means of deterministic
models.

According to the field of possible application, models are grouped into
specialized, intended for the use by only one system, and universal – for
the use by several systems.

Specialized models are more expensive; they are usually applied for
description of unique systems and have great accuracy.

In the systems of decision making support, the data base consists of
strategic, tactical, and operational models in the form of collection of model
blocks, modules and procedures, used as elements for their constructions.

Strategic models are used at the highest levels of management for set-
ting the purposes of the enterprise, a volume of resources necessary for their
achievements, and the policy of obtaining and application of these resources.
They can be efficient when choosing the variants of enterprise location, pre-
dicting the competitors’ policy and so on. A considerable scope width, variety
of variables, data representation in a condensed aggregate form is typical for
strategic models. These data are often based on external sources and can have
subjective nature. Planning horizon in strategic models as a rule is measured
in years. These models are usually deterministic, descriptive, specialized for
the use in one definite enterprise.

Tactic models are applied by the managers of a medium level for dis-
tribution and control of using existing means. Among possible fields of their
use it is necessary to point out financial planning, planning of requirements to
the employees, planning of gaining in sales, scheming of enterprise lay-out.
These models are applicable only to separate parts of an enterprise (for example,
to the system of manufacturing and marketing) and can include aggregated
indices. Time horizon, covered by tactic models, is from one month to two
years. The data form external sources can also be demanded here, but a great
attention at realization of given models must be paid to internal data of an enter-
prise. Usually tactic models are realized as deterministic, optimization, and
universal.

 31

Operational models are used at lower levels of management for sup-
porting of operative decision making with the horizon, measured by days and
weeks. The possible applications of these models include maintenance of
debtor accounts and credit settlements, production scheduling, inventory
management, etc. Operative models are usually used for calculation of com-
pany data. They are generally deterministic, optimization and universal (i.e.
they can be used in different organizations).

Mathematical models consist of a collection of model blocks, modules,
and procedures, realizing mathematical methods. It can include the procedures
of linear programming, statistic analysis of time series, regressive analysis and
so on beginning with the simplest procedures up to the complex applied soft-
ware packages. Model blocks, modules and procedures can be used either
one by one or in complex for construction and support of the models.

The control system of model base must possess the following capabili-
ties: it must create new models or change the existing ones, support and
update the model parameters, manipulate models.

Control System of Interface
The efficiency and flexibility of IT depends greatly on the interface

characteristics of support system of decision making. Interface determines
the user’s language, the language of computer messages, organizing dialogue
on the monitor, user’s knowledge.

User’s language is those operations, which a user performs in relation
to the system by using the keyboard capabilities, wand for writing on
the screen, joystick, “mouse”, verbal instructions and so forth. The simplest
form of the user’s language is a creation of forms for input and output docu-
ments. Having received an input form (document), a user fills in it with neces-
sary data and set them into a computer. The support system of decision
making makes the necessary analysis and issues the results in the standard
form of the output documents.

Visual interface has gained considerable popularity lately. By means of
the “mouse” manipulator a user chooses objects and commands in the form
of images presented on the screen, thus realizing his/her operations.

Computer controlling using a human voice is the simplest and thus
the most desirable form of a user language. It is not developed sufficiently and
that is why not very popular. The existing versions demands serious restric-
tions of the user: a definite set of words and phrases; special structure taking
into account the peculiarities of the user’s voice; control in the form of discrete
commands not in the usual smooth speech. The technology of this method is

 32

improving and in the nearest future the advent of the support systems of deci-
sion making can be expected. These systems use a verbal input.

Message language is that a person can see on the monitor (symbols,
graphics, color), data received on the printer, beep output signals, etc.
The important gauge of efficient interface use is a chosen form of the dia-
logue between a system and a user. At present, the following dialog forms are
most widely spread: interactive query mode, command mode, menu mode,
gaps-in-the-phrases filling mode, offered by a computer.

Each form, depending on the type of the task, peculiarities of the user,
and sort of decision making, can have its advantages and disadvantages.

For a long time, the only realization of message language was printed
or displayed report or message. Now a new possibility of presenting output
data – computer graphics – has appeared. It gives a chance to create color
graphic three-dimensional view on the screen. The use of computer graphics
enhances visualization and interpretability of output data considerably, it be-
comes more popular in IT of decision making support.

For the last several years, a new tendency developing computer graph-
ics is outlined. It is animation. Animation proves to be especially efficient for
output data interpretation of support system of decision making, connected
with modeling of physical systems and objects.

Within the next few years, the use of human voice as a message
language is to be expected. Now this form is applied in the support system of deci-
sion making in the field of finance, where in the process of emergency report genera-
tion, the voice explains the reasons of singularity of this or that position.

The user knowledge is things a user must know when working with
a system. Not only an action plan, which is in the mind of the user, belongs to
it, but also textbooks, instructions, reference data, yielded by a computer.

The improvement of support system interface of decision making is
affected by the success in development of each of three pointed out element.
Interface must have the following capabilities:

� to manipulate different dialog forms, changing them in the process of
decision making at user’s option;

� to transmit data to the system using different means;
� to obtain the data from different system devices in various format;
� to support (to assist on demand, to prompt) user’s knowledge pliably.

Expert Systems IT

Description and Function
The greatest progress among computer information systems is marked

in the field of expert system development, based on the use of artificial intel-

 33

ligence. Expert systems give a manager or a specialist a chance to get
an expert’s opinion on any problem, about which these systems accumulated
knowledge.

Artificial intelligence is capability of computer systems to such opera-
tions which can be called intellectual, if they come from a person. Frequently
in this case the capability, connected with human thinking, are meant.
The work in the field of artificial intelligence is not limited by expert sys-
tems. It also includes creation of robots, systems that simulate a human nerv-
ous system, his hearing, eye-sight, learning capability.

The solution of specific problems requires definite knowledge. How-
ever, not every company can afford having the experts in different problems
connected with its work, or even invite them every time a problem arises.
The main idea of expert system technology is to use the expert knowledge
every time when it is necessery, having obtained and loaded it into the com-
puter memory. Being one of the basic applications of artificial intelligence,
expert systems represent computer programs, transforming the expert experi-
ence in some field of knowledge into the form of heuristic rules (heuristics).
Heuristics do not guarantee the obtaining of the optimal result with the same
confidence as common algorithms, used for task solution in the context of
support technology of decision making. But they often supply acceptable
enough solutions for practical application. All these make the use of expert
system technology successful.

The similarity of IT, used in expert systems and support systems of
decision making, is that both of them provide high level of support of deci-
sion making. However, there are three essential differences. The first one
concerns the fact that a problem solution within the support system of deci-
sion making reflects the level of its comprehension by the user and its capa-
bility to obtain and conceive the solution. On the contrary, the expert system
technology offers the user to make a decision, exceeding his/her abilities.
Th� second distinguishing feature of mentioned technologies is a capability
of expert systems to explain their reasoning in the process of decision making.
Very often these explanations turn out to be more important for the user, than
the decision itself. The third distinction is connected with the use of a new
component of IT – knowledge.

Basic Components
The basic components of IT, used in expert system, are user’s interface,

knowledge base, interpreter, system creation unit (Fig. 1).

 34

User interface

Interpreter

User

Knowledge
base

Unit
of system
creation

Problem
domain

Expert and
specialist

in knowledge

Expert
System

Fig. 1. Scetch of expert system

User’s interface. A manager (specialist) uses interface for input in-
formation and commands into the expert system and for obtaining the output
information from it. The commands include the parameters, guiding the process
of knowledge processing. The information usually is yielded in the form of
the values, being bound to definite variables. A manager can use four meth-
ods of information input: menu, commands, natural language and native
interface. Expert system technology provides the possibility to obtain not only
decisions, but also necessary explanations as output information. There are
two types of explanations:

� the explanation, yielded on demands. The user can demand explanation
of his/her operations from expert system at any moment;

� the explanation of the obtained problem solution. After obtaining the solu-
tion, the user can demand the explanation of the way it has been obtained.
The system must illustrate every step of its reasoning leading to the solu-
tion of the task. Although the work technique with expert system proves
to be difficult, the user’s interface of these systems is user-friendly and
usually does not cause any problems when put into the dialog.
Knowledge base. It contains the facts describing the problem domain,

as well as logical connection of these facts. A central place in knowledge base
belongs to the rules. A rule determines what to do in each specific situation,
and consists of two parts: a condition, which is either met or not, and an action,
which must be performed if the condition is met. All rules, used in the expert

 35

system form a rule system, which may consist of several thousands of rules
even in a comparatively simple system. All types of knowledge, depending on
the specific character of the knowledge domain and the proficiency level of
a designer (with engineering skills), can be represented with one or another
degree of adequacy using one or several semantic models. Logical, produc-
tional, framebased, and semantic networks belong to the most widely spread.

Interpreter. This is a part of the expert system, processing the knowledge
(reasoning), being in knowledge base, in a specific order. The technology of
interpreter operation consists in successive considering the rule collection
(rule by rule). If the condition in the rule is met, a definite action is per-
formed and the user is granted the variant of the problem solving. Besides, in
many expert systems additional blocks are introduced: database, calculation
unit, input, and data correcting unit. Calculation unit is necessary in the situa-
tions, connected with management decision making. At the same time the da-
tabase, which contains planned, physical, reporting and other constant or on-
line indices, takes an important place. Input and data correcting unit is used
for on-line and in-time reflection of current changes in data base.

System creation unit. It is used for creation of the rules collection
(hierarchy). There are two approaches, which can be a base of system crea-
tion unit: the use of algorithmic languages and expert system shells. For pres-
entation of knowledge base the languages Lisp and Prolog are specially
developed, although any well known algorithmic language can be used.
Expert system shell represents a complete program medium that can be
adapted to the solution of a definite problem by means of creation of a proper
knowledge base. In most cases, the use of the shells allows to create expert
systems faster and easier in comparison with programming.

 36

QUESTIONS
1. What is an Information System?
2. How can you interpret the term “Information Technology”?
3. What is the difference between computers and information systems?
4. How the processes happen in an information system can be interpreted?
5. How have the information systems been developed?
6. Why information systems are the strategic development means of

the firm? What are their contribution?
7. Tell about the pyramid of management levels in a firm.
8. Why is it important to consider environmental effects when setting up

an information system?
9. Give examples of information systems, which support firm activity.
10. What are the problems when setting up an information system?
11. Tell about main functional information systems.
12. Give examples of information systems, which provide efficiency of

work.
13. How can you interpret the structure of information system?
14. Tell about dataware, hardware, software, mathematical means,

management means, and legislative regulation.
15. What is the meaning of data flow diagram?
16. What is the main principle of database construction methodology?
17. Why the structureness of the problem is an important factor when

developing information system?
18. How does the structureness of a problem influence the classification of

information systems?

 37

19. What are particular features of information systems, which create
management reports?

20. What are features and forms of information systems, which develop
alternative solutions?

21. What is the main point of functional characteristic when classifying
information systems?

22. What is the management level characteristic when classifying informa-
tion systems?

23. Tell about information systems pyramid in a firm when functional char-
acteristic of classification is used.

24. What is the role and functions of operative level IS, IS for specialists,
for middle level managers, strategic IS?

25. Give the classification of information systems in the terms of informa-
tion usage, degree of automation, application field.

26. What are the similarity and the difference of information technology and
technology of material production?

27. Show the information technology as a hierarchical structure and give
examples of its components.

28. Tell the requirements, which the information technology must satisfy.
29. What is the toolbox of information technology?
30. What does “New information technology” mean?
31. How do information technology and information system correlate?
32. What is the history of information technology development?
33. Describe the methodology of information technology usage.
34. Give a general idea of data processing information technology,

management IT, office automation, decision-making IT. Mention their
main components.

35. Tell about computer and non-computer office technologies.
36. What is the model bank? What models do you know? Give examples.
37. Tell about an information system interface and its components.
38. What is the difference between information and data?
39. What information measures do exist? When the one should use them?
40. Tell about syntactic, semantic, pragmatic information measures.

 38

41. What information quality indexes do you know?
42. What is the information classification system?
43. Tell the main ideas of hierarchic, facet and descriptor classification

methods. Give examples.
44. What is information-encoding system? Give classification of encoding

methods.
45. What are classification and registration encoding? Give examples.
46. Compare classification system and encoding system purposes.
47. Tell about classification of information circulating in an organization.
48. Tell about information revolutions in the civilization history.
49. Compare processes of the computer evolution history and the last

information revolution.
50. Define the main point of information technologies and telecommunica-

tions.
51. How can you describe information-oriented society?
52. What does information crisis mean?
53. What is the idea of informatization process?
54. What is the difference between informatization and computerization

processes?
55. Give a definition for a term of information culture. How does it show?
56. What defines informational potential of the society?
57. Tell about resources kinds. Characterize information resource, informa-

tion product, information service. Give examples.
58. How can you describe the term “Database”?
59. What is the legislative control of the information market?

 39

2. THE FUNDAMENTALS OF C++ LANGUAGE
2.1. THE FIRST PROGRAMS

Write the simplest program:
#include<iostream.h>
void main()
{
cout<<"Hello, World!\n";
}

The word “#include” in the first row is a so-called preprocessor
statement (including directive). Performing of this directive leads to inserting
of the content of iostream.h file (files with the extension .h are called headers
or header files; they contain the text in C++ language) into the program
instead of the first row. After it, a compiler will process the new received text
of the program. In the second row of the initial text of the program, there is
a title of the function with the name “main”. Empty round brackets suggest
that this function doesn’t have arguments, and a keyword “void” means that
the function main() doesn’t return any value. The curly brackets contain
a unit that is often called a program body.

In the forth row, there is a statement, which operation is output into
stream cout (it sounds as see-out), which is here associated with a monitor.
This statement displays the row

Hello, World!

in a monitor.
A symbol ‘\n’ at the end of the text in quotation marks informs

the compiler that after the text printing it is necessary to pass to a new row.
Now it is necessary to give an example of a simple program and

a dialogue, which is displayed when the user starts this program and sets cor-
responding data. Hereinafter a person who uses a program will be called

UNIT 2

 40

a user. The data input by the user are marked boldface. An author of this
program will be called a programmer.
#include <iostream.h>
void main()
{
int m, n, sum; //descriptions
cout<<"For input of numbers key in two numbers\n";
cout<<"(over spaces) and press ENTER.\n";
cin>>m>>n; //numbers input
sum = m + n;
cout<<"at m = "<<m<<" and n = "<<n
<<" their sum is equal to "<<sum<<".\n";
 //result output
}

When running this program, the following dialog will appear on the screen:

For input of numbers key in two numbers
(over spaces) and press ENTER.
20 45
at m = 20 and n = 45 their sum is equal to 65.

Comments are anything after the symbols // to the end of the line in

this program. In the fourth row, the integer variables with the names n, m,
and sum are described.

The operator, beginning with the word cin, informs the compiler that
the values input by the user, which are equal to 20 and 45 here, should be
placed accordingly into variables m and n. cin object (is read as see-in) is
an input stream – here is understood as a keyboard, and the arrows << and >>
indicate the direction of data movement.

Let’s go on to the description of C++ language and its possibilities.

2.2. THE LANGUAGE ALPHABET

The C++ alphabet includes:
� Latin caps A…Z;
� Lower case characters a…z;
� Arabic figures 0…9;
� Underlining symbol _ (is considered as a letter).

 41

All these symbols are used for the language key words and names for-
mation. The name is a sequence of letters and figures, beginning with a letter
and being not a key word (it is not recommended to put an underlining sym-
bol _ at the beginning of the name).

In C++ capital and lower case characters are different, therefore the
names ARG1, Arg1, and arg1 are different.

� The punctuation marks and special symbols given in the Table 1.
� White spaces.

Space, tab, line feed, carriage return, and form feed belong to this
group. These symbols separate language lexemes from each other. Any se-
quence of white spaces is considered at compilation as one space.

Table 1

Punctuation Marks and Special Symbols

Symbol Name Symbol Name
, comma { left curly bracket
. point } right curly bracket
; semicolon < greater
: colon > less
? question mark [left square bracket
‘ apostrophe] right square bracket
! exclamation mark # number or grid
| vertical bar % percent
/ slash & ampersand
\ backslash ^ logical NOT
~ tilde - minus
* asterisk = equals sign
(left round bracket “ quotation mark
) right round bracket + plus

2.3. COMMENTS

Comments serve as an aid to the human readers of the programs; they
are a form of engineering etiquette. They may summarize a function's algo-
rithm, identify the purpose of a variable, or clarify an otherwise obscure seg-

 42

ment of code. Comments do not increase the size of the executable program.
They are stripped from the program by the compiler before code generation.

There are two comment delimiters in C++.
The first comment delimiter, indicated by a double slash (//), serves to

delimit a single-line comment. Everything in the program line to the right of
the delimiter is treated as a comment and ignored by the compiler:
// symbols up to the end of the line.

The comment pair (/*,*/) is the second comment delimiter used in the
C++ language. The beginning of a comment is indicated by a /*. The com-
piler will treat everything that falls between the /* and a matching */ as part
of the comment. A comment pair can be placed anywhere a tab, space, or
newline is permitted and can span multiple lines of a program. For example:
/* symbols */

or
/* symbols
...
symbols */

or
void main() /* symbols */
 /* symbols */.

Comment pairs do not nest – that is, one comment pair cannot occur
within a second pair. One way to fix the problem of the nested comment pairs
is to put a space between the asterisk and the slash:
/* * /.

The asterisk-slash sequence is treated as a comment delimiter only if the two
characters are not separated by white space.

In comments, symbols are not only letters from C++ language alphabet
but also any possible symbols including Russian, Arabian letters, and any
other symbols.

2.4. DATA TYPES

All types of data can be divided into two categories: scalar and aggre-
gate (Fig. 2).

 43

Class Union Structure

Floating-pointInteger

Array

Class

Enumeration

Void

Pointers

Arithmetic
(principal
or basic)

Scalar Aggregate

DATA TYPES

Fig. 2. Types of C++ language data

The key words, used for declaration of the basic types of data are:
� for integral types: char, int, short, long, signed, unsigned;
� for floating-point types: float, double, long double;
� for classes: struct, union, class;
� for enumeration: enum;
� for void type: void.

2.5. INTEGER DATA TYPE

char or symbol type
The data of char type are different symbols, where the value of these

symbols is numerical value in inner coding of computer.
A symbolic constant – is a symbol, enclosed in apostrophe, for example:

'&', '4', '@', '�'. For example, the symbol '0' has value 48 in ASCII coding.
There are two modifications of this type: signed char and unsigned char.
Data of char occupy one byte and change in the range:

� signed char (or simply char) –128…127;
� unsigned char 0…255.

Let’s note that if it is necessary to deal with variables, possessing the
value of Russian, Arabian letters, and some special symbols, their type must
be unsigned char, since the codes of such letters are greater than 127
(in ASCII coding). Symbols, including nongraphic, can be represented as
symbolic constants with the help of so called control sequences. A control

 44

sequence is special symbolic combinations, beginning with \ (backslash), that
is followed by a letter or a combination of figures (see Table 2).

Sequences '\ddd' and '\xddd' allow representing any symbol from the
computer charset as a sequence of octal digits or hexadecimals accordingly.
For example, carriage return symbol can be set as: '\r' or '\015' or 'x00D'.

Table 2
Control Sequences

Control sequence Name
\a Ring
\b Step back
\t Horizontal tabulation
\n Line feed
\v Vertical Tab
\r Carriage return
\f Form feed
\" Quotation marks
\' Apostrophe
\\ Backslash

int type (equivalent short int)
The data of int type occupy two bytes and possess integer values from

the range:
–32 768 … 32 767.

unsigned int type
The data of such type occupy two bytes, and their range:

0 … 65 535.

long (long int) type
Such data occupy four bytes and change in the range:

0 … 4 298 876 555.

We should note that if an integer constant exceeds int-range, it auto-
matically becomes the constant of long type or even unsigned long.

Thus, 32768 is of long type, 2676768999 is of unsigned long type.
It is possible to set the type of a constant with the help of suffixes 'U'

(unsigned) and 'L' (long):
–6L; 6U; 33UL.

 45

Actually, in the language standard it is only determined that
sizeof(char) = 1 and sizeof(char) <= sizeof(short) <= sizeof(int) <= sizeof(long).

Here sizeof(type) is an operation, determining the size of type kind in
bytes.

The integer constant, which begins with null, is an octal constant, and
the one that begins with 0x – a hexadecimal constant, for example:
031; 0750; 01

are octal constants;
0x17; 0xA9; 0xFF

are hexadecimal constants.

2.6. FLOATING-POINT DATA TYPES

The information about floating-point data types, which represent real
numbers in computer, is given in Table 3.

Table 3
Floating-point types

Type Length, bytes Range Decimal digits
float 4 3.4e–38 ... 3.4e38 7
double 8 1.7e–308 ... 1.7e308 15
long double 10 3.4e–4932 ... 1.1e4932 19

By default, floating constants are of double type, if they do not exceed

appropriate range:
1.0; .3; –6.; 2.3e–6 (means 2.3�10–6); –3e–19

are constants of double type.
Suffix l indicates that a floating constant is of long double type:

3l, 3e8l, 1.6e–19l, 1.3e–200l
are constants of long double type.

2.7. STRING CONSTANTS, OR LITERALS

String constant is a sequence of symbols, enclosed in quotes:
"row"; "a + b = c\" – is an equality \"".

A string literal is represented in memory as an array of char-type ele-
ments.

 46

During compilation null symbol '\0' is added automatically at the end
of each string for convenience. This is an indication of the end of the string.
Thus, literal “four” occupies not four but five bytes in memory.

The value of a string is the address of its beginning.

2.8. A PREPROCESSOR STATEMENT DEFINE

The define statement of a preprocessor can be represented as
#define name substitution_text,

for example
#define nmax 1000

or
#define km (nmax*3+1).

The “name” that is indicated in #define, in the range of its visibility is
replaced in the program with the “substitution_text”. Thus, 1000 appears eve-
rywhere in the text instead of nmax name (in the range of its visibility), and
(1000*3+1) instead of km. Let’s note that there is one more form of the #de-
fine directive (with parameters). Statement #define could be used to create
constants through text substitution, but it is better to use const to allow type
checking. Statement #define X Y has the effect of replacing symbol X
with arbitrary text Y before compiling.

2.9. DECLARATIONS

All names (in particular, variable names) must be declared before their
use. The syntax is a type name followed by a list of objects with possible
modifiers and initializers applying to each object:

int i, j, k, pmax;
float radix, a, b, s_m;
double k, kr;
char ch, ch1;
char symbol;

During declaration, the variable can be initialized by some value, for
example:
char t = 't', BACKSLASH = '\';

int i = 0, j, k, s = 1;
float ro, eps = 1e–6;

 47

2.10. CONST MODIFIER

If const modifier presents in the name of declaration, the object, which
the given name is referred to, is considered in the domain of existence of this
name as a constant. For example:
const int i = 50; // the same as const i = 50;
const double pi = 3.14159;

Such named constants cannot be changed in the program. It is possible
to use these constants as conventional.

 48

3. EXPRESSIONS
An expression is a combination of different operands and operators.

For example:
a + b; a / b; c << d;

and so on.

3.1. ASSIGNMENT OPERATOR AND EXPRESSION

The operator of assignment is indicated by symbol ‘=’
The simplest kind of assignment operator:

v = e.

Here v is any expression that can possess the value, e is an arbitrary
value.

Assignment operator is performed right-to-left, i.e. first, the value of
expression e is calculated, and then this value is assigned to the left operand
v. The left operand in the assignment operator must be so called address
expression, which can be also called l-value. The example of address or des-
ignational expression is the name of the variable. For example, expression
a + b is not l-value. Constants can never be address expression. In C++ lan-
guage the assignment operator forms the assignment expression, i.e.
a = b

means not only sending of b value into a, but also that a = b is an expression,
which value is the left operand after assignment. It follows that it is possible
to write the following:
a = b = c = d = e + 2;

Therefore, the result of assignment expression is its left operand. If
the type of the right operand doesn’t coincide with type of the left one, the
value on the right is transformed to the type of the left operand (if it is possi-
ble). At the same time, the value loss can take place, for example:
int i; char ch;

i = 3.84; ch = 777;

 49

Here i obtains value 3, and 777 value is too large to be represented as
char, that is why ch value will depend on the way a specific implementation
performs transformation from greater to less integer type.

There is also a so called combined assignment operator (ao):
a ao= b;

where ao is one of the binary operators:
+, –, *, /, %, >>, <<, &, |, ^, &&, and ||.

Assignment of
a ao= b

is equivalent to a = a ao b, except for the address expression is calculated on-
ly once. Examples:
a += 2 means a = a + 2;

bottom_count[2*i+3*j+k] *= 2

means
bottom_count[2*i+3*j+k] = bottom_count[2*i+3*j+k]*2;

s /= a means s = s/a.

The result of assignment operator is its left operand; consequently, its
result is an address expression, and that is why the following recording is
possible:
(a = b) += c;

It is equivalent to the following two expressions:
a = b; a = a + c;

3.2. ARITHMETIC OPERATORS

Binary arithmetic operators are + – * / %. (There are also unary + and –.)
A fractional part is truncated during division of integers. Thus 10/3 gives 3,
at the same time 10/3.0 gives 3.33333…The a % b operator is applied only
to integer operands and yields remainder from division a by b, so

10 % 3 gives 1,

2 % 3 gives 2,

12 % 2 gives 0.

 50

3.3. RELATION OPERATORS

Relation operators are =>, >, <=, and <. All of them have equal prece-
dence. According to the level of precedence, equality and inequality opera-
tors follow directly after them: == (equal) and != (not equal) with the same
precedence.

Relation operators are of lower order than arithmetic one so that the
expressions like i < lim + 3 are understood as i < (lim + 3).

Comparison operator means some expression. The value of this expres-
sion equals integer 1 (TRUE), if the condition is true and equals 0 (FALSE),
if not.

3.4. LOGICAL OPERATORS

Logical operators include:

unary operator logical NOT, ! (negation);

binary operator logical AND, && (conjunction);

binary operator logical OR, || (logical
 addition, disjunction).

Operands of logical operators can be of integer, floating types, and
some other types, at the same time operands of different types may be in-
volved in every operator.

Operands of logical expressions are calculated from left-to-right.
The result of a logical operator is 0 (FALSE) or 1 (TRUE) of int type.

!operand (NOT-logical) operator yields 0 (FALSE), if the operand is
nonzero, and it results in 1 (TRUE) if the operand equals zero.

&& operator (AND-logical, logical multiplication) results in 1 (TRUE),
if both operands are nonzero. If one of the operands equals zero, the result is
zero (FALSE) as well. If the value of the first operand equals zero, the sec-
ond operand is not computed.

|| operator (OR-logical, logical addition) yields zero (FALSE), if both
operands are equal to zero. If at least one of the operands not equals zero,
the result of the operator is 1 (TRUE). If the first operand is nonzero, the sec-
ond operand is not computed.

According to priority these operators are arranged in the following
way: !, &&, ||.

 51

3.5. BITWISE OPERATORS

Bitwise operators include:

AND bitwise operator &;

OR bitwise operator |;

exclusive OR bitwise operator ^;

unary operator of bitwise negation (complement) ~.

Besides, shift operators are considered: << and >>.
Operands of bitwise operators can be of any integer type.
& operator compares every bit of the first operand with the corre-

sponding bit of the second operand. If both compared bits equal 1, the corre-
sponding bit of the result is also set to 1, otherwise it is set to zero.

| operator compares every bit of the first operand with the appropriate
bit of the second operand. If any of them or both bits equal 1, the appropriate
bit of the result is set to 1, otherwise it is set to zero.

^ operator. If one of the compared bits equals zero, and the other is 1,
the appropriate bit of the result is set to 1, otherwise, i.e. when both bits equal
1 or if both are 0, the bit of the result is set to zero.

~ operator changes 0 into 1 and 1 into 0 in the bit representation of the
operand.

& bitwise operator is often used for masking of some bit aggregate, for
example expression

� = N&0177

transfers seven lower bits of N into C, supposing the rest equal zero. (Octal
constants begin with the first zero in C++; hexadecimal constants – with 0x)

Let N = 642. Let’s equate bitwise representation of N, octal constant of
0177 and result of C:

N 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0

0177 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1
C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

| operator is used for bit gain. Thus, operator C = N|MASK sets in 1

those bits of N, which equal 1 in MASK.

 52

More examples:
int a = 0x45ff, b = 0x00ff;

int c;

c = a ^ b; // c: 0x4500;

c = a | b; // c: 0x45ff;

c = a & b; // c: 0x00ff;

c = ~ a; // c: -0x3a00;

c = ~ b; // c: -0x7f00.

This program segment can be represented as follow:

� 0 1 0 0 0 1 0 1 1 1 1 1 1 1 1 1
b 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

� = � ̂ b 0 1 0 0 0 1 0 1 0 0 0 0 0 0 0 0
� = � | b 0 1 0 0 0 1 0 1 1 1 1 1 1 1 1 1

� = � & b 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
c = ~b 1 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0

It is possible to determine the residue of operand division of unsigned
int type by 2, 4, 8, 16 and so on by means of the operator &. It is enough to
apply & operator to the dividend with masks of 0x01, 0x03, 0x07, 0x0f, 0x1f
and so on.

For example:
7&0x03 results in 3.

In other words, the lower bits of a variable are picked out, and the rest
are set to zero.

3.6. SHIFTS

Shift operators << and >> shift the bits of the left operand left and
right, accordingly. The number of bit positions to shift is specified by
the right operand. Thus, � << 2 shifts X left by 2 positions, filling right bits
with zeros, that is equivalent to the multiplying by 4. The shift of the value
without sign right is accompanied by addition of zeros to left bits.
The right-shift of such value by n-bits is equivalent to integer division of
the left operand by 2 in the nth power.

 53

Thus,
5 << 3 yields 40;
7 >> 2 yields 1.

Let’s note that the right operand must be a constant expression, i.e.
the expression, including only constants. If the right operand is negative or
it is greater or equal to the number of bits of the left operand, the result of
the shift is not specified.

3.7. INCREMENT AND DECREMENT OPERATORS ++ AND --

These operators are unary operators of assignment. They accordingly
increase and decrease the operand value by 1. The operand must be of
an integer or floating type (or a pointer-type) and it must not be a constant
address expression (i.e. without word “const” in the description). The type of
the result corresponds to the type of the operand.

A prefix form of the operator:
++operand and --operand.

Postfix form:
operand++ and operand--.

If a sign of the operator is before an operand, the result of the operator
is an increased or decreased value of the operand. At the same time the re-
sult is an address expression (l-value).

If a sign is after an operand, the value of the expression is the value of
the operand. After using this result the value of the operand increases or de-
creases. The result of postfix form of these operators is not l-value.

Examples:
int i = 0, j = 0, k, l;

k = ++i; // here k = 1 and i became = 1;
l = j++; // l = 0 , and j became = 1;
--k; // k = 0;
++j; // j became = 2.

In other words, the result of assignment
� = ++i;

is the same as in the sequence of the operators
i = i + 1; k = i;

 54

And the result
� = i++;

is the same as
k = i; i = i + 1;

3.8. TERNARY OR CONDITIONAL OPERATOR

A ternary operator, i.e. the operator with three operands, has the form:
operand1 ? operand2 : operand3.

The first operand can be of an integer or floating type (as well as pointer,
reference or an element of enumeration). It is important whether the value of
the first operand is zero (FALSE) or not for this operator. If operand1 is not
equal to zero, operand2 is computed and its value is a result of the
operator. If operand1 equals zero, operand3 is computed and its value is
the result of the operator. Let’s note that either operand2 or operand3 is
calculated, but not both of them.

Example:
max = a <= b ? b : a;

A peak value of variables a and b is assigned to variable max.
If in the conditional operator operand2 and operand3 are the address

expressions, a ternary operator can be on the left of the sign of assignment:
a < b ? a : b = c * x + d;

Here the value of expression c*x+d is assigned to the less of two vari-
ables a and b.

3.9. SEQUENCING OF OPERATORS

A symbol for sequencing of operators is “,” (comma). The expressions
separated by this symbol are performed left to right strictly in the order they
are enumerated.

The result of this operator is a result of the last expression. If it is
an address expression, the result of the operator is also an address expression.

Examples:
int a = 3, b = 8; c;// here a comma is a separator, not an operator;
c = a++, a + b; // here � will be equal to 4, and � will be 12;
(b--, c) *= 3; // here b will be equal to 7, and � will be 36.

 55

The sequence operator is often used in the operator for. It is possible to
include several expressions into different parts of this operator, for example,
for parallel alteration of two indices. This is illustrated by the function
REVERSE(S), which arranges S string in a reverse order at the same place.
void REVERSE(char S[])

{

int C, I, J;

for(I = 0, J = strlen(S) - 1; I < J; I++, J--)

 {

 C = S[I]; S[I] = S[J]; S[J] = C;}

}

In this example strlen(S) is a function calculating the number of sym-
bols in S string (without symbol '\0').

Commas, which separate the arguments of functions, variables in
descriptions, and so on are not referred to operator comma and do not pro-
vide left to right calculations.

3.10. OPERATOR PRECEDENCE AND CALCULATION ORDER

The information about all C++ operators is represented in the Table 4.
The first priority is the highest. Most operators are performed left-to-right.

For example, expression � + b + c can be interpreted as (� + b) + �.
The exception is unary operators, assignment operators and operator ? : ,
which are performed right-to-left: � = b = � is performed as a = (b = c).

If it is necessary to change the order of actions, round brackets are
applied.

Expression
7.*� + b/–�

is interpreted as
(7.*�) + (b/(–c)).

It is possible to change this order:
7.*(� + b)/(–�).

We should note that the expressions containing one of the binary op-
erators * + & ^ |, can be regrouped by a compiler even if they are enclosed in
round brackets. It is possible to use explicit intermediate calculations for pro-
viding a necessary order of computing. The order of operand calculation
is not fixed in the expression in C++. For example, in

 56

c = sin(a * x + b) + fabs(x);

firstly the first operand may be computed and then the second one, and may
be vice versa. In simple cases, it doesn’t make sense. However, if a definite
order is necessary, intermediate variables can be introduced.

Table 4
Operators precedence and the execution order

Priority Operator Note Execution order
1 :: -> .

[]
()
()

context resolution, extrac-
tion
array indexing
function call
type conversion

left-to-right

left-to-right
left-to-right
left-to-right

2 ++ -- ~ !

– +
&
*
new, delete
sizeof

increment, decrement,
complement, not
unary - unary +
address of
pointer resolving
create and destroy
size of object

right-to-left

right-to-left
right-to-left
right-to-left
right-to-left
right-to-left

3 *
/
%

multiplication
division
remainder

left-to-right
left-to-right
left-to-right

4 ->* .* extraction left-to-right
5 +

–
binary addition
binary subtraction

left-to-right
left-to-right

6 << >> shifts left-to-right
7 < <= > => comparison left-to-right
8 == != equal not equal left-to-right
9 & bitwise AND left-to-right
10 ^ XOR (excluding OR) left-to-right
11 | bitwise OR left-to-right
12 && AND-logical left-to-right
13 || OR-logical left-to-right
14 ? : ternary operator right-to-left
15 = *= /= %= += so

on
assignment operators right-to-left

16 , sequencing left-to-right

 57

4. STATEMENTS

4.1. EMPTY STATEMENT

A semicolon (;) in �++ is an indicator of the end of the statement.
The simplest form of program statement is the empty, or null statement that
consists of ;. It is used in the place where a statement must be according to
the rule of the language, but due to the logic of the program there is nothing
to do. Any expression, which is followed by ;, is a statement. Such statement
is called a statement-expression. For example:
i++;
a = b + c;
c += (a < b) ? a : b;
x + y; // The result here is not used
 // and a warning will appear.

4.2. COMPOUND STATEMENT

A compound statement is differently called a block. It is a sequence of
statements enclosed by a pair of curly braces. A composite statement must be
used at the place where language syntax requires the presence of only one
operator, and program logic requires several operators at once:
{i = 5; c = sin(i * x); c++;} // It is a block.

4.3. DECLARATIONS

In C++, the declarations are the language statements and can stand at
the place where any other statement C++ is possible:
s = 0.3; d /= s; intk = 5;
d = s + 2 * k;
double f = s + d; f *= k;

4.4. CONDITIONAL STATEMENT

There are two forms of a conditional statement:
if(condition) statement1;

if(condition) statement1 else statement2.

 58

Statement1 is calculated in case the condition possesses a nonzero
value. If the condition is zero (or indicator NULL), the statement2 is calcu-
lated.

Examples:
if (a > b) c = a - b; else c = b - a;

if (i < j) i++; else {j = i - 3; i++;}

When using nested statements if, current else is always belongs to
the latest if, with which no else has been matched yet.
void main() {
int a = 2, b = 7, c = 3;
if(a > b)
 {if(b < c) c = b;}
else c = a;
cout<<"c="<<c<<".\n";
}

Here the result will be the output of the string c=2.
If you omit the curly braces at the if-statement, the program will have

the form:
void main() {
int a = 2, b = 7, c = 3;
if(a > b)
 if(b < c) c = b;
 else c = a;
cout<<"c="<<c<<".\n";
}

Here else belongs to the second if. As a result the following string will be
drawn: c=3.

4.5. THE SWITCH STATEMENT

This statement allows to pass control to one of several labeled state-
ments depending on the value of an integer expression. The labels of switch
operator have special view:

case integer_constant:

The form of switch statement:
switch(integer_expression) {
 [declarations]
 [case constant_integer_expression1:]
 [statements]
 …

 59

 [case constant_integer_expression2:]
 [statements]
 …
 [case constant_integer_expression m:]
 [statements]
 [case constant_integer_expression n:]
 [statements]
 [default:]
 [statements] }

Here [] mean optional part of the statement, and … indicates that a specified
construction may be applied ad libitum. A block after switch() is called
a statement body of switch.

The sequence of statement performance is as follow:
First the integer_expression in parentheses is calculated (let’s call it

a selector).
Then the calculated value of the selector is sequentially compared with

the constant expressions, following case keywords.
If a selector is equal to any of such a constant expression, the control is

transferred to the statement, labeled by appropriate statement case.
If a selector does not coincide with any of the labeled variant, the con-

trol is transferred to the statement, labeled as default.
If default is absent, the control is passed to the statement following

switch statement.
Let’s note that after control transfer according to one of the labels,

the further statements are performed in succession. That is why if it is neces-
sary to perform only a part of them, it is important to provide the exit from
switch. It is usually performed with the help of break statement, which leads
to immediate exit from the body of switch statement.

Example 1:

int i, d;
cout<<“Set an integer value i\n”;
cin>>i;
switch(i){
 case 1: case2: case3: cout<<“i=”<< i <<“\n”;
 case 4: cout<<“i=”<< i <<“ i^2= ”<<i*i<<“\n”;
 d=3*i - 4; cout<<“d=” << d <<“.\n”;
 break;
 case 5: cout<<“i=5.\n”;
 break;
 default:
 cout<<“ i value is less than 1 or greater than 5.\n”;
}

 60

If the number 2 is entered, the following will be displayed
Set an integer value i
2
i=2
i=2 i^2= 4
d=2.

If i equals 4, the following will be displayed
Set an integer value i
4
i=4 i^2= 16
d=8.

When i = 5, it will be
Set an integer value i
5
i=5.

With all the rest values of i it will be displayed

Set an integer value i
7
i value is less than 1 or greater than 5.

Example 2:
char sign;
int x, y, z;
cout<<“set the sign of the operator + – * / \n”;
cin>>sign;
cout<<“Set x and y \n”;
cin>>x>>y;
switch(sign){
 case ‘+’: z = x + y; break;
 case ‘–’: z = x – y; break;
 case ‘*’: z = x * y; break;
 case ‘/’: if(y == 0){cout<<
 “it is forbidden to divide by zero!\n”;
 exit(1);}
 else z = x / y; break;
 default: cout<<“Unknown operator!\n”; exit(1);
}

Here exit(1) – is a call of a function, which result in the immediate stop of
a program run.

 61

4.6. THE WHILE STATEMENT

A while loop statement with pre-condition looks like the following:
while(condition) statement

The statement is called a body of the loop. First, the value of condi-
tion is computed when performing such a statement. If it is equal to 0,
the statement is not performed and the control is transferred to the statement
following it. If the value of the condition is non-zero, the statement is per-
formed and then the condition is computed again, and so on. It is possible
that the loop statement will never be performed, if the condition will be
equal to 0.

Example 1:
char �;
while(cin.get(c)) cout<<c;

Here symbol copying takes place, including whitespaces, from cin stream
(in this case from the keyboard buffer) into cout stream (in this case to moni-
tor screen). Here get(c) function (a member of the class) extracts one symbol
from input stream, including whitespaces. It yields zero value until it reach
the end of the file (EOF) (the indicator of EOF – ctrl-z).

Example 2:
while(1){ statements ... }

This is an infinite loop.
Example 3:

char c;
while((c = cin.get()) == ‘ ’ || c == ‘\n’ || c == ‘\t’);

This loop statement skips from cin stream so called whitespaces. Here
get() is another function form, reading one symbol from the stream. It returns
an integer number – symbol code or a number –1, if the indicator of EOF
is met.

4.7. THE LOOP DO–WHILE WITH POST-CONDITION

This loop statement verifies the condition of ending at the end (after
every pass through the loop body) that is why the loop body is performed
once at least.

Statement appearance:
do statement while(condition)

 62

First, the statement is performed, then the condition is calculated and
if it is non-zero, the statement is calculated again, and so on. If the condition
equals zero, the loop is completed. Such a loop is very convenient to use
when checking data, keyed by the user:
int input = 0;
int minvalue = 10, maxvalue = 150;
do {cout <<“key the input value \n”; cin >>input;
 cout <<“ input=” << input << “\n”;}
while(input < minvalue || input > maxvalue);

4.8. THE FOR LOOP STATEMENT

This loop statement can be represented as:
for(init_statement; expression1; expression2) statement2

Init_statement can be a declaration, an empty statement or an expres-
sion statement. The most widespread case is when init_statement and
expression2 are assignments or function references, and expression1 is
a conditional expression. This loop is equivalent to the following construc-
tion:
init_statement;
while(expression1){statement2 expression2;}

Sometimes init_statement is called a loop initializer and expression2
is a reinitializer.

Any of three parts can be omitted, although it is obligatory that
a semicolon remains. If the condition, i.e. expression1, is absent, it is con-
sidered that expression1 is non-zero, thus:
for(; ;){ . . . }

is an infinite loop and it is necessary to abort it.
Example 1:

int n = 20, s = 0;
for(int i = 1; i <= n; i++) s += i*i;

Here the sum of squares of integers from 1 to 20 is calculated.
Example 2:

double s, sum, den = 0.85, eps = 1e-10;
for(s = 1, sum = 0; s > eps; s *= den) sum += s;

Here the sum of geometric progression 1, 1*0.85, 1*0.85*0.85, etc. is calcu-
lated, until its regular member becomes less than 10–10.

 63

Let’s calculate and display the table of y = sin(x2) function for
x�[0, �/2] with step �/20 in the next example.
#include <iostream.h>
#include <math.h>
#include <conio.h>

void main(){
int n = 10;
double x0 = 0, xk = M_PI_2, y,
h =(xk – x0)/n, xt = xk + h/2;
clrscr();
cout<<“ x y\n”
for(double x = x0; x < xt; x += h){
 y = sin(x*x);
 cout.width(4); cout.precision(2);
 cout<<x;
 cout.width(10); cout.precision(4);
 cout<<y<<‘\n’;
 }
}

In this program M_PI_2 constant, which represent value �/2 and is
specified in header file math.h, is used. The reference to the function
cout.width(k) sets the width of field of the next output into k positions which
allows to align the table appearance. The function cout.precision(k) assign
the number of digits, produced after a decimal point. The function clrscr(),
which prototype is in conio.h, clears the screen.

The use of while and for loops is basically a matter of taste. For loop
is more preferential at the place where there is simple initialization and reini-
tialization, as during this the statements, controlling the loop, visually appear
together at the beginning of the loop. It is the most evident in the following
construction:
for(i = 0; i < n; i ++),

which is applied for processing the first n-th elements of the array, similar to
loop statement for in Pascal. The analogy however is not absolute, as the limits
of the loop can be changed inside of the loop, and a control variable saves its
value after loop termination, whatever reason of its termination is.

 64

4.9. THE STATEMENT OF UNCONDITIONAL JUMP

The statement of unconditional jump can be represented as goto label.
Label is a name, which is followed by ‘:’. This statement passes

the control to the statement, marked by an indicated label. With its help it is
convenient to exit from several embedded loops at once:
for(i = 0; i < n; i++)
for(j = 0; j < m; j++)
for(k = 0; k < l; k++){
…
statements;
…
if(condition) goto lab;
statements;
}
lab:; . . .

With the help of goto statement it is possible to jump from the outside
into the block body, if at the same time the control is not passed through
the declaration of names, which are present in this block.

4.10. THE BREAK STATEMENT

This statement implements the exit from the body of loops for, while,
do-while or statement switch, in which it appeared. The control is passed to
the first statement after loop.

The statement cannot provide the exit at once from two or more em-
bedded loops.

4.11. THE CONTINUE STATEMENT

This statement implements the pass to the point straight away after
the last statement of loop body without exit from the loop, thus further itera-
tions in the loop will continue.

The example of output of evens:
for(int num = 0; num < 100; num++){
 if(num % 2) continue;
 cout << num << “\n“;
}

When num is an odd number, the expression num % 2 obtains value 1
and the statement is satisfied, which jumps to the next iteration of for loop
without output performing.

 65

4.12. THE RETURN STATEMENT

This statement completes the function performance, in which it is set,
and returns the control into calling function.

The control is passed to the calling function to the point, following
directly the call.

If return is present at the function main(), it activates program opera-
tion breakdown.

 66

5. THE SIZEOF OPERATOR
This operator is performed at the stage of compilation. The result of

this operator is a number of bytes, necessary for location of the object in
the memory. There are two variants of the syntax of this operator. In the first
one, a single operand of the operator determines some type name of the lan-
guage, and it must be enclosed in brackets:
sizeof(float);
sizeof(int).

In the second one, the operand sets an expression and here the use of
brackets is no necessary:
sizeof a;
sizeof *ip;
sizeof array[i];

Let’s note that when obtaining the sizes of arrays, in spite of the name
of the array being a pointer, the result of the operator
sizeof array,

where array is the name of some array, is a length of this array in bytes. This
property may be used for calculation of the element number in the array:
const n = 20;
int array[n];
. . .
int num = sizeof array / sizeof(int) // num = 20.

Application of the sizeof operator on a reference type returns the size
of the memory necessary to contain the referenced object, i.e. sizeof(double
&) and sizeof(double) are equivalent.

 67

6. DECLARATIONS AND DEFINITIONS
Any name, excluding the names of labels, must be declared in

the program:
int i, j;
double d=7.3;
extern int m;
typedef unsigned int size_t;
int add(int a, int b){return a+b;}
void func(char*, int);

After such declarations a compiler knows that i, j, m are the names
of the variables of int type, d is a name of the variable of double type,
size_t is a name of a type, and add and func are the names of the functions
(about functions see part 16).

In declarations not only some type can be associated with the name,
but also certain element, which identifier is the name. For example, when
declaring int i, j; memory is allocated for variables i, j; the areas of mem-
ory of 2 bytes, which can be used for storage of the variables, are associ-
ated with these names. The name of the specific type (unsigned int) is as-
sociated with the name size_t, which synonym is size_t now; the code of
the function is associated with the name add. All such declarations are
called definitions. However not all declarations can be definitions. Two of
the above mentioned declarations are not definitions:
extern int m;
void func(char*, int);

In the first one, it is said that the variable m has int type; the memory
for it must be allocated somewhere else. The key word extern indicates it.

The second declaration indicates that func is a name of the function
with two arguments, the first of which is a pointer to char, and the second
one is int, and the function itself does not return any value. Such declara-
tion is called a prototype of a function. The function func itself must be
defined together with its body somewhere else.

In the program for each name there must be only one definition, while
there can be as many as possible declarations, which are not definitions.

 68

7. NAME RESOLUTION
Name resolution is the process by which a name used in an expression is as-

sociated with a declaration. It is the process by which the name is given meaning.
This process depends on how the name is used and on the scope in which the name
is used. The name, as a rule, can be used only in some part of the program.

Scopes and name resolution are compile-time notions; they apply to
some portion of program text. These notions give meaning to the program
text in a source file. The compiler interprets the program text it reads accord-
ing to the scope rules and name resolution rules.

The text of the program can be placed in one file or in several different
files, each of which contains one or several functions as a whole. For com-
bining into one program these files are compiled simultaneously. The infor-
mation about all these files is placed in so called project file (with extension
".prj"). A compiler creates an object code (a file with extension ".obj") for
each source file. Then all object files (along with library ones) are combined
by the linker into executable or load module, which has a name of the project
file and extension ".���". The name resolution is necessary for the compiler
for generation of the exact computer code.

There are 5 types of name resolution.

7.1. NAME RESOLUTION IN A LOCAL SCOPE (BLOCK)

Each compound statement (or block) represents its own local scope.
It should be kept in mind that a block is a program segment, enclosed in curly
braces { }, for example
if(a != 5){
int j = 0;
double k = 3.5;
a++;
…
}

The name declared in the block can be used from the point, where its
declaration is, and up to the end of the block.

Let’s note that a body of any function is a block, so the names in
the function definitions have the same name resolution:
int f1(int i){ return i; }

The name i has a “block” as a domain of existence. The domain of ex-
istence “block” covers the nested blocks.

 69

7.2. NAME RESOLUTION IN A FUNCTION

Only the names of transition labels, used by the statement goto, are
resolved in a function:
void f(){…
…
goto lab;
…
{… lab: ...}
…
}

7.3. NAME RESOLUTION IN FUNCTION TEMPLATE DEFINITIONS
(FUNCTION PROTOTYPE)

A function prototype is a function declaration, which is not its defini-
tion and has, for example, the following view:
int F(int a, double b, char* str);

The name resolution in such a case is enclosed between closing and
opening round brackets. In other words, the names a, b, and str in the example
are defined only inside the round brackets. Consequently, it is possible to use
any names for the arguments or not to use them at all in the prototypes:
int F(int, double, char*);

7.4. NAME RESOLUTION IN A FILE
The names, declared beyond any block or class are called as global

ones. Global names are defined from the point of their declaration up to
the end of the file, where their declaration is met. The example of such names
is function names:
#include <iostream.h>
int a, b, c[40]; // global names;
int f1() // local name f1;
{int i; // local name;
…
}
int count; // global name;
void f2(){ … } // global name f2.

7.5. NAME RESOLUTION IN CLASS SCOPE
The names, declared in classes, are defined in all the class, where they

are declared, independently of the point of their declaration.

 70

8. VISIBILITY SCOPE
If, using a name, it is possible to obtain the access to the element,

which this name is associated with, the given name is said to be in the scope
of its visibility. A visibility scope is a subregion of the domain of name reso-
lution. If the element of the language, which name is in the domain of its res-
olution, nevertheless, is not accessible using this name, this name is supposed
to be latent or masked. Global names are visible from the point of their decla-
ration up to the end of the file, if they are not masked by the local names.
The variables from enclosing blocks, as well as global ones, are visible in
the internal blocks. If a variable, declared inside the block, has the same
name as the name of the variable of enclosing level, the name of the enclos-
ing level is masked and definition of the variable in the block replaces the de-
finition of the enclosing level over the whole block. The visibility of
the masked variable is restored at the transfer out of block. The labels in
the function are visible in the whole function body.
int i = 3;

{int c = i; // � becomes equal to 3;
…

int i = 0; // name i masks external name i;
cout <<“c = ”<< c <<“, i= ”<< i <<“.\n”;

} // the end of the domain of names i and c resolution at the
 // block; name i, declared before the block, is visible again
cout <<“ i = ”<< i <<“.\n”;
…

Here the following will be printed:

c=3, i=0.
i=3.

If a global name of the function or the object is a masked name, then it
is possible to call it, using the operator access permission, or context
permission ::, for example:

 71

int i=5; // Global variable;
void main(){

int i=1; // local variable.
i++;
::i++;
cout<<“i=”<<i<<“, global i= ”<<::i<<“.\n”;
}

Here the following will be typed

i=2, global i=6.

Using the operator :: it is impossible to call the masked local object.

 72

9. MEMORY CLASSES
There are 3 memory or storage classes in C++:
1) static memory is static data, located in data segment;
2) automatic data, located in a special stack (stack segment) or as

a special case, in processor registers;
3) dynamic data, which are evidently located in dynamic memory with

the help of new and delete operators.
Static objects exist during the whole period of program performance.

Global and local variables, declared with accessory word static, refer to
them:

int i=3, j; // global variables. Memory class – static;
void main(){

int a; // Automatic variable;
static float b[1000], c=2.3; // static variables;
…
}
int f(){

int d; // automatic variable;
static int m=2, k; // static variables m, k.
…
}

Static and global variables, if they are not initialized evidently, are ini-
tialized by zero values. In any case initialization of static variables is per-
formed only once.

Local variables, which are not declared as static, are automatic. Such
object starts its existence when its name is declared in the block and finish it
when this block is completed. If the automatic object is not initialized evi-
dently, its value is not determined until assignment.
void f();
void main(){
for(int i = 3; i > 0; i––) f();
}
void f(){static int i; int j = 0;
cout<<“i =”<<i++<<“ j =”<<j++<<“\n”; }

 73

Here the following will be typed:

i = 0 j = 0
i = 1 j = 0
i = 2 j = 0

Let’s note that if an accessory word static is applied to a global vari-
able or to the function name, it has different meaning. In this case both
a global variable and a function become visible only in the limits of the file,
where they are determined, and are not visible from other files.

 74

10. OBJECT AND TYPE DECLARATION
When declaring, it is possible to use more than one modifiers (it is * []

and ()) simultaneously. It allows to create unlimited variety of complicated
type descriptors. At the same time, some combinations are not allowed:

� functions cannot be the array elements;
� functions cannot return an array or function.

When interpreting complicated descriptors, square and round brackets
(to the right of the identifier) have priority before * (to the left of the identi-
fier). Square or round brackets have the same priority.

A type qualifier is considered at the last stage. It is possible to use
round brackets to change the order of the interpreting into necessary one. For
correct interpreting of the complicated descriptors it is possible to follow
the rule below (“inside – outside”).

Start with the identifier and look to the right, whether there are square
or round brackets.

If they are present, interpret this part of the descriptor and then look to
the left in the search of *.

If a closing round bracket is met at any stage on the right, it is neces-
sary to apply all these rules inside round brackets and then proceed with in-
terpreting.

Interpret a type qualifier.
For example, when using the construction

int *(*array[10])();

the name array is declared as the array, consisting of 10 pointers to the func-
tion without arguments, returning the pointer to the integer value.

 75

11. TYPE NAMES
The type names are obviously used in some language constructions

(operators sizeof, new, cast). The name of the type is simply an object decla-
ration of such type where the name of the object is omitted.

The examples of the type names are:
int – integer;
double – floating with double accuracy;
int * – a pointer to an integer;
int *[10] – the array of the pointers to an integer;
int(*)[10] – a pointer to the array of 10 integers;
int *(void) – a function without arguments, returning the pointer to the inte-
ger;
int(*)(void) – a pointer to the function without arguments, returning the result
of the integer type.

 76

12. A SYNONYM OF A TYPE NAME
A synonym of the type name is formed with the help of the key word

typedef. The expression, where this key word is present, is a description of
some name. The presence of the word typedef indicates that a declared iden-
tifier becomes not the name of the object of some type but a synonym of
the name of this type.
int INTEGER; // INTEGER – the name of int type variable
typedef int INT; // INT – a synonym of int type
typedef unsigned size_t;
typedef char string[255];
typedef void(*FPTR)(int);

The last two lines determine string as a synonym of the type – “a row
consisting of 255 symbols”, and FPTR is a synonym of the type – “a pointer
to a function, possessing one argument of int type, which doesn’t return any
result”. After declaration with the help of typedef, a new name turns to a full
name of the type, given below:
string array; // array – array containing 255 symbols
FPTR func_pointer; // void(*func_pointer)(int);
typedef string STRING;

The use of typedef can simplify the understanding of complicated type
names. Thus, the type int(*(void))[] can be formed as following:
typedef int intarray[]; // the type called «integer array»
typedef intarray * ptrtointarray; // the type of the pointer to the
 // integer array
typedef ptrtointarray TYPE(void);

Now the name TYPE can be used, for example, in prototypes:
double fun(int, int, TYPE);

 77

13. TYPE CONVERSION RULES
In any cases two conversions are performed:

� the name of the array is converted to the pointer to its first element;
� the function name is converted to the pointer to that function.

13.1. EXPLICIT CONVERSIONS

Any conversion of one standard type to another one is allowed. When
converting a longer type to a shorter type, a loss of the accuracy occurs. Dur-
ing conversion of a shorter integer type to a longer one, vacant bits are filled
with 0 (if a short type is unsigned), or sign propagation occurs (for the type
with a sign).

Any conversion of pointers and references into each other is allowed.
An explicit conversion of the types is performed by means of cast operator,
which has two forms:

 (type_name)operand // traditional form;

or

 type_name (operand) // functional form.

Here type_name specifies the type and operand is a value, which must be
converted to the specified type.

Let’s note that in the second form the type_name must be a common
identifier, for example, obtained with the help of typedef.

Examples:
double d =(double)5;
int i = int(d);
int *ip = &i;
float fp =(float*) ip;
typedef float* FP;
fp = FP(ip);

 78

13.2. IMPLICIT CONVERSIONS OF A STANDARD BASE TYPES

For standard base types, a compiler can perform any conversion of one
type into another:
int i=‘A’; //i = 65;
char c=256; //8 high-order bits are lost; � will be equal to ‘\0’;
int j=-1;
long l=j;
long m=32768; // A binary notation of 32768
 //contains a single unit in 15th bit.
int k=m; //k=-32768, as 15th bit for int is sign bit.
unsigned u=m; //u = 32768
double d=0.999999;
long n=d; //n = 0.

When performing arithmetic operations, an implicit conversion of
types also occurs. The rules here are the following:

a) the types char, short, enum are converted to the type int, �nd
unsigned short to unsigned int; float type is converted to double;

b) then if one of the operands has long double type, the second one is
converted to long double also;

c) otherwise, if one of the operands has double type, the second one is
converted to double;

d) otherwise, if one of the operands has unsigned long type, the sec-
ond one is converted to unsigned long;

e) otherwise, if one of the operands has unsigned type, the second one
is converted to unsigned;

f) otherwise, if one of the operands has long type, the second one is
converted to long;

g) otherwise both of the operands have int type.
Example 1.

int g = 10, t = 5, t2 = t*t/2;
double s = g*t2; // s will be equal to 120;
double s0 = g*t*t/2.0; // s0 will be equal to 125.

Example 2.
A simplified function atoi, which converts a string of digits into its

numeric equivalent:
int atoi(char s[]){
int i, n = 0;
for(i = 0; s[i] >= ‘0’&& s[i] <= ‘9’; ++i)
n = 10*n + s[i] – ‘0’; // Conversion of char to int.
return n;
}

 79

13.3. THE CONVERSION OF DERIVED STANDARD TYPES

An implicit conversion of the pointer to any type to the pointer to void
type is allowed for pointers. All other conversions must be explicit.
int *ip;
void *vp=ip;
ip=vp; // Error!
ip=(int*)vp; // now it is correct.
float *fp=ip; // error.
fp=(float*)ip; // correct.

A constant 0 can be implicitly converted into the pointer to any type.
In this case, it is guaranteed that such pointer will not refer to any object.
The value of a standard constant NULL equals 0 for all types of the pointers.

 80

14. POINTERS

14.1. DEFINITION OF POINTERS

A pointer is a variable, containing the address of some object, for
example, another variable, exactly the address of the first byte of this object.
It allows the indirect access to this object through the pointer. Let x is a vari-
able of int type. Let’s label a pointer as px. Unary operator & yields the ad-
dress of the object, so the statement
px = &x;

assigns the address of x variable to px variable. It is said that px “points” to
x. The operator & is applicable only to the address expressions, so the con-
structions like &(x–1) and &3 are not valid.

Unary operator * is called an operator of address resolution. This op-
erator considers its operand as an address and refers to this address to extract
the object, available in this address.

Consequently, if y also has int type,
y = *px;

assigns y the content of that, at what px points to. Thus, sequence
px = &x;
y = *px;

assigns to y the same value as operator
y = x;

does. All these variables must be described:
int x, y;
int *px;

The latter is a pointer description. It can be considered as mnemonic.
It indicates that *px combination has int type or, in other words, px is
a pointer to int. It means that if px appears in the form of *px it is equivalent
to the variable of int type.

It is evident from the pointer description that it can point to only defi-
nite type of an object (in this case int). The address-resolved pointer is valid
in any expressions where the object of the type, to which this pointer refers,
appears. Thus, statement

 81

� = *�� + 2;
assigns y value, greater by 2 than the value of x .

Let’s note that the priority is that that unary * and & operators are
connected with their operands more firmly than arithmetic, thus expression
� = *�� + 2

takes the value at which px points to, adds 2 and assigns y the result of calcu-
lation. If px points to x then
*px = 3;

supposes x equals 3 and
*px += 1;

augments x by 1 as well as the expression
(*px)++

Braces are necessary here, otherwise this expression (e.g. *px ++)
increases px, not the variable it is pointing to, as unary operators, similar to *
and ++, are performed right-to-left.

If py is another pointer to int, the following assignment can be per-
formed
�� = px;

Here the address from px is copied to py. As a result py points to
the same as px.

14.2. POINTERS AND ARRAYS

An array is a set of elements of one type, which are successively
arranged in the computer memory, one after another.

The indicator of array declaration is square brackets. It is possible to
declare the array consisting of 10 elements of float type in the following way:
float a[10];

To refer to the element of this array, it is necessary to use the operation
of indexing a[ind]. The integer-type expression, which is called index,
should be placed inside the square brackets. Numbering of the elements of
the array starts with 0, therefore the description mentioned above indicates
that computer storage contains space, reserved for 10 variables of float type
and these variables are a[0], a[1],. . ., a[9].

Here is an example for the use of array.
Let’s make the program for calculation of the digits, whitespaces, and

all other symbols appearance frequency.

 82

The frequency of whitespaces will be kept in nwhite, other symbols –
in nother, and the number of digits appearance – in ndigit array:
include <iostream.h>
void main(){
int c, i, nwhite = 0, nother = 0;
int ndigit[10];
for(i=0; i<10; i++) ndigit[i]=0;
while((c=cin.get())!=EOF)
if(c>=‘0’ && c<=‘9’) ++ndigit[c – ’0’];
else if(c = = ‘ ‘|| c = = ‘\n‘ || c = = ‘\t‘) ++nwhite;
else ++nother;
cout<<“ digit \n”;
for(i=0; i<10; i++)
cout<<i<<“ entered ”<<ndigit[i]<<“ times \n”;
cout<<“ whitespaces – “<< nwhite <<“ other symbols – ”
<< nother <<“\n”;
}

When declaring the array, it can be initialized:

int c[] ={ 1, 2, 7, 0, 3, 5, 5 };
char array[] ={ ’h’, ’e’, ’l’, ’l’, ’o’, ’\n’, ’\0’};

The last initialization is allowed to be performed in a simpler way:
char array[] = “hello\n”;

Such syntax of initialization is allowed only for strings. A compiler itself
calculates the necessary storage size considering symbol '\0' with code 0, auto-
matically added to the end of the string, which is the indicator of the string end.

In C++ language, the name of the array is a constant pointer to the first
element of this array:
int mas[20];
int *pmas;
pmas = &mas[0];

The last statement can be written as: pmas = mas;
The operation of array indexing [] has two operands – the name of

the array, i.e. the pointer, and index, i.e. integer: a[i]. In C++ language, any
expression pointer[index] is treated as:
*(pointer + index)

and is converted to such expression by compiler automatically.
Thus, a[3] is equivalent to *(� + 3). Moreover, it can be written even

as 3[a], as it will in any case be interpreted as *(3+�). Here pointer a and

 83

integer 3 are summed. In this connection, let’s consider so called address
arithmetic.

14.3. ADDRESS ARITHMETIC

A pointer can be added to the integer. If integer increment i is added to
pointer pa, the increment is scaled by the storage size, occupied by the ob-
ject, which pointer pa points to. Thus, pa+i is an address of i-th element after
pa, where it is considered that the size of all these i elements equals the ob-
ject size, which pa points to. So if a is an array, a+i is an address of i-th ele-
ment of this array, i.e. &a[i] equals a+i and a[i] is equal to *(a+i).
float b[10];
float *pb=b;

pb++; // It is equivalent to pb=pb+1.
 // Here pointer pb will point to the element of array b[1].
pb+=3; // Here pb points to the element of array b[4].

Let’s note that it is impossible to write b++ or b = b+i, as the name of
the array b is a constant pointer; it must not be changed.

The pointers can be compared. If p and q point to the elements of
the same array, such relation as < > =, etc. works properly. For example,
p<q;

is true, that is == 1, if p points to the earlier element of the array, than q. Any
pointer can be compared using equality and inequality to so called zero indi-
cator NULL, which doesn’t point to anything. However, it is not recom-
mended to compare pointers, pointing to different arrays.

Pointers can be subtracted. If p and q point to the elements of the same
array, p–q gives the number of the elements lying between p and q.

14.4. SYMBOL ARRAYS AND STRINGS

A string is a symbol array. The value of the string is the pointer to its
first symbol:
char *string = “string\n”;

Here the pointer to symbols string will contain the address of the first
symbol – 's' of the string "string\n", which is placed at some storage area,
beginning with this address:

string s t r i n g \n \0

 84

Here string[3] == �i’.

Let’s consider the program segment:
char buffer[] =" "; // Initialization
 // string consisting of 10 spaces.
char *string = buffer; // string points to the
 // beginning of the buffer.
string = “sample\n”; // Assignment !

When initializing, string buffer is created and the symbols (here are
10 spaces) are placed into it. Initialization char *string = buffer adjusts
pointer string to the beginning of this string. The assignment statement at
the last row does not copy a given string “sample\n” into the array buffer,
but it changes the value of the pointer string in such a way that it starts to
point to the string “sample\n”

string s a m p l e \n \0

buffer \0

To copy the string “sample\n” into buffer, it is possible to do the fol-
lowing:
char *p = “sample\n”;
int i =0;
while((buffer[i] = p[i]) != ‘\0’) i++;

Or otherwise:
char buffer[] = “ ”;
char *p = “sample\n”;
char *buf = buffer;
while(*buf++ = *p++);

Here, first, *p is copied into *buf i.e. symbol ‘s’ is copied to the address
buf, which coincides with the address buffer, i.e. buffer[0] is getting equal to
‘s’. Then the increment of the pointers p and buf takes place, which leads to
movement along the strings “sample\n” and buffer accordingly. The last copied
symbol will be ‘\0’, its value equals 0 and while statement will end the loop.

It is simpler to use library function, which prototype is in the file
string.h:
strcpy(buffer, “sample\n”);

 85

When copying, it is necessary to provide that the storage size, reserved
for buffer, was sufficient for storage of the copied string.

14.5. MULTIDIMENSIONAL ARRAYS

A two-dimensional array is considered as an array of the elements,
each of which is one-dimensional array. A three-dimensional array is an ar-
ray, which elements are two-dimensional arrays, and so on.

After declaration
int a[5][6][7];

the following expressions may appear:
a[i][j][j] // an object of the type int;
a[2][0] // an object of the type int* is
 // one-dimensional array of 7 integers;
a[1] // two-dimensional array of 6*7 = 42 integers;
a // three-dimensional array itself.

As the element of the array a is a two-dimensional array with the size
6*7, a displacement at a value of the element of the array a takes place when
performing the expression a + 1. It means the transfer from a[0] to a[1].
The value of the address in this case is increased by 6*7*sizeof(int) =84.

For two-dimensional array mas the expression mas[i][j] may be inter-
preted as *(*(mas+i)+j). Here mas[i] is a constant pointer at i-th row of
the array mas.

The arrays are stored by rows in memory, i.e., when addressing
the elements in the order of their arrangement in the memory, the very right
index changes faster.

Thus, for the array c[2][3], its six elements are arranged in memory in
the following way:
c[0][0] c[0][1] c[0][2] c[1][0] c[1][1] c[1][2]

Multidimensional arrays are also can be initialized, when declaring:
int d[2][3]={ 1, 2, 0, 5 };

In this case, the first 4 elements of the array obtain the indicated values,
and the rest two will be initialized with zeros.

If a multidimensional array is initialized, the very first dimension can
be unspecified. In this case a compiler itself calculates the size of the array:
int f[][2] ={ 2, 4, 6, 1 }; // array f[2][2];
int a[][2][2] ={ 1, 2, 3, 4, 5, 6, 7, 8 }; // array a[2][2][2].

 86

An initializing expression may have the structure, reflecting the fact
that the array is, for instance, two-dimensional:
int c[2][3]={{1, 7},{-5, 3} };

In this case, in matrix c a zero and first columns are initialized, and
the second column, i.e. elements c[0][2] and c[1][2], are initialized with ze-
ros.

14.6. POINTERS AND MULTIDIMENSIONAL ARRAYS

Let’s consider the difference between the objects a and b, described in
the following way:
int a[10][10];
int *b[10];

Both a and b can be used in the same way from the viewpoint that both
a[5][5] and b[5][5] are the references to a specific value of int type. But a is
a real array: 100 memory cells are taken for it and conventional calculations
for finding of any indicated element are performed with indices, which need
multiplication. For b the description singles out only 10 pointers. Each of
them must be set in such a way that it points to the integer array.

Assuming each of them points to the array consisting of 10 elements,
so that 100 memory cells plus 10 more cells for pointers will be assigned
somewhere. Thus, a pointer array uses a rather greater volume of memory
and may require the evident initialization step. At the same time, two advan-
tages arise: the access to the element is performed indirectly by means of
the pointer instead of multiplication or addition, and the rows of the array
may have different lengths. It means that not every element of b must point
necessarily at the vector consisting of 10 elements. This difference can be
seen in the following examples.

Example 1:
char day[5][12] ={
 “Monday”, // In each row there are 12 symbols.
 “Tuesday”,
 “Wednesday”,
 “Thursday”,
 “Friday”
};

Here the constant pointers day[0], day[1], …, day[4] address memory areas
of the equal length of 12 bytes each:

 87

day day +1 day + 2 day + 3 day + 4

Example 2:

char *day1[2] ={“Saturday”, // 8 symbols + ‘/0’
 “Sunday”}; // 6 symbols + ‘/0’

day1[0] day1[1]

S a t u r d a y \0 S u n d a y \0
Here the variables-pointers day1[0] 	 day1[1] address the memory areas of 9
and 7 bytes accordingly.

 88

15. DYNAMIC MEMORY MANAGEMENT
OPERATORS

15.1. THE OPERATOR NEW FOR MEMORY ALLOCATION

The expression containing the operator new has the following repre-
sentation:

pointer_to_a_type = new the_name_of_the_type(initializer)
An initializer is an optional initializing expression, which may be used

for all types, except arrays. When performing the statement

int *ip = new int;

two objects are created – a dynamic nameless object and a pointer to it with
the name ip, which value is the address of the dynamic object. It is possible
to create another pointer to the same dynamic object:

int *other = ip;

other

 ip
int

If another value is assigned to the pointer ip, the access to the dynamic

object becomes lost:

int *ip = new(int);
int i = 0;
ip = &i;

i

 ip
int

 89

Now a dynamic object still exists, but it is impossible to address to it.
We end up with a memory leak. A memory leak is a chunk of dynamically
allocated memory that we no longer have a pointer to, and thus we cannot re-
turn it to the program and use it later.

When allocating, an object can be initialized:
int *ip = new int(3);

It is possible to allocate memory dynamically for the array:
double *mas = new double[50];

mas

Now it is possible to work with this dynamically allocated memory as
with a common array:
*(mas+5) = 3.27;
mas[6] = mas[5] + sin(mas[5]);

In the case of successful completion, the statement new returns
the pointer with the value, different from zero.

The result of the statement, equal to zero, i.e. zero pointer NULL, indi-
cates that a continuous free area of the memory of a required size is not found.

15.2. THE OPERATOR DELETE FOR MEMORY DEALLOCATION

The operator delete releases a memory area, allocated by the operator
new earlier, for further use:
delete ip; // Delete a dynamic object of int type,
 // if it was created as “ip = new int;”
delete mas; // Delete a dynamic array of the length of 50, if
 // it was “double *mas = new double[50];”

It is absolutely safe to apply the operator to the pointer NULL. The result
of the repeated application of the operator delete to the same pointer is not
defined. A mistake usually takes place, and it leads to circularity.

To avoid such mistakes, it is possible to apply the following construction:
int *ip = new int[500];
. . .
if(ip){
delete ip; ip = NULL;
}
else{
cout <<“ memory has already been released \n”;
}

 90

Example. Allocate memory for the matrix with m rows and n columns:
int m, n;
cout<<“Set the number of rows and columns for matrix: \n”;
cin>>m>>n;
double **a = new double *[m]; // array of m pointers to double
for(int i = 0; i < m; i++)
if((a[i] = new double[n])==NULL) // a row of matrix is allocated
{ cout<<”no memory!\n”; exit(1);}

Now it is possible to address to the elements of this matrix in the ordi-
nary way:
a[i][j] or *(a[i] + j) or *(*(a + i) + j)

It is possible to represent memory allocation, corresponding to
the fragment mentioned above, in the following way:

 0 … n-2 n-1
a a[0] …

a[1] …
…

… …
…
…

a[m-2] …
a[m-1] …

It is possible to release memory here in the following way:
for(i = 0; i < m; i++)delete a[i];
delete a;

or in such a way:
for(i = 0; i < m; i++){
delete a[i]; a[i] = NULL;}
delete a;

 91

ADVICE
1. Don’t panic! All will become clear in time.
2. You don’t have to know every detail of C++ to write good programs.
3. Focus on programming techniques, not on language features.
4. Don’t reinvent the wheel; use libraries.
5. Don’t believe in magic; understand what your libraries do, how they do

it, and at what cost they do it.
6. When you have a choice, prefer the standard library to other libraries.
7. Do not think that the standard library is ideal for everything.
8. Remember to #include the headers for the facilities you use.
9. Remember that standard library facilities are defined in namespace std.
10. Use string rather than char*.
11. Keep scopes small.
12. Don’t use the same name in both a scope and an enclosing scope.
13. Declare one name (only) per declaration.
14. Keep common and local names short, and keep uncommon and nonlocal

names longer.
15. Avoid similar looking names.
16. Maintain a consistent naming style.
17. Choose names carefully to reflect meaning rather than implementation.
18. Use a typedef to define a meaningful name for a built-in type in cases in

which the built-in type used to represent a value might change.
19. Use typedefs to define synonyms for types; use enumerations and

classes to define new types.
20. Remember that every declaration must specify a type (there is no

‘‘implicit int’’).
21. Avoid unnecessary assumptions about the numeric value of characters.
22. Avoid unnecessary assumptions about the size of integers.
23. Avoid unnecessary assumptions about the range of floating-point types.

 92

24. Prefer a plain int over a short int or a long int.
25. Prefer a double over a float or a long double.
26. Prefer plain char over signed char and unsigned char.
27. Avoid making unnecessary assumptions about the sizes of objects.
28. Avoid unsigned arithmetic.
29. View signed to unsigned and unsigned to signed conversions with suspicion.
30. View floating-point to integer conversions with suspicion.
31. View conversions to a smaller type, such as int to char, with suspicion.
32. Avoid nontrivial pointer arithmetic.
33. Take care not to write beyond the bounds of an array.
34. Use 0 rather than NULL.
35. Use vector and valarray rather than built-in (C-style) arrays.
36. Use string rather than zero-terminated arrays of char.
37. Minimize use of plain reference arguments.
38. Avoid void* except in low-level code.
39. Avoid nontrivial literals (‘‘magic numbers’’) in code. Instead, define

and use symbolic constants.
40. Prefer the standard library to other libraries and to ‘‘handcrafted code’’.
41. Avoid complicated expressions.
42. If in doubt about operator precedence, parenthesize.
43. Avoid explicit type conversion (casts).
44. When explicit type conversion is necessary, prefer the more specific cast

operators to the C-style cast.
45. Avoid expressions with undefined order of evaluation.
46. Avoid goto.
47. Avoid do statements.
48. Don’t declare a variable until you have a value to initialize it with.
49. Keep comments crisp.
50. Maintain a consistent indentation style.
51. Prefer defining a member operator new () to replacing the global operator new ().
52. When reading input, always consider ill-formed input.

 93

EXERCISES
1. Get the ‘‘Hello, world!’’ program to run.
2. For each declaration in Chapter 6, do the following: If the declaration is

not a definition, write a definition for it. If the declaration is a definition,
write a declaration for it that is not also a definition.

3. Write a program that prints the sizes of the fundamental types, and a few
pointer types. Use the sizeof operator.

4. Write a program that prints out the letters ‘a’…‘z’ and the digits
‘0’…‘9’ and their integer values. Do the same for other printable char-
acters. Do the same again but use hexadecimal notation.

5. Develop the program for computing of arithmetic expression and the out-
put of obtained result. Enter the source data from a keyboard.

ln (sin)x x ya y x e� �� �
Source data: x, y.

6. Develop the program for computing of the expression and for outputting
of the obtained result. Input the corresponding source data from
the keyboard.

2

2

2

() , for 0,

() , for 0,

() 1, for 0.

x y xy xy

a x y xy xy

x y xy

	 � �

��� � � �
�

� � ���

Source data: x, y.
7. Calculate and print the table of three functions y, z, w.

Argument x varies from x0 to xk with step h. Function y is defined by
the convergent series, which sum has to be calculated until its next member
modulo becomes less than specified minor positive e. Consider the task
with several different e (e = 0.01, 0,0001, 0,000001).
The table should be represented as follows:

x y z w
–
–
…
–

–
–
…
–

–
–
…
–

–
–
…
–

 94

Adjust the data in the table with the help of functions cout.width(),
cout.precicion().

3 5 7

0

...;
3 5 7

arctan ;
;

0.5, 0.5, 0.1.k

x x xy x

z x
w y z
x x h

� � � � �

�
� �
� � � �

8. What, on your system, are the largest and the smallest values of the following
types: char, short, int, long, float, double, long double, and unsigned.

9. What is the longest local name you can use in a C++ program on your system?
What is the longest external name you can use in a C++ program on your sys-
tem? Are there any restrictions on the characters you can use in a name?

10. Write declarations for the following: a pointer to a character, an array of
10 integers, a reference to an array of 10 integers, a pointer to an array
of character strings, a pointer to a pointer to a character, a constant inte-
ger, a pointer to a constant integer, and a constant pointer to an integer.
Initialize each one.

11. What, on your system, are the restrictions on the pointer types char*,
int*, and void*? For example, may an int* have an odd value?

12. Use typedef to define the types unsigned char, const unsigned char,
pointer to integer, pointer to pointer to char, pointer to arrays of char,
array of 7 pointers to int, pointer to an array of 7 pointers to int, and array
of 8 arrays of 7 pointers to int.

13. What is the size of the array str in the following example:

char str[] = “a short string”?

What is the length of the string “a short string” ?
14. Read a sequence of words from input. Use Quit as a word that terminates

the input. Print the words in the order they were entered. Don’t print
a word twice. Modify the program to sort the words before printing them.

 95

15. Run some tests to see if your compiler really generates equivalent code
for iteration using pointers and iteration using indexing. If different
degrees of optimization can be requested, see if and how that affects
the quality of the generated code.

16. Rewrite the following for statement as an equivalent while statement:

for(i =0; i<max_length; i++) if (input_line [i] == ‘?’) quest_count++.

Rewrite it to use a pointer as the controlled variable, that is, so that
the test is of the form *p ==’?’.

17. Fully parenthesize the following expressions:

a = b + c * d << 2 & 8
a & 0 7 7 != 3
a == b || a == c && c < 5
c = x != 0
0 <= i < 7
f (1,2)+3
a = –1 ++ b– – –5
a = b == c++
a = b = c = 0
a [4][2] *= * b ? c : * d * 2
a b,c =d

18. Read a sequence of possibly white space separated (name, value) pairs,
where the name is a single white-space-separated word and the value is
an integer or a floating-point value. Compute and print the sum and mean
for each name and the sum and mean for all names.

19. Write a table of values for the bitwise logical operations for all possible
combinations of 0 and 1 operands.

20. What happens if you divide by zero on your system? What happens in
case of overflow and underflow?

21. Fully parenthesize the following expressions:

*p++
* – – p
++a– –
(int*)p–>m
*p . m
*a[i]

 96

22. See how your compiler reacts to these errors:

void f(int a, int b)
{
if (a = 3) // ...
if (a & 077 == 0) // ...
a := b+1;
}

Devise more simple errors and see how the compiler reacts.

23. Modify the program from 15 to also compute the median.
24. What does the following example do?

void send(int* to, int* from, int count)
// Duff’s device. Helpful comment deliberately deleted.
{
int n = (count +7)/8 ;
switch (count%8) {
case 0: do {*to++ = *from++;
case 7: *to++ = *from++;
case 6: *to++ = *from++;
case 5: *to++ = *from++;
case 4: *to++ = *from++;
case 3: *to++ = *from++;
case 2: *to++ = *from++;
case 1: *to++ = *from++;
}while (n>0) ;
}
}

Why would anyone write something like that?

 97

16. FUNCTIONS
16.1. FUNCTION DEFINITION AND CALL

C++ program consists of one or several functions. The functions split
large goals into small subgoals. The name of one of the functions, which
must be present necessarily in any program, main, is reserved. The function
main should not necessarily be the first, although the program performance
starts with it.

A function cannot be defined in another function.
There are tree notions connected with the use of a function – function

definition, declaration and call.
Function definition has the following representation:

type name(the_list_of_argument_descriptions){statements}

Here name is the name of the function; type is a type of the value,
returned by the function; statements in curly braces {} are also called the
body of the function. The arguments in the list of descriptions are called
formal arguments.

For example, the function that finds and returns the maximal values
from two integer values a and b can be determined as:
int max(int a, int b){ return(a>=b)? a:b; }

This definition indicates that the function with the name max has two
arguments and returns an integer value. If the function really must return
the value of a certain type, the statement return followed expression must be
necessarily present in its body; the function operation stops by this statement,
the control is passed to the function, calling a given function, and the value of
the called function is the value of the expression.
int max(int a, int b){ return(a >=b)? a:b; }
void main(){
int i = 2, j = 3;
int c = max(i, j);
cout<<“ max= ”<<c<<“\n”;
c = max(i*i, j)*max(5, i - j);
cout<<“ max= ”<<c<<“\n”;}

UNIT 3

 98

In this program, the max function definition and three calls to it are
given. When calling, the function name and the list of actual parameters in
the round brackets are indicated.

If a function doesn’t have formal arguments, it is defined in the follow-
ing way:
double f(void){function body};

or, the same,
double f(){function body};

It is possible to call this function in the following way:
a = b*f() + c;

The function may not return any value. In this case its definition is
following:

void name(the list of argument descriptions){ statements }

The call of such function looks like:
name(list of actual arguments);

The performance of this function, which doesn’t return any value,
comes to an end with the statement return without the expression, following
it. The performance of such function and return from it into the calling func-
tion occurs also in case the transition to the last closing bracket of this func-
tion occurs when performing the function body.

As an example, let’s take the function, copying one string into another:
void copy(char *to, char *from){
while(*to++ = *from++);}
void main(){
char str1[]=“string1”;
char str2[]=“string2”;
copy(str2, str1);
cout<<str2<<“\n”;
}

Let’s note that a library function strcpy has different definition and its
headline can be represented as:
char *strcpy(char *to, const char *from);

Its action is copying of the string from to the string to and, besides, it
returns the pointer to the string to, that is, it has a statement return to.

 99

16.2. ARGUMENT PASSING

Argument passing by value. In the examples above, a so called argument
passing by value occurs. Such argument passing means that a local object,
which is initialized by the value of an actual argument, is created in a called
function for each formal argument. Consequently, during such passing,
the value change of formal arguments of the function does not cause
the change of the values of actual arguments corresponding to them.

Let’s discuss, for example, the function, raising the integer x to
the n-th power, where this way is used.
int power(int x, int n){
for(int p = 1; n > 0; n––) p *= x;
return p;}

Here the argument n is used as a temporary variable. Whatever hap-
pens to n inside the function power, it in no way influences the actual argu-
ment, which was initially passed to this function by a calling function:
void main(){
…
int n = 6, x = 3;
x = power(x, n); // n – is not changed.

In case the function must change its parameters, it is possible to use the
pointers. The pointers are also passed according to their values; a local vari-
able – a pointer is created inside the function. But as this pointer is initialized
by the address of the variable from the called program, this variable can be
changed using this address.

As an example, let us consider the function, swapping its parameters:
void swap(int* x, int* y){
int t = *x;
*x = *y;
*y = t;
}

It is possible to call this function in the following way:
int a = 3, b = 7;
swap(&a, &b); //Now � = 7, and b = 3.

The use of the arrays as parameters has some peculiarity. This peculiarity
is that the array name is converted to the pointer to its first element, that is,
the passing of the pointer takes place during passing of the array. Because of
this reason, a called function cannot recognize, whether the passed pointer
refers to the beginning of the array or to one single object.

 100

int summa(int array[], int size){
int res = 0;
for(int i = 0; i < size; i++) res += array[i];
return res;
}

In the headline int array [] can be replaced by int *array, and
the expression in the function body array[i] can be replaced by *(array+i) or
even *array++, as array is not the name of the array, and, consequently, is not
a constant pointer. It is possible to call the function summa in the following
way:
int mas[100];
for(int i = 0; i < 100; i++) mas[i] = 2*i + 1;
int j = summa(mas, 100);

Example. Calculation of the polynomial by its coefficients.
Let it is required to calculate polynomials

P3(x) = 4x3 + 2x2 + 1,
P5(x) = x5 + x4 + x3 + x2 + x + 7,
P9(x) = x9 + 2x7 + 3x6 + x5 + x2 + 2

at the point x = 0.6.
Considering the importance of calculation of polynomials, let’s set up

the function, implementing the calculation of the polynomial of the n-th power:

Pn(x) = C0 + C1x + C2x2 + … + Cnxn

by its coefficients Ci. For effective calculation of the polynomial it is neces-
sary to use a so-called Horner’s method (which in fact was described by
Newton 100 years before Horner). This method consists in rewriting a poly-
nomial in the following form:

Pn(x) = (…((0*x+Cn)*x + Cn–1)*x + … + C1)*x + C0

In such order of calculation for obtaining the value Pn(x) only
the n number of multiplication and the n number of additions are required.

The coefficients of the polynomials will be stored in the array c.
For polynomial calculation let’s write a program, where Horner's

method is implemented in the function pol().
#include <iostream.h>
const n = 10;
double pol(int n, double c[], double x){
double p=0;
for (int i = n; i >= 0; i - -) p = p*x + c[i];
return p;}
void main(){

 101

double x=0.6, p, c[n] = {1, 0, 2, 4};
p=pol(3, c, x);
cout<<“x= ” <<x<<“ Polynom = ”<<p<<‘\n’;
c[0]=7;
c[1]=c[2]=c[3]=c[4]=c[5]=1;
p=pol(5, c, x);
cout<<“x= ”<<x<<“ Polynom = ”<<p<<‘\n’;
c[0]=2; c[2]=1; c[5]=1; c[6]=3; c[7]=2; c[9]=1;
c[1]=[3]=c[4]=c[8]=0;
cout<<“x= ”<<x<<“ Polynom = ”<<pol(9, c, x)<<‘\n’;
}

16.3. MULTIDIMENSIONAL ARRAYS PASSING

If a two-dimensional array is passed to the function, the description of
the corresponding function parameter must contain the number of columns;
the number of rows is not essential, as in fact the pointer is passed.

Let’s consider the example of the function multiplying the matrices A
and B; the result is C. The dimension of the matrices is not greater than 10.
const nmax = 10;
void product(int a[][nmax], int b[][nmax], int c[][nmax],
int m, int n, int k){
 /* m – the number of rows in matrix a;
 n – the number of rows in matrix b (must be equal to the number
 of the columns in matrix a);
 k – the number of columns in matrix b.
 */
for(int i = 0; i < m; i++)
 for(int j = 0; j < k; j++){
 c[i][j] = 0;
 for(int l = 0; l < n; l++) c[i][j] += a[i][l]*b[l][j];
}
}

If, for example, square matrices a and b with the size 5x5 are set, their
product c can be obtained in the following way:
product(a, b, c, 5, 5, 5);

In a given example there is one imperfection – here the maximal
dimensionality of matrices is fixed beforehand. There are several ways to
avoid it; one of them is the use of the accessory array-pointers to the arrays.

Let’s write the function, transposing a square matrix of the arbitrary
dimension n.

 102

void trans(int n, double *p[]){
double x;
for(int i = 0; i < n-1; i++)
 for(int j = i+1; j < n; j++){
 x = p[i][j]; p[i][j] = p[j][i]; p[j][i] = x;}
 }
void main(){
double A[4][4] = { 10, 12, 14, 17
 15, 13, 11, 0
 -3, 5.1, 6, 6
 2, 8, 3, 1};
double ptr[] = {(double*)&A[0], (double*)&A[1],
(double*)&A[2], (double*)&A[3]};
int n = 4;
trans(n, ptr);
for(int i = 0; i < n; i++){cout<<“\n string”<<(i+1)<<“:”;
 for (int j; j<n; j++)
 cout<<‘\t’<<A[i][j];
 cout<<‘\n’;
}
}

In the function main(), the matrix is represented as two-dimensional ar-
ray double A[4][4]. Such array is impossible to use directly as an actual argu-
ment, corresponding to the formal double *p[]. In this case, an additional ac-
cessory array of the pointers double *ptr[] is introduced. The addresses
of matrix rows, converted to the type double* are assigned to the elements of
this array as initial values.

A multidimensional array with alternating dimensions can be dynami-
cally formed inside the function. It is possible to pass it to the called function
as a pointer to the multidimensional array of the pointers onto one-dimensional
arrays with the elements of the known dimensionality and of a given type.

As an example, let’s consider the function, forming a unitary matrix
of the n-th order.
int** singl(int n){
int **p = new int *[n];
 /* Type int *[n] – the array pointers to integers.
 The operator new returns the pointer to the allocated memory for this
 array and the type of the variable p is int**. Thus, p is the array of the
 pointers to the rows of the integers of the future matrix.
 */
if(p == NULL){cout<<“A dynamic array is not created!\n”;
exit(1);}
 // a loop for creation multidimensional arrays – matrix rows:
for(int i = 0; i < n; i++){p[i] = new int[n];
 if(!p[i]){cout<<“A dynamic row is not created!\n”;

 103

exit(1);}
 for(int j = 0; j < n; j++)
 p[i][j] = (i = =j)? 1: 0;}
return p;}

void main(){
int n;
cout<<“\n Specify the order of the matrix: ”;
cin>>n;
int** matr; //the pointer to the matrix
matr = singl(n);
for(int i = 0; i < n; i++){cout<<“\n row”;
 cout.width(2);
 cout<<i+1<<“: ”;
 for(int j = 0; j < n; j++){
 cout.width(4);
 cout<<matr[i][j];
}
}
for(i=0; i<n; i++) delete matr[i];
delete matr;
}

In this program, the call of the function cout.width(k) specifies
the width of the field of the next output into the k-th positions, that allows to
line up the view of the obtained matrix.

16.4. THE POINTERS TO THE FUNCTIONS

Let's determine the pointer to the function in the following way:
function_type(*pointer_name)(list_of_the_parameters);

For example:

int(*fptr)(double);

Here fptr is determined as a pointer to the function with one argument
of double type, which returns the value int. The name of the function without
braces following it, is a pointer to the function, which contains the address of
the beginning of this function code.

Example:
void f1(void){
cout<<“\n f1() is performed.”;}
void f2(void){
cout<<“\n f2() is performed.”;}
void main(){
void(*ptr)(void);

 104

ptr = f2;
(*ptr)(); //call of function f2();
ptr = f1;
(*ptr)(); //call of f1();
ptr(); //another way!
}

The result:

f2() is performed.
f1() is performed.
f1() is performed.

Sometimes it is convenient to use formal parameters of the function,
which are the pointers to the function.

Let’s illustrate this when solving the following problem.
Calculate the integral of two different functions using a method

of trapezoids.

// File TRAP.CPP
double trap(double a, double b, int n, dou-
ble(*func)(double)){
double x, h =(b-a)/n, i =((*func)(a) +(*func)(b))/2;
for(x = a; n > 1; n – –) i += (*func)((x+=h);
return h*i;
}

//File INTEGRAL.CPP
#include <iostream.h>
#include <math.h>
#include <stdlib.h>
#include “trap.cpp”
double f1(double x){
return x*x + sin(3 + x);}
double f2(double x){
return x/(x*x + 1) + exp(-2*x*x);}
void main(){
double a = 1, b = 3;
double i = trap(a, b, 50, f1);
cout <<“integral from the first function = ”<<i<<‘\n’;
i = trap(a, b, 50, f2);
cout <<“integral from the second function = ”<<i<<‘\n’;
}

It should be mentioned here that it is possible to use the calls func(a),
func(b), etc. in the body of the function trap.

 105

16.5. REFERENCES

The type “reference to the type” is defined as: type&, for example:
int& or double&

Reference types set the object aliases. A reference must be initialized.
After initializing, the use of the reference yields the same result as a direct
use of the renamed object.

Let’s consider the initializing of the reference:
int i = 0;
int& iref = i;

Here a new variable of a type reference to int with the name iref is created.
Physically iref is a constant pointer to int and, consequently,

the meaning of the reference after initializing can be changed. In this case
the initializing value is the address of the variable i, that is, during initializing
the reference acts as the pointer.

When used, the reference doesn’t act as a pointer, but as a variable,
which address it has been initialized by:
iref ++; // the same as i++;
int *ip = &iref; // the same as ip = &i.

So iref has become another name, an alias of the variable i.
The reference can be defined in such a way:

a reference is a constant pointer to the object, which the operator of pointer
resolution * is implicitly applied to, when it is used.

If the type of the initialized reference doesn’t coincide with the object
type, a new anonymous object, for which the reference is an alias, is created.
The initializer is converted and its value is used for setting the anonymous
object value.
double d = 0.0;
int& ir = d; // an anonymous object of int-type is created;
ir = 3.0; // d – is not changed!
Here the anonymous variable of int type, which is initialized by the value, ob-
tained as a result of conversion of double type value to int type value, is cre-
ated. Then the reference is initialized by the value of the address of this variable.

The anonymous object is also created, when the initializer is not an ob-
ject, but, for example, a constant:
int& ir = 3; // The anonymous object obtained the value 3.

 106

Here the anonymous object of int type is created first, and it is initialized by
the value 3. After it ir reference is created and is initialized by the address of
the anonymous object. Now ir is its alias and the statement
ir = 8;

specifies a new value of this anonymous object.

16.6. REFERENCES AS FUNCTION PARAMETERS

References are often used as formal parameters of the function. A mecha-
nism of parameter passing to the functions by means of references is called in
programming as argument passing by reference. By means of references it is
possible to achieve the value alteration of actual parameters at the calling
program (without alteration of the pointers).
void swap(int &x, int &y){
int t = x;
x = y;
y = t;
}

Now the calling function has the following view:
int a = 3, b = 7;
swap(a, b);

Thus, the local relatively the function swap() variables of the reference
type are created. These local variables (x and y) are aliases of the variables
a and b and are initialized by the variables a, b. After that, all the actions
with x and y are equivalent to the actions with a and b, that causes the value
alterations for a and b.

Let’s note that in the last example it is possible to call the function
swap() both with arguments of different types (not only int), and with argu-
ments, which are not objects at all:
float a = 5, b = 2.7;
swap(a, b);
swap(3, a+b);

However, in these cases the function swap() in fact does not carry out any
actions with its arguments. Temporary objects of int type, which are initialized
by the values, obtained as a result of conversion of a, b, a+b to the int type,
are created; then the references x and y are initialized by the values of
the addresses of these anonymous objects; anonymous objects will be
changed. At the same time actual parameters remain unchangeable.

A compiler yields a warning that it has to specify temporary variables
and will work with them.

 107

16.7. THE DEFAULT ARGUMENTS

A convenient property of C++ is presence of predefined initializers of
the arguments. The values of the default arguments can be specified in the
function declaration, at the same time they are automatically substituted to
the function call, which contains less number of the arguments than it was
declared. For example, the next function is declared with three arguments,
two of which are initialized:

error(char *msg, int level = 0, int kill = 0);

This function can be called with one, two or three arguments:

error(“Error!”); // Error(“error”, 0, 0) is called;
error(“Error!”, 1); // error(“error”, 1, 0) is called;
error(“Error!”, 3, 1); // default argument values
 // are not used.

All the default arguments must be the last arguments in the list; not
even a single argument can be to the right of it.

If the default argument has already been determined in one declaration,
it cannot be overloaded in the other one. The default arguments must be
declared during the first declaration of the function name and are not to be
the constants:
int i = 8;
void func(int = i);

Let’s note that if the argument initialization is performed in the func-
tion prototype, it is not necessary to set the initialization of the arguments in
the function definition.

16.8. FUNCTION OVERLOADING

In C++, it is possible to overload the functions names and to use the same
name for several functions with different type or number of the arguments. Let
the following functions be declared:
int func(int, int);
int func(char, double);
int func(long, double);
int func(float, …); // The function with undefined
 // number of the arguments.
int func(char*, int);

 108

Let’s consider what will happen to the name func with some list of
the arguments during the function call. The first thing the compiler will per-
form is will try to find the function, which formal arguments correspond to
the actual ones without any conversions except inevitable – for example, the
array name to the pointer or the variable value to the constant or vice versa.

char string[] = ”String – is a symbol array”;
int i = func(string, 13); // func(char*, int);
int j = func(1995L, 36.6); // func(long, double);

If at the first stage a suitable function is not found, during the second
stage an attempt to select such function is made, so that for adequacy of formal
and actual arguments it will be enough to use only those standard conversions,
which do not cause the conversions of the integer types to the floating and
vice-versa. In this case a function, for which the number of such conversions
would be minimal, is selected.

Let the function reference looks like this:
float a = 36.6;
j = func(‘a’, a);

Applying indicated standard conversions, let’s find that the function
with prototype func(char, double) will be called and the argument a will be
converted to the double type.

The third stage is selection of such function, for the call of which it is
necessary to implement any standard conversions of the arguments
(and again in such a way that these conversions would be as fewer as possible).

Thus, in the statement
int l = func(“YEAR:”, 2002.3);

the function func(char*, int) will be called, which actual argument of
double type will be converted to int with truncation of the fractional part
of the number.

At the fourth stage the functions, for which the arguments can be
obtained by means of all conversions, considered before, and the type con-
versions, defined by the programmer himself, are selected.

If in this case the only necessary function is not found, at the last fifth
stage a compiler tries to find a correspondence, taking into account the list
of the undefined arguments.

Thus, when calling
func(1, 2, 3);

the only one function func(float, ...) is suitable here.

 109

When calling
int i, j, n;
…
n = func(&i, &j);

a compiler will not find any suitable function and will yield the error message.

16.9. FUNCTION TEMPLATES

The aim of introduction of the function templates is automation
of function creation, which can process heterogeneous data. In definition of
the templates of the collection of functions an accessory word template is
used, which is followed by the list of template parameters in angle brackets.
Each formal template parameter is marked by the accessory word class,
which is followed by the parameter name.

Example: definition of the function template, calculating the value of
modules of different types.
template <class type>
type abs(type x){return x > 0 ? x: -x;}

A function template consists of two parts – the template headline and
ordinary function definition, where the type of the returned value and
the types of any parameters and local variables can be defined by the names
of template parameters, introduced in its headline.

Example (again function swap):
template <class T>
void swap(T& x, T& y){T z = x; x = y; y = z;}

A template of the collection of functions is used for automatic forma-
tion of specific function definitions using the same calls, which a translator
finds in the program text. For example, when addressing
abs(-10.3)

a compiler will form the following function definition:
double abs(double x){return x > 0? x: -x;}

The performance of exactly this function will be further organized, and
the value 10.3 will return to the point of call as a result. Example: a function
template for searching in the array.
#include <iostream.h>
template <class type>
type &r_max(int n, type d[]){
int im = 0;
for(int i = 1; i < n; i++) im = d[im] > d[i] ? im : i;

 110

return d[im]; }
void main(){
int n = 4, x[]={10, 20, 30, 5};
cout<<“\n r_max(n, x)=”<< r_max(n, x); // Printing of the maximal
 //element.
r_max(n, x) = 0; // Replacement the maximal
 // element with zero.
for(int i = 0; i < n; i++)
cout<<“\t x[”<<i<<“]=”<< x[i];
float f[]={10.3, 50.7, 12.6};
cout<<“\n r_max(3, f)=”<< r_max(3, f);
r_max(3, f) = 0;
for(i = 0; i < 3; i++)cout<<“\t f[”<<i<<“]=”<<f[i]; }

The result of the program performance

r_max(n, x)=30 x[0]=10 x[1]=20 x[2]=0 x[3]=5
r_max(3, f)=50.7 f[0]=10.3 f[1]=0 f[2]=12.6

When using templates, there is no necessity to prepare all the variants
of functions with an overloaded name. A compiler, analyzing the function
calls in the text of the program, forms necessary definitions automatically
namely for such types of parameters, which are used in the call.

Let’s enumerate the main properties of the template parameters.
� The names of template parameters must be unique in the whole tem-

plate definition.
� The list of the parameters of the function template can not be empty.
� There may be several parameters in the list of parameters of function

template. Each of them must be started with the accessory word class.
� It is not acceptably to use the parameters with the same names in head-

line of the template.
� The name of the template parameter has all rights of the type name in

the function, defined by the template. The parameter name of the tem-
plate is seen in the whole definition and hides other uses of the same
identifier in the scope, exterior relatively a given template.

� All template parameters must be necessarily used in specifications of
formal parameters of function definition.
Let’s note that if necessary, it is possible to use prototypes of function

template. For example, a function prototype swap():
template <class type>
void swap(type&, type&);

 111

During specialization of template definition of the function it is neces-
sary that when calling a function, the types of actual parameters, corresponding
to formal parameters, which are parameterized in a similar way, are identical.

Thus, it is inadmissible that:
int n = 5;
double d = 4.3;
swap(n, d);

 112

ADVICE
1. Be suspicious of non-const reference arguments; if you want the func-

tion to modify its arguments, use pointers and value return instead.
2. Use const reference arguments when you need to minimize copying of

arguments.
3. Use const extensively and consistently.
4. Avoid macros.
5. Avoid unspecified numbers of arguments.
6. Don’t return pointers or references to local variables.
7. Use overloading when functions perform conceptually the same task on

different types.
8. When overloading on integers, provide functions to eliminate common

ambiguities.
9. When considering the use of a pointer to function, consider whether

a virtual function or a template would be a better alternative.
10. If you must use macros, use ugly names with lots of capital letters.

 113

EXERCISES
1. Define functions f(char), g(char&), and h(const char&). Call them with

the arguments ‘a’, 49, 3300, c, uc, and sc, where c is a char, uc is
an unsigned char, and sc is a signed char. Which calls are legal? Which
calls cause the compiler to introduce a temporary variable?

2. Define an array of strings in which the strings contain the names of
the months. Print those strings. Pass the array to a function that prints
those strings.

3. Write a function that counts the number of occurrences of a pair of let-
ters in a string and another that does the same in a zero-terminated array
of char. For example, the pair “ab” appears twice in “xabaacbaxabb”.

4. Write a function that swaps (exchanges the values of) two integers. Use
int* as the argument type. Write another swap function using int& as
the argument type.

5. Write a function rev() that takes a string argument and reverses the charac-
ters in it. That is, after rev(p) the last character of p will be the first, etc.

6. Write these functions: strlen(), which returns the length of a string; strcpy(),
which copies a string into another; and strcmp(), which compares two
strings. Consider what the argument types and return types ought to be.
Then compare your functions with the standard library versions as
declared in <cstring> (<string.h >).

7. Write a function atoi(const char*) that takes a string containing digits
and returns the corresponding int. For example, atoi("123") is 123 .
Modify atoi() to handle C++ octal and hexadecimal notation in addition
to plain decimal numbers.

8. Write a function itoa(int i, char b[]) that creates a string representation
of i in b and returns b.

9. Write a program that strips comments out of a C++ program. That is,
read from c i n , remove both // comments and /* */ comments, and
write the result to c o u t . Do not worry about making the layout of
the output look nice (that would be another, and much harder, exercise).
Do not worry about incorrect programs. Beware of //, /*, and */ in com-
ments, strings, and character constants.

10. Look at some programs to get an idea of the variety of indentation, naming,
and commenting styles actually used.

 114

11. Write a program like ‘‘Hello, world!’’ that takes a name as a command-
line argument and writes ‘‘Hello, name !’’. Modify this program to take
any number of names as arguments and to say hello to each.

12. Write a function to invert a two-dimensional array.
13. Write an encryption program that reads from cin and writes the encoded

characters to cout. You might use this simple encryption scheme:
the encrypted form of a character c is c ^key[i], where key is a string
passed as a command-line argument. The program uses the characters in
key in a cyclic manner until all the input has been read. Reencrypting
encoded text with the same key produces the original text. If no key
(or a null string) is passed, then no encryption is done.

14. Look at some programs to get an idea of the diversity of styles of names
actually used. How are uppercase letters used? How is the underscore
used? When are short names such as i and x used?

15. Write a factorial function that does not use recursion.
16. Calculate integral

3.5

1

ln
1 ln

x dx
x x��

by the mid-rectangle method. Set up the function, implementing a com-
putational method. Transfer a subintegral function as a parameter
(a pointer to function). Provide the use of one parameter by default. Cal-
culate the integral:
1. with the parameter by default
2. with different parameter
3. by Newton-Leibniz formula

17. Calculate integral
4 2

1

ln x dx
x�

by Simpson method. Set up the function, implementing a computational
method. Transfer a subintegral function as a parameter (a pointer to func-
tion). Provide the use of one parameter by default. Calculate the integral:
1. with the parameter by default
2. with different parameter
3. by Newton-Leibniz formula

 115

17. CLASSES
17.1. DECLARATION OF CLASSES

A data type class can be defined by means of the following construction
a_key_of_a_class a_name_of_a_class{a_list _of_members};

Here the a_key_of_a_class is one of the keywords struct, union, class;
a_name_of_a_class is an arbitrary identifier; a_list_of_members is definitions
and descriptions of the members of the class, which are data and functions.

A class is a collection of one or more variables and functions, perhaps,
of different types, grouped under one name.

The example of the structure is a registration card of the employee, where
there is the surname, name, middle name, address, position, the year of arrival at
work and so on. Some of these attributes can become structures themselves.
Thus, S.N.M. has three components; the address has also several components.

A class may have a name, sometimes called a tag. A tag becomes
a name of the new type in the program. Each member of the class is recog-
nized by its name, which must be unique in a given class. The members of
the class are sometimes called its elements and fields. Although a definite
type is matched with each name of the class member, such member is not
an independent object. The memory is allocated only for a definite object of
the newly defined type as a whole.

Let’s introduce new types ID and staff:
struct ID{char surname[39],
firstname[30],
midname[30]
};
struct staff{ID name;
char position[30];
int year;
float salary};

Here two new types of structural variables are set; and the names of such types
are ID, staff. Let’s note that the presence of ‘;’ after braces is necessary here.

UNIT 4

 116

Now it is possible to declare structural variables of ID or staff type in
an ordinary way:
ID name1, name2, name3;
staff s1, s2, s[50];

Now a compiler will allocate the memory for variables name1,
name2, name3, s1, s2 and for array s from fifty structures. Let’s note that
the number of bytes, allocated for a structural variable, is not always equals
the sum of lengths of separate structure members because of the effect of
alignment, made by a compiler. To define a specified number of bytes, it is
necessary to use the operator sizeof, for example, like this:
int nf = sizeof(ID), ns = sizeof(staff);

Let’s note that it is possible to declare structural variables simultane-
ously with the tag definition of the structure:
struct DATE{
int day;
int month;
int year;
char mon_name[4] } d1, d2, d3;

Here three variables d1, d2, d3 are declared. They have the type of the DATE
structure. It is possible to declare a structural variable without introduction of
structure name (tag):
struct{int price;
float length[10] } a, b, c, d;

After definition of the structural variables, the access to its members is
implemented by means of operator of extraction ‘.’:
a.price c.length, d1.day, d3.mon_name, s[25].salary,
s[0].name.surname.

The names similar to c.length, d1.day, d3.mon_name, by means of
which the access to the class members occurs, are sometimes called as quali-
fied names. When defining the pointer to the structure, DATE* datep =
&d1, it is possible to refer to the structure member in the following way:
(*datep).year, or by means of operator of extraction from the pointer to
the structure "->" like this datep->year, which is equivalent.

Now let’s introduce the simplest class “complex number”:
struct compl{ double real, imag;
void define(double re = 0.0, double im = 0.0){
real = re; imag = im; } // the setting of a complex number.
void display(){cout << “real = ”<< real<<
“, imag = ” << imag << ‘\n’;}
};

 117

Here real, imag are data members or components, or member variables and
define(), display(), are member functions or component functions, which
are often called as methods of the class.

Now it is possible to declare the objects of compl type:
compl a, b, c, *pc = &c;

After such definitions data members of structural variables are acces-
sible in the domain of their visibility:
a.define(3, 7); // A complex number 3+7i is defined,
 // i.�. a. real = = 3; a.imag = = 7;
b.define(2); // A complex number 2+0*i = = 2 is defined;
c.define(); // A complex number = = 0;
 // both parameters are selected by default.

Data members can be set and used directly, not through the functions
define(), display():
a.real = 3; a.imag = 7; (*pc).real = 1; pc->imag = -1;
a.real+ = b.real*3+7;
cout <<“pc->real : ” <<pc->real<<‘\n’;
a.display();
b.display();
c.display();

Here data members of the structure are accessible for the use in the program,
passing member functions. It is possible to forbid arbitrary access to the data.
In doing so, the word class is usually used instead of the word struct in
the definition of the class:
class complex{ double real, imag;
public:
void display(){cout <<“ real =” <<real;
cout <<“, imag =” << imag <<‘\n’;
}
void define(double re = 0.0, double im = 0.0){
real = re; imag = im;
}
};

The label public, which can be present in the declaration of the class,
in our example divides its body into two parts – private and public.
The access to data members of the class, being in the private part, is possible
only through functions-members of the class:
complex s1, s2, *ps = &s1;
s1.define(); // s1.real=0; s1.imag=0;

 118

s1.display(); // real=0, imag=0 are typed;
ps->display(); // the same.
s2.real = 3; // Error! Private member s2.real is inaccessible!

The label private can also evidently be present in class definition.
The labels private and public generally divide the class body into parts,

which are discriminated by the level of access. The access to the members of
the class, being in the private part, is possible only by means of member func-
tions and so-called user-friendly or privileged functions. Reference to public
members of the class is possible from any function of the program.

The main difference of struct and class is in the level of access by
default. If there is not evident indication of the access level, all the members
of the structure are considered as public and all members of the class are
private. An evident indication of the access levels makes the words struct
and class interchangeable. Usually the use of word struct instead of the word
class indicates that there is no need to limit the access level to data (it is sup-
posed that all members of structure are public).

Let’s note that types created by the programmer by means of
the mechanism of classes, are often called an abstract data types.

17.2. CONSTRUCTORS

In a previous example initializing of the objects of complex-type was
made by means of the member function define(). In that case the variable s2
remained uninitialized. In C++ special member functions of class, which in
most cases are called not by a programmer but a compiler and are intended
for initializing of the objects of the abstract types, are provided. Such func-
tions are called constructors. Let’s consider the example:
class cl{
int num;
public:
void set(int i){ num = i; }
void show(){ cout <<“Number: “ << num <<‘\n‘; }
};

Before using the object of such type, it must be declared, initialized,
and after these, it can be used:
void f(){
cl obj; // The object is created.
obj.set(10); // The object is initialized.
obj.show(); // The object can be used.
}

 119

Now let’s use a constructor for initializing. It is simply a special mem-
ber function of cl class, which name is necessarily coincides with the name of
the class:
class cl{int num;
public:
cl(int i){ num = i ; } // Constructor.
void show(){ cout << “Number:” << num << ‘\n’;}
};

Let’s note that the type of the result is never indicated for a constructor!
The function, using this class, have the view as below:

void f(){
cl obj(10); // The object is created and initialized!
obj.show(); // Here the object obj is used!
}

Another full form of the declaration of the object of the abstract type,
having a constructor, is possible:

cl obj = cl(10);

In this example, the constructor is a so-called inline function, as its de-
finition is in the class body. However, it can be represented as an ordinary
function, for which the constructor in the class is only declared, but it is
defined outside the class body with the use of a qualified name:
class cl{ int num;
public:
cl(int i);
void show(){cout <<“Number:” << num <<‘\n‘;}
};
cl::cl(int i){ // Full or qualified name.
num = i;}

It is often convenient to provide several ways of initializing, using
a mechanism of function overloading.

Let’s give an example of the program, where the display of the symbol
string occurs.
include< conio.h >
include< stdlib.h >
include< string.h >
class string{ char *str;
unsigned char attr;
int row, col;
public:
string();
string(char *, unsigned char, int = 0, int = 0);

 120

void write();
};
 // A constructor without arguments: all data of the object are defined –
 // string, video attribute of its symbols and a position for displaying.
string::string(){
str = new char[sizeof “Hello !”];
strcpy(str, “Hello !”);
attr = BLUE << 4 +YELLOW; // A yellow symbol is
 // against a blue background.
row=15;
col=36;
}
string::string(char *line, unsigned a, int y, int x){
str = new char[strlen(line) +1];
strcpy(str, line);
attr = a;
row = y;
col = x;
}
void string::write(){
textattr(attr); // A standard function of
 // video attribute identification.
gotoxy(col, row);
cputs(str);
}
void main(){
string string1; // Is equivalent to string string1=string();
 // To write string string(); is impossible, as
 // this is a function prototype!
string string2(“The second string!”, BLACK<<4+WHITE);
string string3(“The third string!”, BROWN<<4+GRAY, 17, 19);
 // A printing of the strings:
string1.write();
string2.write();
string3.write();
}

In case of calling the first constructor without arguments, the initializa-
tion of any object will always occur in the absolutely same way, using
the same values, which are rigidly defined in this constructor. (In a given
case the object string1 is initialized by the constructor without arguments
and while calling the function string.write(), the print of the string “Hello!”
of yellow color against the blue background in the 15th row, beginning with
the 36th position, will happen).

 121

The objects string2 and string3 are initialized by another constructor.
The choice of the required constructor, as well as other overloaded functions,
is performed according to the number and the type of the arguments.

Let’s note, that in the class there can be only one constructor with
the parameters by default.

17.3. DESTRUCTORS

A deletion of the objects of the abstract types has an important role
along with the initialization of such objects, which is a reverse operator.
In particular, constructors of many classes allocate memory for the objects
dynamically, and after the necessity in such objects disappears, they should
be deleted.

It is convenient to perform in a destructor – the function, which is
called for the object of an abstract type, when it leaves the domain of exis-
tence. In the example, considered above, the place for string storage in mem-
ory is allocated dynamically, that is why it is useful to define a destructor.
The name of the destructor, as well as of constructor’s, cannot be arbitrary,
it is formed by the symbol ~ and the class name (addition to the constructor):
class string{ . . .
public:
~ string(){ delete str; }
. . .
};

Here the destructor is very simple. It can be more complex and is designed in
the form of outline-function. A destructor can never have any arguments.
Let’s note that it is not possible to obtain the address either a constructor or
a destructor. The call of the constructor occurs automatically during defining
of the object of the abstract type, the call of the destructor occurs automati-
cally when the object leaves the domain of its existence. The destructor can
be called explicitly with a required indication of its full name.

Let’s also note that for a class without explicitly defined constructor
a compiler generates independently a so called default constructor, which
does not have any arguments, with an access level public. The same can be
referred to a destructor.

Note: the data of the class must not necessarily be defined or described
before their first use in the functions, belonging to the class. The same is true
for the functions, belonging to the class, i.e. to call a function from another
one of the class is possible before its defining inside the class body. All com-
ponents of the class are seen in the whole class.

 122

17.4. STATIC MEMBERS OF THE CLASS

Member variable of the class can be declared with an accessory word
static. Memory for such data is reserved during the program start, i.e. before
a programmer creates the first object of a given abstract type evidently.
In this case, all these objects use this single copy of their static member,
which is created beforehand. A static member of the class must be initialized
after class defining and up to the first description of the object of this class by
means of so called full or qualified name of the static member, which has
the following view:

name_of_the_class::name_of_a_static_member.

If a static member has an access level public, it can be used in the pro-
gram by means of a qualified name, as usually.

Example: Let’s write the class object in a static member of which there
is a number of objects of object type, existing at each instant of time.
class object{
char *str;
public:
static int num_obj;
object(char *s){ // Constructor.
str = new char [strlen(s) + 1];
strcpy(str, s);
cout <<“is created ” << str <<‘\n’; num_obj ++ ;
}
~ object(){ cout <<“is destructed ” <<str << ‘\n‘;
delete str;
num_obj – –;
}
};
int object::num_obj = 0; // Initializing. A keyword int indicates it!
object s1(“The first global object ”,
s2(“The second global object.”);
void f(char *str){
object s(str);
cout <<“There are objects in all – ” <<
object::num_object<<“.\n“;
cout <<“The function f() has worked” <<“.\n“;}
void main(){
cout <<“Meanwhile, the objects are – “ <<object::num_obj <<
“.\n“;
object m(“The object in main()”);
cout <<“And now the objects are – ” << m.num_obj <<“.\n“;
f(“A local object”);
f(“Another local object.”);

 123

cout <<“Before finishing main() the objects are – ”
<<s1.num_obj<<“.\n“;
}

The results of program operation:

The first global object is created.
The second global object is created.
Meanwhile, the objects are – 2.
The object in main() is created.
And now the objects are – 3.
A local object is created.
There are objects at all – 4.
The function f() has worked.
A local object is destructed.
Another local object is created.
There are objects at all – 4.
The function f() has worked.
Another local object is destructed.
Before finishing main() the objects are – 3.
The object in main() is destructed.
The second global object is destructed.
The first global object is destructed.

We should pay attention to the fact that the constructors for global
objects are called before the function main(), and the destructors – after
main().

Let’s note that the classes, defined inside the function, cannot have
static members.

17.5. THIS POINTER
Let’s consider the example below:

class str{
char *string;
public:
void set(char *text){string = text;}
void write(){
cout<<”String: ”<<string<<’\n’;}
};
void main(){
str str1, str2;
str1.set(“Hello!”);
str2.set(“Hello!”);
str1.write();
str2.write();
}

 124

As a result of performing of this program, the following will appear on
the display:

String: Hello!
String: Hello!

Let’s ask ourselves the question: how does the member function
write() recognize what object it is called for? The member function defines
the object it is called for, because the address of this object is transferred to
it as an implicit first argument. In a given case it is a pointer of str* type.

Inside the member function of the class, this pointer can be used
explicitly. It always has the name this (a key word).

Before beginning of the performing of function code, the pointer this is
initialized by the address of object, for which a given member function is
called. Thus, the function definition str::write(), given above, represents
the following reduced form of recording:
void write(){
cout <<”String:”<<this -> string<<’\n’;
}

Let’s note that an explicit assignment of some value to the pointer this
is forbidden.

17.6. STATIC MEMBER FUNCTIONS

Before declaration of member function of the class, it is possible to put
an accessory word static. The peculiarity of such static member function is
the following: as in the case of static member variable of the class, it is possi-
ble to call it before the first object of such class is created in the program.
Static member functions (component functions) allow to get the access to the
private static member variable of the class, without possessing an object of a
given type in the program. For a static component function a pointer this is not
defined. When it is necessary, the object address, for which a static member
function is called, must be passed to it explicitly in the form of the argument.

Example:
class prim{
int numb;
static stat;
public:
prim(int i){
numb = i;
}

 125

/*
Then a static function follows. The pointer this is not defined, the choice
of the object is performed according to explicitly passed pointer.
The member stat does not require a pointer to the object, as it is common
for all the objects of the class prim.
*/
static void func(int i, prim *p = 0){
if(p) p->numb = i;
else stat = i;
}
static void show(){

/* A static function calls only a static member of the class, no pointers are
required: */

cout<<”stat=”<<stat<<’\n’;
}

}; // The end of the class prim.

int prim::stat = 8; // The initialization of the static
 // member of the class.
void main(){

/* Before the creation of object of prim type there is only one way to call
the static member function: */

prim::show();

// It is possible to change the value of a static member of the class:

prim::func(10);

/* After creation of the object of prim type it is possible to call a static func-
tion in an ordinary for abstract type way: */

prim obj(23); // obj.numb becomes equal to 23.
obj.show();

 // It is possible to change the value of the created object:
prim::func(20, &obj); // obj.numb == 20.
obj.func(27, &obj); // obj.numb == 27.
}

 126

17.7. THE POINTERS TO THE CLASS MEMBERS

For class members (except bit fields), the operation of address resolu-
tion is determined. The pointers to variable members of the class have no
peculiarities. The peculiarity of the pointer to the member functions of
the class is its explicit presence at the declaration of the class name, which is
followed by :: .
class cl{. . .
public:
int f(char*, int);
void g();
. . .
};

/* During declaration of the pointer to the component function, it is necessary
to declare the types of the result and arguments of a function, for which
a pointer is introduced, as with the pointer to the ordinary function. As usual,
the pointer can be initialized during declaration: */
int(cl ::*fptr)(char *, int) = cl::f;

Example:
struct s{int mem;
s(int a){mem = a;}
void func(int a){cout<<a + mem<<’\n’;}
};
void main(){
void(s::*fp)(int) = s::func;
s obj(5);
s *p = &obj; // Two variants of member function call using the pointer:
(obj.*fp)(6); // using the object obj of s type
(p->*fp)(9); // and the pointer p to it.
}

Here .* (and ->*) are symbols of one single operator, but are not symbols,
being side by side, of two earlier studied operators ‘.’ (‘->’) and *. The right
operand of operator .* and ->* must be a pointer to the class member, but
not any pointer.

17.8. INITIALIZING OF DATA MEMBERS OF THE CLASS

Initializing of the Members of the Abstract Types
Let the class contain the members of abstract types. The peculiarity of

its initialization is that it is performed by means of the corresponding con-
structor. Let’s consider the class

 127

class coord{double x, y, z;
public:
coord(){x = y = z =0;}
coord(double xv, double yv, double zv=0){ x = xv; y = yv; z
= zv;}
coord(coord & c){x = c.x; y = c.y; z = c.z;}
};
class triang{
coord vert1, vert2, vert3; // The coordinates of vertices of triangle.
public:
triang();
triang(coord &v1, coord &v2, coord &v3);
};

During initialization of some object of triang class it will be necessary
to call constructors three times for its vertices – objects of coord type. For it,
in the constructor definition for the triang class, after colon it is necessary to
put the list of the calls to the constructors of the coord class:
Traing::triang(coord &v1, coord &v2, coord &v3):
vert1(v1), vert2(v2), vert3(v3){. . .}

The call of the constructors of the coord class occurs before performing
of the constructor body of the triang class. The order of their call is deter-
mined by the order of declaration appearance of the members of coord type
during triang class definition.

The coord class contains the constructor without arguments. Instead
of the recording
triang::triang(): vert1(), vert2(), vert3(){. . .}

during call to such constructor it is allowed to type simply the following:
triang::triang(){. . .}

Initializing of the Constants
If among data members of the class there are members, described with

the modifier const, the same form of constructor is used during initializing,
as in the case of data of the abstract types:
class cl{ int v;
const c;
public:
cl(int a, int b):c(b){v=a;}
};

The constant can be initialized only in the constructor; the attempt to
do this by any other means (for example, by means of another component

 128

function) will lead to the error message. The constant initializing in the con-
structor body is also inadmissible.

Let’s note that the way of the constructor recording, compulsory for
constants and the data of the abstract types, can be used also for ordinary
members of the class:
class ro{ int var; const c;
public:
ro(int v, int u): c(u), var(v){}
};

17.9. THE COPY CONSTRUCTOR AND ASSIGNMENT OPERATOR

When working with the objects of the abstract types, a situation, when
an object must be the copy of the other one, can arise. In this case, two variants
are possible:

1) a newly created object must be the copy of the existing one;
2) both objects were created beforehand and it is necessary to copy one

object into another.
In the first case a copy constructor is used, in the second one –

the assignment operator.
A copy constructor is a constructor, which first argument is a reference

to the object of that type, where this constructor is declared.

�lass cl{. . .
cl(cl&); // A copy constructor.
. . .
};
cl ca; // Here the constructor without arguments is used.
cl cb = ca; // A copy constructor is used.

Initializing by copying occurs both during the arguments being passed to
their functions and during the result return. If an argument or a returned value
has an abstract type, the copy constructor is called indirectly, as it was in
the example with classes coord and triang. A copy constructor is generated by
a compiler independently, if it was not written by a programmer. In this case
an exact copy of the initializing object is created, which is far from being
required quite often.

Example 1:
class cl{int num; float val;
public:
cl(int i, float x){num=i; val=x;}
};

 129

void main(){cl obj1(10, 20.3);
 // For creation of the objects obj2 and obj3
 // a default copy constructor is used:
cl obj2(obj1);
cl obj3 = obj2;
}

Example 2:
class prim{int n; float v;
public:

prim(int i, float x){n=i; v=x;}
prim(const prim &obj, int i = 0){
if(i) n=i;
else n=obj.n;
v=obj.v; }
};
void main(){
prim obj1(10, 23.5);

/* For creation of the objects obj2 and obj3 an explicitly described copy con-
structor is used: */

prim obj2 = obj1;
prim obj3(obj1, 12);
}

Now let’s make minimal changes, and a compiler will have to add its
own constructor in addition to the available copy constructor:
class prim{int n; float v;
public:
prim(int i, float x){n=i; v=x;}
prim(const prim &obj, int i){ n = i; v = obj.v; }
};
void main(){
prim obj1(10, 23.5);
 // Now a default copy constructor will be used
prim obj2=obj1;
 // And now an explicitly defined constructor will be used,
 // so that only a part of the object is copied:
prim obj3(obj,12);
}

Let’s note that a modifier const is used for preventing of changing the
copied object.

An object of one class can be initialized by an object of the other class.
Here a constructor is not a copy constructor, as a reference to the object of
different class appears as an argument:

 130

struct s1{int i; float x;
s1(int j, float y){i = j; x = y;}
};
struct s2{int i; float x;
s2(const s1& a){ // This is not a copy constructor!
i =a.i; x=a.x;}
};
void main(){
s1 obj1(1, 3.7);
s2 obj2(obj1);
}

Unlike a copy constructor, the assignment operator is used when
the objects, being the operands of this operator, do exist. Assignment
operator, along with the operator of address resolving, is defined by
default for the objects of abstract types, and it can be used without any
additional actions of a programmer.
class cl{. . . };
void f(){
cl obj1; cl obj2 = obj1; // A copy constructor is used.
cl obj3;
obj3 = obj1; // Assignment!
}

It is not always required just to create a copy when performing
assignment. If something different is required, it is necessary to overload
the assignment operator for a class.

17.10. FRIENDLY FUNCTIONS

There can be situations when it is advisable to have an access to
the private data of the class, omitting member functions. The most wide-
spread situation is when the member function of one class must have
the access to the private members of different one.

Let’s again consider the examples with classes coord and triang.
class coord{double x, y, z;
public:
coord();
coord(double, double, double = 0);
coord(coord & c);
};
class triang{coord vert1, vert2, vert3;
public:
triang();
triang(coord &v1, coord &v2, coord &v3);
};

 131

Let it be necessary to add a member function to the class triang, calcu-
lating the coordinates of the triangle’s centre. The language gives a chance
for several functions, both usual and the member functions of some class X,
to obtain the access to the private members of the class Y. Such functions are
called a privileged function in the class Y and friendly for the class X.
For declaration of the privileged function, an accessory word friend is used.
To make this function privileged in the class Y, it must be declared in this
class as a friendly function.

Let’s write three member functions of the class triang, calculating
the coordinate centre of the triangle in each axis direction:
double triang::midx(){ return(vert1.x+vert2.x+vert3.x)/3;}

and similarly
triang::midy(), triang::midz().

In order to the compiler will not yield the error message, it is necessary
to add the following declarations to the class coord declaration, in any of its
part:
class coord{
…
friend triang::midx();
friend triang::midy();
friend triang::midz();
}

The case, when all the member function of one class are privileged
in a different class, is widespread; even a simplified form of the recording
is anticipated:
class coord{…
friend triang;
…
};

or
class coord{…
friend class triang;
…
};

In this case, it is said that the class triang is friendly for the class coord.
Let’s note that for friendly functions, the pointer this is not defined, they

do not have implicit arguments, the access levels for them are not defined.
The same function can be declared privileged in several classes at once.

 132

The difference in the way of the use of member functions and friendly
functions is shown in the following example:
class cl{int numb;
 // f_func() is not private member of the class,
 // though it is declared in the private part.
friend void f_func(cl*, int);
public:
void m_func(int);
};
void f_func(cl* cpt, int i){
cptr->numb = i; // An explicit pointer to the object is necessary,
 // as the pointer this is not defined!
}
void cl::m_func(int i){
numb = i; // The same as if this->numb = i;
}
void main(){
cl obj;
f_func(&obj, 10);
obj.m_func(10);
 // Compare the methods of function calls and arguments!
…}

The next example demonstrates the possibility of assess to the static
private members of the class before creating of even one object of this class.
class cl{static int num;
public:
void set(int i){num = i;}
void m_show(){cout<<num<<’\n’;}
friend void f_show(){cout << cl::num<<’\n’;}
};
int cl::num = 8;
void main(){
cout <<”The objects of cl-type are absent.\n”;
cout <<”Static member of the class = ”;
 // Still it is possible to use only a friendly function:
f_show();
cl obj;
obj.set(200);
cout <<”An object of the type cl.\n is created”;
cout <<”A static member of the class = ”;
 // So now it is possible to use the member function.
obj.m_show();
}

 133

17.11. CONSTRUCTOR AND OPERATOR NEW

When an abstract type has a constructor without arguments, the call
of the operator new completely coincides with that what is used for memory
allocation for ordinary data types without initializing expression:

class integer{int i;};
void main(){integer *ptr = new integer; . . .}

If a constructor of the class integer has the arguments, the list of
the arguments is placed where the initializing expression is when working
with standard data types:
class integer{int i;
public:
integer();
integer(int j): i(j){}
};
void main(){
int *ip = new int(10);
integer *iptr = new integer(30);
}

If in the operator new the calling for the constructor without arguments
occurs, the following both recordings are possible:
integer *ip1 = new integer();
integer *ip2 = new integer;

When a constructor without arguments for X class is not defined, during
the attempt to perform the operator
X *xp = new X;

a compiler yields the error message. In this case, it is required to determine
the constructor without arguments explicitly.

 134

18. INHERITANCE

18.1. CONSTRUCTION OF A DERIVED CLASS

Inheritance is used to write a specialized or enhanced version of
another class.

Let’s consider the class with a constructor and a destructor:
class Base{
int *bmember;
public:
Base(int arg = 0){bmrmber = new int(arg);}
~Base(){delete bmember;}
};

Let’s assume that it is necessary to change this class in such a way that
the object of such type would contain not one but two pointers. Instead of
the change of the class Base it is possible to construct a new class Derived
on the basis Base:
class Derived: public Base{
int *dmember;
public:
Derived(int arg){
dmember = new int(arg); }
~Derived(){ delete dmember; }
};

The notation of the type class Derived: public Base indicates that
th� class Derived is a new-created class, which is constructed on the basis of
the class Base. In this case, class Derived inherits all the properties of
the class Base. Derived is said to be derivative from the class Base, and
the class Base is a basic class for Derived.

If an object of Derived type is created in the program, it will contain
two pointers to two domains of dynamic memory – bmember, as a sub-object
of Base type and dmember. The creation process of the object of the type
Derived will take two stages: first, a “sub-object” of the Base type will be
created, and in this case the constructor of Base class will perform it. Then
the constructor of the class Derived will be performed. The destructor call
is performed in the reverse order. As the constructor of the class Base can

 135

require the presence of one argument when calling it, this argument needs to
be passed. To be passed to the constructor of the base class, the argument list
must be located in the constructor definition of the derived class, just as with
data initializing of the abstract type, being the members of some class:
Derived::Derived(int arg): Base(arg){
dmember = new int(arg);
}

If a constructor of the base class does not have arguments or use
the arguments by default, it is not necessary to place an empty list into the
constructor of the derived type.

18.2. PROTECTED CLASS MEMBERS

For controlling the access level to the members of the class, accessory
words public and private are used. For this purpose, a key word protected is
also introduced. If class A is not a base for any other class, its protected mem-
bers do not differ from private ones – only member functions of the given
class and the functions, which are friendly for this class, have the access to
them. If class B is derived from class A, the users of the classes A and B still
do not have the access to the protected members, but member functions of
class B and the functions, which are privileged in B can have such access:
class Base{
private:
int privatem;
protected:
int protectedm;
};
class Derived: public Base{
memberF(){

cout<<privatem; // Error!
cout<<protectedm; // Correct.
}
};
void main(){
Base b;

cout<<.protectedm; //Error!
Derived d;

cout<<.protectedm; //Error.
}

 136

18.3. CONTROL OF THE ACCESS LEVEL TO THE MEMBERS
OF THE CLASS

In the previous examples, the base class was public base class for
the derived class:
class Derived: public Base{…};

It means that the level of the access to the members of the class Base
from member functions of the class Derived and simply of the users of
the class Derived remained unchanged: private members of the class Base
are not available in the class Derived and public and protected members of
the class Base remained public and protected in Derived. The base class will
be private by default if it is not marked as public:
class Derived: Base{…}; // Base – is a private base class.

If a base class is a private base class, its private members are still inac-
cessible both in the derived class and for the user of the derived class, and
protected and public members of the base class become private members of
the derived class.

A base class cannot be protected base class. If a base class is private,
it is possible to restore the access level of the base class for some of its mem-
bers in the derived class. In this case their full name is given in the appropri-
ate part of the class definition:
class Base{
private: int privm;
protected: int protm;
public: int pubm;
};
class Derived: Base{ // A private base class.
public:
Base::pubm; // Now pubm is a public member
 // of the class Derived;
Base::protm; // error – access level is changed.
protected:
Base::protm; // Now protm is a protected member
 // of the class Derived;
Base::pubm; // error – access level is changed.

Structures can be used like classes, but with one peculiarity. If a struc-
ture is a derived class, its base class is always public base class, i.e. the decla-
ration of the type
struct B: A{…};

is equivalent to
class B: public A{…};

 137

If a derived class is constructed on the basis of the structure, the same
happens as in the case of using a typical class as a base one. Thus, when
a base class and a derived class are structures, the following recording
struct B: A{…};

is equivalent to
�lass B: public A{public: …};

18.4. A SEQUENCE OF CONSTRUCTOR AND DESTRUCTOR CALL
DURING CONSTRUCTING OF THE DERIVED CLASS BASED
ON ONE BASE CLASS

The object of the derived class may contain the objects of the abstract
types as member data of the class:
class string{. . .
public:
string(char*);
~string();
…
};
class Base{…
public:
Base(int);
~Base();
. . .
};
class Derived: public Base{
Base b;
string s;
public:
Derived(char*, int);
~Derived();
. . .
};

Before call the constructor itself of the class Derived, it is necessary,
first, to create a sub-object of the Base type, second – to create members b
and s. Since, it is necessary to call the constructors of the appropriate classes
for creation of the above mentioned objects and we have to pass necessary
lists of the arguments to all of them:
Derived::Derived(char *st, int len): Base(len), b(len+1),
s(str){…}

In this case, during creation of the object of Derived type, at first,
a sub-object of Base type will be created. At the same time the constructor
Base::Base() with the argument len will be called. Then the objects b and s

 138

will be created in the order, in which they are indicated in the definition of
the class Derived. After it the constructor Derived::Derived() will be per-
formed. The destructors will be called in the reverse order.

18.5. TYPE CONVERSION

The object of the derived type can be considered as an object of its
base type. The opposite is not true (a cat is a mammal, but not any mammal
is a cat). A compiler can perform conversion of the object of the derived type
to the object of the base type implicitly:
class Base{…};
class Der: public Base{…};
Der derived;
Base b = derived;

A reverse conversion – Base to Der – must be defined by the pro-
grammer:
Der tmp = b; // the error if for Der
 // the constructor Der(Base) is not defined.

The conversion of the pointers to types is used much more often than
the conversion of the types themselves. There are two types of pointers con-
version – explicit and implicit. An explicit conversion will be always per-
formed, an implicit one – only in certain cases. If a base class is a public one,
i. e. we deal with the relation of the following type:
class Base{…};
class Der: public Base{…};

the principles of conversion are very simple: the conversion of the pointer of
Der* to the pointer of Base* type can be performed implicitly. A reverse
conversion must necessarily be explicit. In other words, when addressing
through the pointers, the object of the derived type can be considered as
an object of the base type. The reverse statement is not correct:
Der derived;
Base *bp = &derived; // Implicit conversion.
Der *dp1 = bp; // Error.
Der *dp2 =(Der*) bp; // Explicit conversion; now it is correct.

The fact that a derived class can be considered in a certain way as its
base class, influences the choice of necessary version of the overloaded func-
tion. The complexity occurs if it is necessary to perform implicit conversion
of the types for the choice of one of the variants.

In this case the rules are the following.

 139

If there is not exact conformance between the lists of formal and actual
parameters, the conversions of the derived type to the base type have
the highest priority among performed conversions. It can be referred to
the type itself, and to the pointer to it. In case it is not possible, the compiler
tries to perform other conversions (for example, standard pointer conver-
sions).

Example:
class Base{…};
class Der: public Base{…};
func(Base*);
func(void*);
…
Der *dp;
float *fp;
func(dp); // Calling of func(Base*).
func(fp); // Calling of func(void*).

If several levels of derived classes are used in the program, the class of
“the nearest” level is searched during performing of the implicit conversions
of the pointer type:
class Base{…};
class A: public Base{…};
class B: public A{…};
func(Base*);
func(A*);
…
B *db;
func(db); // The call of function func(A*).

 140

19. POLYMORPHISM
One of the shortest and the most significant definitions of polymor-

phism is the following: Polymorphism is a functional ability, allowing an old
code to call a new one. This property allows widening and improving a soft-
ware system, without affecting the existing code. Such approach is imple-
mented by means of the mechanism of the virtual functions.

19.1. EARLY AND LATE BINDING

The mechanism of the virtual functions is used in cases it is necessary
to place into the base class the function that must be performed differently
in the derived classes. To be precise, not the same function from the base
class must be performed differently, but a proper variant of this function
is required in each derived class.

Let’s suppose that it is necessary to write the member function
CalculatePay(), which calculates monthly payments for object of the class
Employee. It is easy if the salary is calculated using one method: it is possi-
bly to insert the type of the required object into the function call at once.
The problems arise with the advent of other forms of payment. Let’s presume
that there is the class Employee, calculating the salary according to fixed sal-
ary. How to calculate the payment for a contractor? It is quite different
method of calculation. The function has to be rewritten in the procedure ap-
proach, having included a new type of processing into it as in the former code
there is not such processing. An object-oriented approach allows to perform
different processing, due to polymorphism.

In such approach it is necessary to describe the base class Employee
and then the classes, derived from it, must be created for all forms of
payment. Each derived class will have its own actualizing of the method
CalculatePay().

Another example: a base class figure can describe the figure on the
screen without specialization of its view, and the derived classes triangle,
ellipse, etc. define its shape and size uniquely. If the function void show()
is introduced into the base class for displaying, the performance of the func-
tion will be possible only for the objects of each of the derived classes,
determining particular images. It is necessary to put its function void show()
into each of the derived class for the imaging on the screen. The access to

 141

the function show() of the derived class is possible by means of an explicit
indication of its full name, for example:
triangle::show();

or with the use of the particular object:
triangle t;
t.show();

However, in both cases the choice of necessary function is performed
during writing the initial text of the program and is not altered after compiling.
Such mode is called early or static binding.

Great flexibility, especially when using class libraries, prepared earlier,
is provided by a so-called late or delayed, or dynamic binding, which
is granted by the mechanism of virtual functions.

19.2. VIRTUAL FUNCTIONS

From the beginning, let’s consider the behavior of non-virtual functions-
members with similar names, signatures, and types of the returned values
during inheritance.
struct base{
void fun(int i){
cout <<“base::i = ” << i << ‘\n’;}
};
struct der: public base{
void fun(int i){
cout << “ der::i = ” << i << ‘\n’;}
};
void main(){
base B, *dp = &B;
der D, *dp = &D;
base* pbd = &D; // Implicit conversion from der* to base*.
bp->fun(1);
dp->fun(5);
pbd->fun(8);
}

The result:

base::i = 1
der::i = 5
base::i = 8

Here the pointer pbd has base* type, but its value is an address of the object D
of the class der. When calling the member function through the pointer to the
object, the choice of the function depends only on the type of the pointer,

 142

but not its value, what is illustrated by the output base::i = 8. Having
adjusted the pointer of the base class to the object of the derived class,
we will not be able to call the function from the derived class by means of
this pointer. Thus, it is not possible to obtain late or dynamic binding.

The dynamic binding is provided by the mechanism of the virtual func-
tions. Any non-static function of the base class can be made virtual,
if a specificator virtual is used in its declaration:
class base{
public:
int i;
virtual void print(){
cout << i << “ inside base\n”;}
};
class D: public base{
public:
void print(){
cout << i << “ inside D\n”;}
};
void main(){
base b;
base *pb = &b;
D f;
f.i = 1 +(b.i = 1);
pb->print();
pb = &f; // Implicit conversion from D* to Base*.
pb->print();
}

The result:

1 is inside base
2 is inside D

Here a different version of function print() is performed in each case.
The choice dynamically depends on the object type, which the pointer
points to. An accessory word virtual means that function print() can have
its versions for different derived classes. The pointer to the base class can
point both to the object of the base class and to the object of the derived
class. A chosen member function depends on the class, which object is
pointed to, but not on the type of the pointer. If the member of the derived
type is absent, the virtual function of the base class is used by default. Let’s
note the differences between the choices of the corresponding overloaded vir-
tual function and overloaded member function (not virtual): the overloaded
member function is chosen during the compiling by algorithm, based on

 143

the rule of the signatures. During overloading, the member function can have
different types of the returned value. If the function is declared as virtual, all
its overloading in the derived classes must have the same signature and
the same type of the returned value. At the same time, it is possible not to
indicate the word virtual in the derived classes.

In the derived class it is not allowed to define the function with
the same name and the same signature, but with the different type of
the returned value than that of the base class. Let’s note that the constructor
can not be virtual, but the destructor can be.

Let’s consider the example – calculation of the areas of different
figures. Different figures will be derived from the base class figure.
class figure{
protected:
double x, y;
virtual double area(){
return 0;} // The area by default.
};
class rectangle: public figure{
private:
double height, width;
. . .
public:
rectangle(double h, double w){height=h; width=w;}
double area(){return height * width;}
. . .
};
class circle: public figure{
private:
double radius;
. . .
public:
circle(double r){radius=r;}
double area(){
return M_PI*radius*radius;}
. . .
};

The user’s code may be represented as follow:
const N = 30;
figure *p[N];
double tot_area = 0;
. . . // Here the pointers p[i] are specified, for example,
. . . // rectangle r(3, 5); p[0]=&r; circle c(8); p[1]=&c; etc.
for(i = 0; i < N; i++) tot_area += p[i]->area(); // User’s code.

 144

The main advantage is that the user’s code does not need alteration,
even if new figures are added to the system of the existing figures.

Let’s consider one more example for calculation of salaries with
the class Employee.
#include <iostream.h>
#include <fstream.h>
#include <conio.h>
#include <string.h>
class Employee{
protected:
char * firstName, * lastName; // Name, surname.
int age; // Age.
double payRate; // The amount of payment.
public:
Employee(char* FN, char* LN, int a, double pay){
firstName = new char[strlen(FN) + 1];
strcpy(firstName, FN);
lastName = new char[strlen(LN) + 1];
strcpy(lastName, LN);
age = a;
payRate = pay;
}
virtual double CalculatePay(){
return 0;
}
void print(){cout<<firstName<<“ “<<lastName
<<“ this month has received “;}
virtual ~Employee(){};
};
class HourlyEmployee: public Employee{ // Hourly pay.
int hours; // the number of worked off hours.
public:
HourlyEmployee(char* FN, char* LN, int a, double pay, int
h):
Employee(FN, LN, a, pay){ hours=h; }
virtual ~HourlyEmployee(){delete firstName; delete
firstName;}
virtual double CalculatePay(){
return hours*payRate;
}
};
class ContractorEmployee: public Employee{ // The work against
 // the contract.
public:
ContractorEmployee(char* FN, char* LN, int a, double pay):

 145

Employee(FN, LN, a, pay){}
virtual double CalculatePay(){
return payRate;
}
virtual ~ContractorEmployee(){delete firstName; delete
firstName;}
};
class DaypaymentEmployee: public Employee{ // Day-work payment.
int days; // the number of worked off days.
public:
DaypaymentEmployee(char* FN, char* LN, int a, double pay,
int d):
Employee(FN, LN, a, pay){days=d;}
virtual double CalculatePay(){
return days*payRate/24.0; // There are 24 workdays in a month.
}
virtual ~DaypaymentEmployee(){delete firstName; delete
firstName;}
};
void loademploee(Employee* a[], int &n){
char FN[20], LN[20]; int age, arg; double pay;
char sel; // A selector, setting the type of the payment.
ifstream file(“emp.dat“); // Let’s create an input stream for
 // reading the file and link it with
 // the external file emp.dat.
n = 0;
while(file.peek() != EOF){ // Till the end of the file …
file >> sel;
file >> FN;
file >> LN;
file >> age;
file >> pay;
file >> arg;
switch(sel){
case 'h': a[n] = new HourlyEmployee (FN, LN, age, pay, arg);
break;
case 'c': a[n] = new ContractorEmployee(FN, LN, age, pay);
break;
case 'd': a[n] = new DaypaymentEmployee(FN, LN, age, pay,
arg);
break;
}
n++;
}
}
void main(){

 146

int n;
Employee* a[20];
clrscr();
loademploee(a, n);
double s=0, r;
for(int i=0; i<n; i++){
s+=(r=a[i]->CalculatePay());
a[i]->print();
cout.width(16); cout << r << "$\n";
}
cout<<“This month it is payd: “;
cout.width(16); cout << s << "$\n";
}

Let the input file emp.dat contains the following information:

c Dudin Ivan 32 4340 0
c Muhin Sergey 26 1320 0
h Mazin Petr 27 15.3 32
d Bobrov Mikhail 40 110 21

Then as a result of the program operation the following will be
displayed:

Dudin Ivan this month has received 4340$
Muhin Sergey this month has received 1320$
Mazin Petr this month has received 489.6$
Bobrov Mikhail this month has received 96.25$
This month it is paid: 6245.85$

19.3. ABSTRACT CLASSES

Let’s again consider the example with calculation of the figure areas.
In this program a virtual function area() is used. This function must be
defined for the first time in the class figure. Since the objects of the type
figure must not exist during normal operation, except the objects of
the derived types, the version area() was defined as following:
figure::area{return 0;}

If the type of the returned value of the function were void (for exam-
ple, during drawing of the figure void show(), it would be possible to write:
void figure::show(){}

In both cases these functions are dummy. The virtual functions of such
type could be used for control of the error, connected with the creation of
the objects of figure type:

 147

void figure::area(){
cout <<”Error: the attempt to calculate the area ”;
cout <<”of non-existing object!\n”;
exit(1); return 1;
}

In C++ there is more convenient and reliable method. The version of
the virtual function, which, on the one hand, must be defined, and on the other
hand, must not be used, can be declared as a pure virtual function:
class figure{. . .
virtual double area() = 0;
};

If in the classes, derived from figure, there is its own version of
the virtual function area(), it should be either defined or, in its turn, declared
as a purely virtual function. During program performance an error message
is yielded when addressing a purely virtual function and the program
is aborted. A class containing even one purely virtual function, is called
an abstract class. The creation of the objects of such class is forbidden.
It allows to set the control of compiler over the false creation of the objects of
the dummy types, similar to figure. Let’s note that it is possible to create
the pointers to the abstract classes.

 148

20. ENUMERATIONS
Enumeration is a type of data, which is convenient to use in case of

application of variables and constants, possessing the value from a compara-
tively small quantity of integer numbers, exactly such numbers that it is more
reasonable to address them by the name. Perhaps their value itself is not
important. The example of such quantity of constants can be the names of
the colors, days of week and months, chess pieces or symbolic names
of arithmetic operators of C++.

The definition of the enumeration type starts with the key word
enum, after which the name of the type (sometimes it is called as tag)
follows, which is followed by the list of members of enumeration –
enumerators, in curly braces:
enum chess{king, queen, rook, bishop, knight, p};
enum month{Jan, Feb, Mar, Apr, May, Jun,
Jul, Aug, Sep, Oct, Nov, Dec};
enum operator_CPP{plus = ’+’, minus = ’-’, mult = ’*’,
div = ’/’, rem = ’%’};

The members of the enumerations are the constants of unsigned char
or int types, depending on their values and the mode of compiling. When using
enumerator in the expression, its type is always converted into int.

If no values are assigned to enumerators, as in chess and month,
the first of them is 0, the second is 1, and so on. Generally, any enumerator
by default has the value which is greater by 1 than the value of the preceding
one, if default is not cancelled by the explicit initializing.

All members of enumeration operator_CPP receive values, which are
evidently specified, equal to ASCII codes of symbols '+', '-', '*', '/', '%'.

The values of enumerators are calculated at the stage of compiling that
is why when setting their values, it is possible to use the values of all earlier
defined constants. In this case it is possible that several enumerators have
the same value:
const TWO = 2;
enum{first, second = first, next = first + TWO,
 last = next * next + 1}dummy;

 149

Let’s note that in the last case enumerator tag is not introduced, and
a variable dummy is described at once, which can possess one of four values,
according to the enumeration template:
first, second, next, last.

Consequently, the following assignments are possible:
dummy = first;
dummy = last;

In a general case it is possible to assign the values, set by the enumera-
tors, to a variable-enumerator. Thus, if the descriptions
month m1, m2;
operator_CPP op1, op2, op3;
enum colour{ red, green} c[10];

are given, the values plus, minus, ... can be assigned to the variables op1,
op2, op3; Jan, Feb – to m1, m2, etc., and the values red and green can
be assigned to the array elements c[0] ... c[9].

An enumerator can appear at every place where the appearance of
the value of int type is allowed. The reverse is not right without explicit type
conversion.
int i = dummy; // i = = 5
month current_month = Jan;
current_month = 0; // Error! A warning will be yielded.
current_month = (month)0; // Now it’s correct!
Feb = 1; // Error: Feb – is a constant!

Example:
include < iostream.h >
const NUMDAYS = 7;
enum DAYS{mon, tue, wen, thur, fri, sat, sun} day1, day2,
 day3;
DAYS day_before(DAYS), day_after(DAYS);
void print_day(DAYS);

void main() {
day1 = fri; day2 = day_after(day1); day3 = day_before(day1);
cout << “If today is“;
print_day(day1);
cout << “, tomorrow will be ”;
print_day(day2);
cout <<“,\n and yesterday it was ”;
print_day(day3);
cout <<“.\n”;
}

 150

DAYS day_after(DAYS day){
return((DAYS)((day + 1) % NUMDAYS));
}

DAYS day_before(DAYS day){
int prev = (day - 1) % NUMDAYS ;
return(prev < 0) ? (NUMDAYS - 1): prev ;
}

void print_day(DAYS day){
int day_i = day;
static char* days[] ={“Monday”,
“Tuesday” ,
“Wednesday”,
“Thursday”,
“Friday”,
“Saturday“,
“Sunday”
};
if(day_i < 0 || day_i > NUMDAYS)
cout << “ Error! \ n” ; else
cout << days[day_i] ;
}

The result of the program performance:

If today is Friday, tomorrow will be Saturday,
and yesterday it was Thursday.

 151

ADVICE
1. Use public data (structs) only when it really is just data and no invariant

is meaningful for the data members.
2. A concrete type is the simplest kind of class. Where applicable, prefer

a concrete type over more complicated classes and over plain data struc-
tures.

3. Make a function a member only if it needs direct access to the represen-
tation of a class.

4. Use a namespace to make the association between a class and its helper
functions explicit.

5. Make a member function that doesn’t modify the value of its object
a c o n s t member function.

6. Make a function that needs access to the representation of a class but
needn’t be called for a specific object a s t a t i c member function.

7. Use a constructor to establish an invariant for a class.
8. If a constructor acquires a resource, its class needs a destructor to

release the resource.
9. If a class has a pointer member, it needs copy operations (copy constructor

and copy assignment).
10. If a class has a reference member, it probably needs copy operations

(copy constructor and copy assignment).
11. If a class needs a copy operation or a destructor, it probably needs

a constructor, a destructor, a copy assignment, and a copy constructor.
12. Check for self-assignment in copy assignments.
13. When writing a copy constructor, be careful to copy every element that

needs to be copied (beware of default initializers).
14. When adding a new member to a class, always check to see if there are

user-defined constructors that need to be updated to initialize the member.

 152

15. Use enumerators when you need to define integer constants in class
declarations.

16. Avoid order dependencies when constructing global and namespace
objects.

17. Use first-time switches to minimize order dependencies.
18. Remember that temporary objects are destroyed at the end of the full

expression in which they are created.
19. Define operators primarily to mimic conventional usage.
20. For large results, consider optimizing the return.
21. Prefer the default copy operations if appropriate for a class.
22. Overload or prohibit copying if the default is not appropriate for a type.
23. Prefer member functions over nonmembers for operations that need

access to the representation.
24. Prefer nonmember functions over members for operations that do not

need access to the representation.
25. Use nonmember functions for symmetric operators.
26. Use () for subscripting multidimensional arrays.
27. Make constructors that take a single ‘‘size argument’’ explicit.
28. For nonspecialized uses, prefer the standard string to the result of your

own exercises.
29. Be cautious about introducing implicit conversions.
30. Use member functions to express operators that require an l-value as its

lefthand operand

 153

EXERCISES
1. Define a table of the names of months of the year and the number of

days in each month. Write out that table. Do this twice; once using
an array of char for the names and an array for the number of days and
once using an array of structures, with each structure holding the name
of a month and the number of days in it.

2. Define a struct Date to keep track of dates. Provide functions that read
Dates from input, write Dates to output, and initialize a Date with a date.

3. Write functions to add one day, one month, and one year to a date in
the struct Date from exercise 2. Write a function that gives the day of
the week for a given date. Write a function that gives the date of the first
Monday following a given date.

4. Solve the following problem, reading the data from the file and using
array of structures. The entrant list is given, containing those who
passed entrance exams for the university. There is an entrant surname,
his/her permanent residence and the exam marks in separate subjects
(for example, physics, mathematics, literature). It is necessary to deter-
mine the quantity of the entrants, living in a selected town and having
passed the exams with the average mark equaling or over 4, print their
surnames in alphabetical order.

5. Solve the following problem, reading the data from the file and using array
of structures. The file contains the data about books, available in the reading
hall of the library: author’s name, the name of the publishing house, publi-
cation date, the number of pages. Develop the updating program for sepa-
rate elements of the file and the information output on demand.

6. Solve the problem, reading the file data and using the array of structures.
The manager of the railway booking office stores the information about
vacant seats in the trains in all directions for the next week. This information
is represented as follow: the departure date, destination, departure time,
the number of the vacant compartment seats, and the number of vacant num-
bered reserved seats. An organizational committee of international conference
makes a request to the manager for reservation of 50 compartment seats to
Berlin on Saturday. At the same time, the departure time of the train should
be at least 10 o’clock in the evening. Print the departure time or the informa-
tion about impossibility to fill the order in corpore.

 154

7. Solve the problem, reading the file data and using the array of struc-
tures. The file contains the following information:

Name Account number Value in account Date of the last change

Calculate the number of clients, having a value in the account, which
is greater than that input on demand, and having visited the bank this month
(on the basis of the input date), print their surnames in alphabetical order.

8. Solve the problem, reading the file data and using the array of structures.
Receipts about deadlined radio equipment are stored in the radio atelier.
Each receipt contains the following information: description of the item
in the group (TV set, radio set and etc.), the brand mark of the item,
the date of reception, the ready state of the item (completed or unfilled
orders). Develop the program of history data analysis and information
delivery about the number and the order nature for the current day and about
the amount of completed orders for the current quarter in item groups.

9. Solve the problem, reading the file data and using the array of structures.
The file contains the information about vacant seats in the trains in all
directions for the next week: the departure date, train number, destination,
departure time, the number of the vacant compartment seats, the number
of vacant numbered reserved seats. Develop the program of separate file
element correction. Prepare the information issue about the available
seats in all trips on demand.

10. Solve the problem, reading the file data and using the array of struc-
tures. The timetable of the aircraft departures for the next day is stored
in the airport directory inquiries. The number, aircraft type, destination,
departure time are specified for each flight. Determine all the flight
numbers, aircraft types, their departure time for a given destination.

Flight

Aircraft
type Destination Departure

time
Arrival

time
Beginning of

check-in
Beginning
of boarding

Prepare the information issue on demand in the first five columns. Pro-
vide the possibility of the correction of separate file elements on demand.

11. Solve the problem, reading the file data and using the array of structures.
There is the list of registration of every needy in housing improvement.
Every recording of this list contains a surname, first name, middle name
and the date of registration. The list is organized according to the registra-
tion date. The number of the flat, allotted according to the given list during
the year, is known. Calculate how many years are necessary in average to
obtain a flat. Display the whole list with indication of the expected year for
obtaining a flat.

 155

12. Solve the problem, reading the file data and using the array of struc-
tures. The file contains the following information:

Number of
a workshop

Number
of a sector

Number
of a shift

Number of
a brigade

Name of
a worker

Quantity of man-
ufactured

articles per day
Provide the data about the results of shift-work by one worker, at one
sector, in one workshop on request. Provide the probability of correction
of the separate elements on request.

13. Solve the problem, reading the file data and using the array of strutures.
The file contains the following information:

Telephone
number

Date of
telephone call

Duration of
telephone call Prefix

Design a program of separate file data correction and information input
on request.

 156

21. OVERLOADING OF STANDARD
OPERATORS

21.1. THE BASIC DEFINITIONS AND PROPERTIES

In C++ there is a possibility to expand a standard operator action to
the operands of abstract data types.

In order to overload one of standard operators for working with the operands
of the abstract types, a programmer must write the function with the name

operator a,

where a is a symbol of this operator (for example + - / += etc.)
In this case there are several limitations in the language:

� one must not create new symbols of the operators;
� one must not overload the operators

:: * (dereferencing, not binary multiplication) ?:
sizeof . .* # ##;

� a symbol of the unary operator can not be used for overloading of
binary operator and vice versa. For example, a symbol << can be used
only for binary operators, ! is used only for unary, and & – for unary
and binary one;

� overloading of the operators does not change neither their priorities nor
the order of their performance (left-to-right or right-to-left);

� during operator overloading a computer does not make any assump-
tions about its properties. It means that if a standard operator += can be
expressed through the operators + and =, i.e. a += b is equivalent to a =
a + b, in the general case there are not such relations for overloaded
operator, although, of course, a programmer can provide them.
Besides, no assumptions are made, for example, about the operator +
commutativity: compiler has no reasons to consider that a + b, where a
and b of abstract types is the same as b + a;

� no operator can be overloaded for the operands of the standard types.

UNIT 5

 157

The function operator a() is an ordinary function, which can contain
from 0 to 2 explicit arguments. It may be and may be not a member function
of the class.
class cl{ int i;
public:
int get(){return i;}
int operator +(int); // A binary plus.
};
int operator +(cl&, float); // A binary plus.

In the first form of the binary plus there is not one, but two arguments.
The first one is implicit; any non-static member function of the class has it.
This argument is a pointer to the object, for which a function is called.
The implementation of both functions can be represented as follow:
int cl::operator +(int op2){
return i + op2;}
int operator +(cl &op, float op2){
return op.get() + op2;}

What will happen if the second argument in the global function
::operator +() has int type, not float type? In this case a compiler will yield
an error message, as it will not manage to make a choice between the func-
tions cl::operator +() and ::operator +() as these functions are both equally
suitable.

For performing of overloaded unary operator ax (or xa), where x is
an object of some abstract type Class, the compiler attempts to find either
function Class::operator a(void), or ::operator a(Class). If both variants
are found simultaneously, the error is fixed. Interpretation of the expression
is performed either as x.operator a(void), or as operator a(x).

For performing a overloaded binary operator x a y, where x is neces-
sarily an object of the abstract type Class, the compiler searches for either
the function
Class::operator a(type y),

or the function
::operator a(Class, type y),

where type can be both of standard and abstract type.
The expression x a y is interpreted either as

x.operator a(y),

or as
operator a(x, y).

 158

The number of the arguments of the function operator a() must
exactly correspond the number of the operands of this operator both for
unary and for binary operator. Let’s note that it is often convenient to pass
the parameter values to the function operator a() by reference, not by the value.

Let’s consider, for example, the operator of addition, defined for
the class “a complex number”:
class complex{
double re, im;
public:
double & real(){ return re; }
double & imag(){ return im; }
//. . .
};
complex operator +(complex a, complex b){
complex result;
result.real() = a.real() + b.real();
result.imag() = a.imag() + b.imag();
return result;
}

Here both arguments of the function operator +() are transferred by
the value, that is the copying of four numbers of double type is performed.
Such costs can be found too high, especially if the operator is overloaded for
such, for example, class as “matrix”. It would be attractive to avoid burden,
passing the pointers to the objects, not the objects themselves:
complex operator +(complex* a, complex *b){. . .}

but here it is impossible to deal this way, as both arguments are now
the objects of a standard type – pointers, and operator overloading for standard
types is forbidden.

In this situation, it is necessary to use the references – they do not
change the type of the operands, and only influence the mechanism of
parameter transfer:
complex operator +(complex &a, complex &b){
complex result;
resul.real() = a.real() + b.real();
result.imag() = a.imag() + b.imag();
return result;
}

The function body operator +() is not changed here.
Example: the operator + definition for the class stroka:

class stroka{
char *c; // The pointer to the string.
int len; // The length of the string.

 159

public:
stroka(int N = 80): len(0) // A string, which does not contain
 // information;
{i = new char[N +1]; // memory allocation for the array.
c[0] = ‘\0‘;
} // The constructor allocates the memory for the string and make it empty.
stroka(const char * arg){
len = strlen(arg);
c = new char[len + 1];
strcpy(�, arg);
}
int & len_str() // Returns the reference to the length of the string.
{return len;}
char * string(){ // Returns the pointer to string.
return �;}
void display(){ // The typing of the information about the string.
cout << “String length: “<< len << “.\n“;
cout << “The content of the string: “ << � << “.\n“;
}
~ stroka(){delete c;}
};
stroka & operator +(stroka &a, stroka &b){
int ii = a.len_str() + b.len_str(); // The length of the
 // resulting string.
stroka * ps = new stroka(ii);
strcpy(ps->string(), a.string()); // Copies the string from �;
strcat(ps->string(), b.string()); // Adds the string from b;
ps->len_str() = ii; // records the value of the string length;
return *ps; // returns a new object stroka.
}
void main(){
stroka X(“Vasya“);
stroka Y(“ goes“);
stroka Z;
Z = X + Y + “ by bicycle“;
Z.display();
}

The result of program performance:

String length: 22.
The content of the string: Vasya goes by bicycle.

 160

Let’s note that another form of calling for operator +() instead of
Z = X+ Y + " by bicycle" is possible:
Z = operator +(X, Y);
Z = operator +(Z, “ by bicycle”;)

21.2. THE OPERATORS NEW AND DELETE FOR
THE ABSTRACT TYPES

The operators new and delete are realized through the functions, and
independently of that, whether operator new() and operator delete are
described or not as static, they are always static functions. The operator new
is predetermined for any type, including abstract type defined by means
of the mechanism of classes. It is possible to overload both the global func-
tion operator new() and the function class x::operator new(). Global new
and delete are overloaded in the ordinary way by means of the mechanism
of signature adequacy.

As in the case of overloading of the global function operator new(),
a overloaded function class x::operator new() must return the result of void
type, and its first argument must have size_t type (that is unsighed), where
the size of the allocated memory is stored. Let’s note that when using
the operator new, this argument is not specified and the size of
the necessary memory area is calculated automatically based on the speci-
fied type.

The Use of new when Creating a Dynamic Object of the Abstract Type
Let’s consider the fragment:

class C{ . . .
public:
C(int arg){ . . .}
};
. . .
C * cp = new C(3);

The creation of the dynamic object of C type can be divided into two
stages:

1) the object creation itself – is performed by the constructor;
2) the location of this object in a definite memory area – performed by

the operator new.
Here, first, the function operator new() is performed, and then

the constructor places a created object in the allocated memory.

 161

The operator new can be overloaded in the following way:
class cl{ . . .
public:
cl(){cout << “Class constructor cl.\n“;}
void* operator new(unsigned);
};
void* cl::operator new(unsigned size){
cout <<“The function operator new() of the class cl;\n”;
void* p = new char[size]; // Global new!
if(p) return p; else{
cout<<“There is not any memory for the object of the type
cl!;\n”; exit(1);}
}
void main(){
cl * cp = new cl;}

The result is:

The function operator new() of the class cl;
Class constructor cl.

The Operator delete
The performance of the operator delete, applied to the pointer to

the object of the abstract type, leads to the destructor call for this object.
�l * clp = new cl(5); // Constructor call cl(5);
. . .
delete clp; // Destructor call ~cl() before release of
 // the dynamic memory.

The function x::operator delete() can be overloaded in the class x,
while it can have only two forms:
void operator delete(void *);
void operator delete(void *, size_t);

If the second form of the given operator is present, the compiler uses
just it.

21.3. TYPE CONVERSION

The types conversions can be divided into 4 groups:
1) standard-to-standard;
2) standard-to-abstract;
3) abstract-to-standard;
4) abstract-to-abstract.

 162

The first conversions have already been considered earlier. The con-
versions of the second group are based on implicit and explicit use of
the constructors.

Again, let’s consider the class complex:
class complex{
double re, im;
public: complex(double r=0, double i=0){ re = r; im = i ; }
. . .
};

The declarations of the type
complex c1;
complex c2(1.8);
complex c3(1.2, 3.7);

provide the creation of complex numbers.
But the constructor may be called implicitly in case when the operand

of complex type must be present in the expression, where in fact the operand
of double type is present:
complex operator +(complex & op, complex & op2);
complex operator -(complex & op, complex & op2);
complex operator *(complex & op, complex & op2);
complex operator /(complex & op, complex & op2);
complex operator -(complex & op); // Unary minus.
complex res;
res = -(c1 + 2) * c2 / 3 + .5 * c3;

The interpretation, for example, of the expression -(c1 + 2) will be
the following:
operator -(operator +(c1, complex(double(2)))).

When performing this expression, implicit constructor calls will create
temporary constants of complex type: (2.0, 0.0), (3.0, 0.0), (4.5, 0.0), which
will be destroyed immediately after they become unnecessary. Let’s note that
here not only an implicit constructor complex call takes place, but also
an implicit standard conversion of the value of int type to the double type occurs.

The number of the levels of implicit conversions is limited. In this
case, the rules are the following: the compiler can perform not more than one
implicit standard conversion, and not more than one implicit conversion
defined by a programmer.

Example:
�lass A{ public:
A(double d){. . .}
};

 163

class B{ public:
B(A va){. . .}
};
class C{ public:
C(B vb){ . . .}
};

A var1(1.2); // A(double)
B var2(3.4); // B(A(double))
B var3(var1); // B(A)
C var4(var3); // C(B)
C var5(var1); // C(B(A))
C var6(5.6); // Error! C(B(A(double))) is implicitly called
C var7(A(5.6)); // C(B(A))

The error during creation of the variable var6 is caused by the neces-
sity of two levels of implicit non-standard conversions, performed by means
of the constructor call: double to �, and then A to �.

When creating the variable var7, one of these conversions – double to
A – is made explicitly, and now everything will be all right.

Thus, the constructor with one argument Class::Class(type) always
defines the conversion of type type to Class type, not only the method of
object creation in case of explicit call to it.

For an abstract type conversion to a standard one or abstract to abstract
one, there is a mean – function, performing the conversion of types, or
the type conversion operator.

It has the following view:
Class::operator type(void);

This function performs a conversion of Class type to type type,
defined by a programmer. This function must be a member of the class Class
and should not have arguments. Besides, the type of the returned value is not
indicated in its declaration. This function call can be implicit and explicit. For
performing of the explicit conversion, it is possible to use both traditional and
“functional” forms.

Example 1:
class X{ int a, b;
public:
X(X & vx){ a = vx.a; b = vx.b; }
	(int i, int j){ a = 2*i, b = 3*j; }
operator double(){ return(a + b)/2.0; }

// Conversion of the abstract type to standard one.
};

 164

int i = 5;
double d1 = double(i); // An explicit conversion
 // of int-type to double;
double d2 = i ; // implicit conversion of int-type to double;
X xv(5, -8);
double d3 = double(xv); // explicit conversion of �-type to double;
double d4 = xv; // implicit conversion of �-type to double.

Example 2. The conversion of the abstract type to the abstract one:
class Y{
char * str1; // Strings str1 	 str2 store symbolic
char * str2; // representation of integer numbers.
public:
Y(char *s1, char *s2): str1(s1), str2(s2){}
operator X(){ return X(atoi(str1), atoi(str2));}
};
. . .
Y yvar(“12“,“-25“);
X xvar = yvar;

When creating the variable xvar, an implicit conversion of the value
of the variable yvar to the type X will be performed before the call of
the copy constructor X::X(X&). The same conversion in the explicit form
can be represented as follow:

X xvar = X(yvar);
X xvar =(X)yvar;

For the expression
X xvar = X(“12“, “-25“);

a compiler will yield the error message “a constructor with specified argu-
ments is not found”. The thing is that in contrast to the constructor, the opera-
tor-function of type conversion is not able to create the object of an abstract
type. It can perform only value conversion of the object of one type, having
been created earlier, to the value of another type. In the last example the
object of Y type still does not exist.

 165

22. SOME PECULIARITIES OF OVERLOADED
OPERATORS
The restrictions during overloading of the operators =, [], (), -> con-

sist in that the functions operator =() etc., realizing them, must be the mem-
bers of the class and can not be static functions. Speaking about the inheri-
tance mechanism it should be noted that usually a derived class inherits all
the properties of the base class. There are two exceptions to this rule:

1) a derived class can not inherit the constructors of its base class;
2) the assignment operator, overloaded for the base class, is not con-

sidered as overloaded for its derived classes.
All the other operators are inherited in the ordinary way, that is,

if a necessary operator is not overloaded for the derived class, but it is over-
loaded in its base class, the operator of the base class will be called.

22.1. OPERATOR =
Assignment operator = is predefined for any abstract type of data.

In this case such poverloaded operator of assignment is interpreted not as
obtaining of the bitwise copy of the object, but as a sequential assignment of
its members (of standard and abstract types). Bitwise copying occurs in case
the operator = is not defined. Poverloaded operator = can be overloaded.
struct memberone{
int i;
memberone & operator =(memberone & a){
cout<<“The operator of copying of the class memberone\n\n“;
return a;
}
};
struct membertwo{ int j;
membertwo & operator =(membertwo & a){
cout<<“The operator of copying of the class membertwo\n\n“;
return a; }
};
struct contain{ int k;
memberone mo;
membertwo mt;
};

 166

void main(){
contain from;
from.mo.i = 1;
from.mt.j = 2;
from.k = 3;
contain to;
to.mo.i = 0;
to.mt.j = 0;
to.k = 0;
to = from;
 cout << “to.mo.i = “ << to.mo.i << “\n\n“
 << “to.mt.j = “ << to.mt.j << “\n\n“
 << “to.k = “ << to.k << “\n\n“;
}

The results of the program operation:

The operation of copying the class memberone
The operation of copying the class membertwo
to.mo.i = 0
to.mt.j = 0
to.k = 3

Example 2. Let’s consider the class stroka again:
class stroka{
char *c;
int len;
public:
. . .
stroka & operator =(stroka & str);
. . .
};
stroka & stroka::operator =(stroka & str){
if(str.len > len){
cout << “The string length is minor! Copying is impossi-
ble!\n“;}
else{ strcpy(c, str.c); len = str.len;}
return *this;
}
void main(){
stroka A(“String A“), B(“String “), C(“Str“);
A = B; A.display();
B = C; B.display();
C = A; C.display();
}

As a result of this program performance, the following will be dis-
played on the screen:

 167

String length: 6
String content: String
String length: 3
String content: Str
String length is minor! Copying is impossible!
String length: 3
String content: Str

21.2. OPERATOR []

The expression x[y], where x is an object of the abstract type Class,
is interpreted as
x.operator[](y).

Let’s note that the array of objects of the abstract type Class, as well as
any standard type, has a standard type of a pointer. Even if array is an array
of the elements of the abstract type Class, the expression array [i] still means
*(array + i), independently of whether the operator [] for the type Class
is overloaded or not.

Example:
class A{
int a[10];
public:
A(){ for(int i = 0; i < 10; i ++) a[i] = i + 1; }
int operator[](int j){
return a[j]; }
};
void main(){
A array[20];
cout << “array[3][5] = ” << array[3][5] << “.\n”;
}

The result of the program operation will be: array[3][5] = 6.
It is evident that the operator [], used in the constructor of the class A,

is standard, as it is performed over the array name. Now let’s consider
the expression array[3][5]. The result of its calculation is the same as it was
expected, due to the following reason: the operator [] is performed from left
to right. Consequently the expression array[3][5] is interpreted as
(array[3]).operator[](5). The first of two operators [] is standard, as it is
performed over the array name. In this case the type of array’s elements
is not important. The second operator [] is overloaded, as the result of
the first operator [] is the object of A type.

A question arises when does it make sense to overload the operator []?
Let’s try and create abstract data type, which can be used in the program

 168

similar to the array. To make the creation of such type sensible, it is neces-
sary to overcome the main drawbacks, peculiar to ordinary arrays C++, i.e.:

� the necessity of setting the array size at the stage of compiling;
� the absence of control of the overrunning the array;
� impossibility of setting the arbitrary limits of index alteration;
� the absence of predefined operators of array assignment, performance

of arithmetic operators with them, etc.
Let’s create the class Array, which is a formalization of the concept

“one-dimension array of the integers”. For simplicity let’s suppose that
the array of Array type has the same range of index alteration as an ordinary
array C++ has, and the alteration of its dimension after creation is not possible.
Let’s define the assignment, addition, and output operators for the Array type.
Let’s overload the operator [] for referring to the elements of such array:
// File Array.cpp
#include < iostream.h >
#include < stdlib.h >
class Array{
int *pa; // Integer array;
int sz; // the size of the array.
public:
Array(const Array &v);
Array(const int a[], int s);
Array(int s);
virtual ~Array(){ delete pa; }
int size(){ return sz; }
int & operator[](int);
Array & operator =(Array&);
 // The result returns by the reference for the opportunity
 // of multiple assignment of a=b=c-type;
Array & operator + (Array&);
ostream & print(ostream&);
};
Array::Array(const int a[], int s){
 // Initialization of the array of Array-type by an ordinary array.
if(s <= 0){ cout << “Incorrect array size: “<< s <<“\n“;
exit(1);}
if(!(pa = new int[sz = s])){
cout<<“Failure at memory allocation \n“; exit(1); }
for(int i = 0; i<sz; i++) pa[i] = a[i];
}
Array::Array(const Array &v) { // Copy constructor.
if(!(pa = new int[sz = v.sz])){
cout << “Failure at memory allocation \n“; exit(1);}
for(int i = 0; i < sz; i++) pa[i] = v.pa[i];
}

 169

Array::Array(int s){
 // The creation of non-initialized array with the size s.
if(s<= 0){ cout <<“ Incorrect array size \n“; exit(1); }
if(!(pa = new int[sz = s])){
cout <<“ Failure at memory allocation \n“; exit(1); }
}
int & Array::operator[](int index){
if(index < 0 || index >= sz){
�out <<“ Array overrun!\n“; exit(1); }
return pa[index];
}

/* Since the result returns by the reference, the element returns itself, but not
its value, therefore the expression of the form �[i], where c of the Array type
can be in the left part of the assignment operator. /*

ostream & Array::print(ostream& out){
out << ’\n’;
for(int i = 0; i < sz; i++) out << pa[i]<<” ”;
out <<”\n”;
return out; }
ostream & operator <<(ostream & out, Array & v){
v.print(out);
return out; }
Array & Array::operator +(Array & op2){
if(sz != op.sz){
cout<<“The attempt to sum up the arrays of different dimen-
sions!\n“;
exit(1);}
Array & tmp = *(new Array(sz));
for(int i = 0 ; i < sz ; i ++) tmp[i] = pa[i] +
op2.pa[i];
return tmp;
}
Array & Array::operator =(Array &v){
if(sz != .sz){
cout <<”Different dimensions of the arrays at assign-
ment!\n”; exit(1);}
for(int i = 0; i < sz ; i ++) pa[i] = v[i];
return(*this);
}
 // The end of the file Array.cpp.

Now it is possible to write the next program:
include “Array.cpp”
void main(){
int a[] ={ 1, 7, 3, 15, 6, 20, 7 };
Array mas(a, sizeof a / sizeof(int));

 170

Array b(7); // Undefined array.
Array c = mas; // Copy constructor.
b = mas + c ;
mas = b +(c = mas);
for(int i=0; i < 7; i ++)cout << a[i] << “ “; cout << “\n”;
cout << mas << b << c; // Compare these two outputs!
}

Now let’s create the class Matrix, which is formalization of the concept
of two-dimensional array.
// File Matrix.cpp
class Matrix{ Array **pm; // Pointers array to Array.
int r, c; // Matrix dimensionality.
public:
Matrix(int, int);
virtual ~Matrix();
int row(){ return r;}
int col(){ return c;}
Array & operator[](int);
Matrix & operator =(Matrix&);
Matrix & operator +(Matrix&);
Matrix & operator *(Matrix&);
ostream & print(ostream & s);
};
 // The result of the operator [], applied to the object of Matrix-type,
 // must be the object of Array-type:
Array & Matrix::operator[](int index){
if(index < 0 || index >= r){
cout << " Array overrun ! \ n"; exit(1);}
return * pm[index];
}
 // Constructor:
Matrix::Matrix(int row, int col){
pm = new Array *[row];
for(int i = 0; i < row; i ++) pm[i] = new Array(col);
r = row; c = col;
}
Matrix:: ~Matrix(){for(int i = 0; i<r; i ++)delete pm[i];
delete pm; }
ostream & Matrix::print(ostream &s){
s<<“\n“;
for(int i =0; i < r; i++){
Array &v = *pm[i];
for(int j = 0; j < c; j++) s << v[j] <<“ “;
s << “\n“; }
return s ;
}

 171

Matrix & Matrix::operator =(Matrix & tmp){
if(r != tmp.r){ cout <<
“Different dimensions of the arrays!\n”; exit(1); }
for(int i = 0; i < r; i++) *pm[i] = tmp[i];
return *this;
}
Matrix & Matrix::operator +(Matrix & op2){
if(r != op2.r){
cout << “ Different dimensions of the arrays!\n”; exit(1);
}
Matrix & tmp = *(new Matrix(r, c));
for(int i = 0; i < r ; i++)tmp[i] = *pm[i] + op2[i];
return tmp;
}
Matrix & Matrix::operator *(Matrix & op2){
if(c != op2.r){ cout <<
“It is impossible to multiply the matrices!\n”; exit(1);}
Matrix & tmp = *(new Matrix(r, op2.c));
for(int i = 0; i < r ; i++)
for(int j = 0; j<op2.c; j++){ tmp[i][j] =0;
for(int k = 0; k < c ; k++) tmp[i][j]+=
(*this)[i][k]*op2[k][j];
}
return tmp;
}
ostream & operator <<(ostream &s, Matrix & m){
m.print(s);
return s;
}
 // The end of the file Matrix.cpp

Now it is possible to make a program, where new types of data Array
and Matrix are used.

#include < iostream.h >
#include “Array.cpp“
#include “Matrix.cpp“

void main(){
Matrix tbl(3, 5), tbl2(3, 5);
for(int i = 0; i < 3; i++)
for(int j = 0; j < 5; j++){
tbl[i][j] = i + j;
tbl2[i][j] =(i + j)*10;
}
Matrix tbl3 = tbl + tbl2;
cout << tbl3;
Array arr(10), arr2(10);
for(i = 0; i < 10; i++){
arr[i] = i; arr2[i] = i*10;
}

 172

Array arr3 = arr + arr2;
cout << arr3;
Matrix mas(5, arr.size());
for(i = 0; i < 5; i++) mas[i] = arr;
Matrix mas2(3, arr.size());
mas2 = tbl*mas;
cout << mas << mas2;
}

 173

ADVICE
1. Avoid type fields.
2. Use pointers and references to avoid slicing.
3. Use abstract classes to focus design on the provision of clean interfaces.
4. Use abstract classes to minimize interfaces.
5. Use abstract classes to keep implementation details out of interfaces.
6. Use virtual functions to allow new implementations to be added without

affecting user code.
7. Use abstract classes to minimize recompilation of user code.
8. Use abstract classes to allow alternative implementations to coexist.
9. A class with a virtual function should have a virtual destructor.
10. An abstract class typically doesn’t need a constructor.
11. Use ordinary multiple inheritance to express a union of features.
12. Use multiple inheritance to separate implementation details from an interface.
13. Use a virtual base to represent something common to some, but not all,

classes in a hierarchy.
14. Avoid explicit type conversion (casts).
15. Use dynamic_cast where class hierarchy navigation is unavoidable;

§ 15.4.1.
16. Prefer dynamic_cast over typeid.
17. Prefer private to protected.
18. Don’t declare data members protected.
19. If a class defines operator delete(), it should have a virtual destructor.
20. Don’t call virtual functions during construction or destruction.
21. Use explicit qualification for resolution of member names sparingly and

preferably use it in overriding functions.

 174

EXERCISES
1. Define a table of the names of months of the year and the number

of days in each month. Write out that table. Do this twice; once using
an array of char for the names and an array for the number of days and
once using an array of structures, with each structure holding the name
of a month and the number of days in it.

2. Without looking in the book, write down as many C++ keywords you can.
3. Write a standards conforming C++ program containing a sequence of at

least ten consecutive keywords not separated by identifiers, operators,
punctuation characters, etc.

4. Implement a version of a Reversi/Othello board game. Each player can
be either a human or the computer. Focus on getting the program correct
and (then) getting the computer player ‘‘smart’’ enough to be worth
playing against.

5. Define a graphical object class with a plausible set of operations to serve
as a common base class for a library of graphical objects; look at
a graphics library to see what operations were supplied there. Define
a database object class with a plausible set of operations to serve as
a common base class for objects stored as sequences of fields in a data-
base; look at a database library to see what operations were supplied
there. Define a graphical database object with and without the use of
multiple inheritance and discuss the relative merits of the two solutions.

6. Define
class base {
public:
 virtual void iam() {cout << "base\n"; }
};

Derive two classes from base, and for each define iam() to write out
the name of the class. Create objects of these classes and call iam() for
them. Assign pointers to objects of the derived classes to base* pointers
and call iam() through those pointers.

 175

7. Implement a simple graphics system using whatever graphics facilities
are available on your system (if you don’t have a good graphics system
or have no experience with one, you might consider a simple “huge bit
ASCII implementation” where a point is a character position and you
write by placing a suitable character, such as * in a position):
Window(n,m) creates an area of size n times m on the screen. Points on
the screen are addressed using (x,y) coordinates (Cartesian). A Window
w has a current position w.current(). Initially, current is Point(0,0).
The current position can be set by w.current(p) where p is a Point.
A Point is specified by a coordinate pair: Point(x,y). A Line is specified
by a pair of Points: Line(w.current(), p2); class Shape is the common in-
terface to Dots, Lines, Rectangles, Circles, etc. A Point is not a Shape.
A Dot, Dot(p) can be used to represent a Point p on the screen. A Shape is
invisible unless draw()n. For example: w.draw(Circle(w.current(), 10)).
Every Shape has 9 contact points: e (east), w (west), n (north), s (south),
ne, nw, se, sw, and c (center). For example, Line(x.c(), y.nw()) creates
a line from x’s center to y’s top left corner. After draw()ing a Shape
the current position is the Shape’s se(). A Rectangle is specified by its
bottom left and top right corner: Rectangle(w.current(), Point(10,10)).
As a simple test, display a simple “child’s drawing of a house” with
a roof, two windows, and a door.

8. Important aspects of a Shape appear on the screen as a set of line seg-
ments. Implement operations to vary the appearance of these seg-
ments: s.thickness(n) sets the line thickness to 0, 1, 2, or 3, where 2
is the default and 0 means invisible. In addition, a line segment can be
solid, dashed, or dotted. This is set by the function Shape::outline().

9. Provide a function Line::arrowhead() that adds arrow heads to an end of
a line. A line has two ends and an arrowhead can point in two directions
relative to the line, so the argument or arguments to arrowhead() must
be able to express at least four alternatives.

10. Make sure that points and line segments that fall outside the Window do
not appear on the screen. This is often called “clipping.” As an exercise
only, do not rely on the implementation graphics system for this.

11. Add a Text type to the graphics system. A Text is a rectangular Shape
displaying characters. By default, a character takes up one coordinate
unit along each coordinate axis.

12. Define a function that draws a line connecting two shapes by finding
the two closest “contact points” and connecting them.

 176

13. Add a notion of color to the simple graphics system. Three things can be
colored: the background, the inside of a closed shape, and the outlines of
shapes.

14. Consider:
class Char_vec {
int sz;
char element[1];
public:
 static Char_vec* new_char_vec(int s);
 char& operator [](int i) {return element[i]; }
// ...
};

Define new_char_vec() to allocate contiguous memory for a Char_vec
object so that the elements can be indexed through element as shown.
Under what circumstances does this trick cause serious problems?

15. Given classes Circle, Square, and Triangle derived from a class Shape,
define a function intersect() that takes two Shape* arguments and calls
suitable functions to determine if the two shapes overlap. It will be
necessary to add suitable (virtual) functions to the classes to achieve
this. Don’t bother to write the code that checks for overlap; just make
sure the right functions are called. This is commonly referred to as double
dispatch or a multi-method.

16. Design and implement a library for writing event-driven simulations.
Hint: <task.h>. However, that is an old program, and you can do better.
There should be a class task. An object of class task should be able to
save its state and to have that state restored (you might define task::save()
and task::restore()) so that it can operate as a coroutine. Specific tasks can
be defined as objects of classes derived from class task . The program to
be executed by a task might be specified as a virtual function. It should be
possible to pass arguments to a new task as arguments to its construc-
tor(s). There should be a scheduler implementing a concept of virtual
time. Provide a function task::delay(long) that “consumes” virtual time.
Whether the scheduler is part of class task or separate will be one of
the major design decisions. The tasks will need to communicate. Design
a class queue for that. Devise a way for a task to wait for input from
several queues. Handle run-time errors in a uniform way. How would you
debug programs written using such a library?

 177

23. CLASSES AND TEMPLATES
A template of the class family determines the method of separate class

construction similar to the method, in accordance with which the class deter-
mines the rules of construction and the format of separate objects. The tem-
plate of the class family can be defined as:

template < the_list_of_template_parameters > class definition

In class definition, included into the template, the name of the class is of
special importance. It is not the name of the separate class, but a parametrized
name of the class family.

The template definition can be the only global.
Let’s consider the class vector, among the data of which a one-

dimension array is included. Irrespective of the element type of this array,
the same base operations, for example, the access to the element by the index
and something of this kind must be defined in the class. If the element type of
the vector is specified as a parameter of the class template, the system will
form the vector of a necessary type and a corresponding class during each
definition of a specific object.
 // File vec.cpp
template < class T > // � – template parameter;
class vector{
T *pv; // one-dimension array;
int size; // the array dimension.
public:
vector(int);
~vector(){ delete[]pv; }
T & operator[](int i){ return pv[i]; }
. . . };
template < class T >
vector < T >::vector(int n){
pv = new T[n];
size = n; }
 // The end of the file vec.cpp

UNIT 6

 178

When the template is introduced, the possibility appears to define spe-
cific objects of the particular classes, each of which is parametrically generated
from the template. The format of object definition for the class, generated by
the template, is the following:

the_name_of_the_generic_class <actual_template_parameters>
the_object_name (constructor_parameters)

In our case it is possible to define the vector of the 100 components of
double type in the following way:
vector < double > x(100);

The program can be presented as:
#include < iostream.h >
#include “vec.cpp“
void main(){
vector < int > x(5);
vector < char > c(5);
for(int i = 0; i < 5; i++){
x[i] = i; c[i] = ’A’ + i;}
for(i = 0; i < 5; i++) cout << “ “ << x[i] << “ “ << c[
i];
cout << “/n“;
}

The result:

0 A 1 B 2 C 3 D 4 E

In the list of the template parameters there can be formal variables,
which do not define the type. To put it more precisely, these are the parame-
ters, for which the type is fixed:
template < class T, int size = 64 >
class row{
T * data;
int length;
public: row(){ length = size; data = new T[size]; }
~row(){ delete T[] data; }
T & operator[](int i){ return data[i]; }
};
void main(){
row < float, 7 > rf;

 179

row < int, 7 > ri;
for(int i = 0; i < 7; i++){ rf[i] = i ; ri[i] = i * i; }
for(i = 0; i < 8; i++)
cout << “ “ << rf[i] << “ “ << ri[i];
cout << “\n“;
}

The result:

0 0 1 1 2 4 3 9 4 16 5 25 6 36

A constant is taken as an actual argument for the parameter size.
In the general case a constant expression can be used, however, it is forbidden
to use the expressions, containing variables.

 180

24. DYNAMIC DATA STRUCTURES
24.1. LISTS

Let’s consider the following structure
typedef int ETYPE;
struct elem{ ETYPE data;
elem *next;
};

Let’s call data as a data entry. Here it is of int type, but it can be of
any complex type ETYPE, which is necessary for us.

The pointer next points to the object of elem type. The objects of elem
type can be ordered by means of the pointer next in the following way (Fig. 3):

data data data
next next … NULL
Fig. 3. The structure of unidirectional list

Such data structure is called unidirectional, or one-way list, sometimes
a chain.

The objects of elem type from this list are called the elements or units
of the list. Each element of the chain, except the last one, contains the pointer
to the element, following it. The marker of the last element in the list is that
the member of the elem* type of this unit is equal to NULL. A variable,
which value is the pointer to the first element of the list, is considered
together with each list. If the list does not have any elements, i.e. it’s empty,
the value of this variable must be NULL.

Let’s consider the methods of working with such lists. Let the variables
p, q have elem* type:
elem *p, *q;

Let’s make up the list of two elements, containing numbers 12 and –8.
The value of the variable p will always be the pointer to the first element of
the list part, which has been already made. The variable q will be used for
allocation of the memory space for location of new elements of the list by
means of operator new.

Operator performance
p = NULL;

 181

leads to the creation of the empty list. After performing of the operator
q = new elem; q->data = –8; q->next = p; p = q;

there is the list, consisting of one element, containing number –8 in the data
part. The variables p, q point to this element (Fig. 4a).

p NULL -8
 NULL

q
 12

Fig. 4. Creation of the list of one (a – solid lines)
and two (b – dotted line) elements

Later, the operator performance (Fig. 4b)
q = new elem; q->data = 12; q->next = p; p = q;

leads to adding of a new element, containing number 12, to the beginning of
the chain. The result is the list presented in Fig. 5. The value of the variables
p and q is a pointer to the first element of the list.

p 12 -8
 NULL

q

Fig. 5. The list of two elements

In fact, the operation of including of a new element into the beginning,
or head of the list, was considered, and the list formation consists in starting
from the empty list and successive addition of the elements to the beginning.

Example. Let’s make up a list, which elements contain integer numbers
1, 2, 3, …, n.
p = NULL;
while(n > 0){
q = new elem;
q->data = n;
q->next = p; p = q;
n --;}

Let’s note that during including the element into the head of the list
the order of the element arrangement in the list is inverse to the order of their
including.

 182

The main operation during working with the list is a passage through
the list. Let’s suppose that it is necessary to perform some operation, which is
realized by the function void P(ETYPE), with each data element of the unit.
Let p again point to the beginning of the list. Then the passage through
the list is performed in the following way:
q = p;
while(q){
P(q->data);
q = q->next; }

Example. There is a sequence, containing odd number of integer num-
bers, in the input file num.dat. Let’s make a program performing the output
of the number, standing centrally in this sequence.
#include < fstream.h > // For working with input file.
#include < stdlib.h >
struct elem{ int data;
elem *next; };
void main(){
ifstream infile(“num.dat”);

/* An input stream with the name infile is created for data reading, the file
with the name “num.dat” is being searched, if such file does not exist,
the constructor aborts the work and returns a zero value for infile.*/

if(!infile){
cout << “Error while opening the file num.dat!\n“; exit(1);
}
elem *p = NULL, *q;
int j = 0;
while(infile.peek() != EOF){

/* The member function peek() of ifstream class returns the next symbol from
the input stream infile, without its extracting out of it. If the end of the file is
met, the value EOF will be returned, i.e. –1. */

q = new elem;
infile >> q->data;
q->next = p; p = q;
j++;
}
for(int i = 1; i <= j/2; i++)
q = q->next;
cout << q->data << “\n”;
}

 183

24.2. THE OPERATIONS OVER UNIDIRECTIONAL LISTS

There are three main operations over the lists.
1) The passage through the list, or transition from one element to

the next one.
As it has been considered above, it is implemented by means of

assignment q = q -> next;
2) Including an item into the list.
Let q, r are the variables of elem* type. Let’s suppose that it is neces-

sary to include a new element to the list after some element, to which q
points. Let’s create this new element by means of the pointer r and put number 19
into its data part. Such inclusion is implemented by the following operators:
r = new elem; // stage (1) – a new unit creation;
r->data = 19; // the entry of the number 19 into the data part;
r->next = q->next; // stage (2) – the pointer r->next of a new unit
 // is adjusted in such a way that it points to
 // the element, containing the number 12;
q->next = r; // stage (3) – the pointer q->next of the unit,
 // containing 5, now points to a new
 // element, the old link is broken.

Let’s illustrate this in the next figure (Fig. 6).

Fig. 6. Element inclusion into the list

3) Elimination an item from the list.
Let the value of the variable q will be a pointer to some, not last, element

of the list and it is required to eliminate the element, following it, from
the list. It can be done the following way:
r = q->next;
q->next = q->next->next;
r->next = NULL;

The second of the given assignments is the elimination from the list
itself, and the first is performed for storing the pointer to the eliminated element,
i. e. for being accessible and for making it possible to carry out actions with it,
after elimination from the list. For example, to insert it into different place or

 184

to release the memory, occupied by it, by means of the operator delete r.
The third assignment is performed to make the elimination final, i. e. in such
way, that it would be impossible from the eliminated element to get into
the list, from which it was eliminated.

Implementation of the list
Let’s implement the list notion through the mechanism of classes.

// File “list.cpp”
#include < iostream.h >
#include < stdlib.h >
typedef int ETYPE;
struct elem{
ETYPE data;
elem * next;
elem(ETYPE e, elem * n){ data = e; next = n;}
};
class list{
 elem *h; // The addresses of the beginning of the list.
 public:
 list(){ h = NULL; }
 ~list(){release(); }
 void create(ETYPE); // Adds the element to the
 // beginning of the list.
 void release(); // Eliminates the list.
 void insert(elem* q, ETYPE c);// Inserts c after q in the list.
 void del0(){ // Eliminates the first element.
 elem *t = h; h = h->next; delete t;}
 void del(elem * q); // Eliminates the element after q.
 void print(); // Prints the list.
 friend class iter;
 elem *first(){ return h; }
};
class iter{
elem * current;
public:
iter(list & l) { current = l.h; }
elem * operator ++(); // Movement through the list.
};
void list::create(ETYPE c){ h = new elem(�, h); }
void list::insert(elem *q, ETYPE c){
q->next = new elem(c, q->next);
}
void list::del(elem *q){ if(q->next = = NULL){
cout << ”The end of the list! ”

 185

<<”Elimination of the next element is impossible!\n”; exit(1); }
elem * r = q->next; q-> next = q->next->next;
r->next = NULL;
delete r;
}
elem* iter::operator ++(){
/* Returns the pointer to the current element of the list. Implements
the movement along the list. Memorizes the new current element of the list.
*/

if(current){ elem * tmp = current;
current = current->next;
return tmp; }
return NULL;
}
void list::release(){
iter t(*this);
elem *p;
while((p = ++t)!= NULL){h = h->next; delete p;}
}
void list::print(){
iter t(*this);
elem *p;
while((p = ++t)!= NULL)
cout << p->data << “ “;
cout << ’\n’;
}
// The end of the file list.cpp

Here the unidirectional list is realized. This is one of the simple pat-
terns of structures of data control. The class list, realizing this pattern, is
a representative of so called container types. The class iter is created
specially for searching of the elements of the arbitrary list of list type.
The objects, assigned for searching of the elements inside of some set of
data, are usually called iterators.

Let’s give an example of the use of unidirectional list.
A nonempty sequence of the integer numbers A(1), A(2), ..., A(n) is

in the file int.dat. Determine the quantity of these numbers n and type them
in the ascending order. For solution this problem, it will be necessary to make
up a list, which elements are arranged in the ascending order of the contained
integer numbers. The first step is a list creation, consisting of one element
containing �(1). It is evident that this list is arranged. At the i-th stage
(i = 2, 3, … , n) let’s pass from the ordered list, which elements contain
the numbers �(1),..., A(i–1), to the ordered list, which elements contain A(1),
…, A(i–1), A(i). For performing such transition it is enough to include a new

 186

element, containing A(i), into the list. It should be inserted immediately after
the last element containing the number which is less than A(i).

If all the elements of the initial list contain the numbers, not less than
A(i), the new element should be inserted into the beginning of the list.
#include “list.cpp“
#include < fstream.h >
void main(){
ifstream file(“int.dat”);
list lst; int i, n;
file >> i; n = 1;
lst.create(i);
while(file.peek()!= EOF){
file >> i; n ++;
iter tmp(lst); // Let’s create the object-iterator for
 // searching of the elements of the list lst.
elem *p, *q;
while((p = ++tmp)!= NULL)
if(p->data < i) q = p;
else break;
if(p == lst.first()) lst.create(i);
else lst.insert(q, i); }
cout <<“ There are ” << n << “ numbers in the file\n”;
cout <<“ An ordered list:\n”;
lst.print();
}

In the last operator if-else the verification p == lst.first() is carried out.
This is necessary because the mechanism of unit insertion into the beginning
of the list and into the list after the pointer p is different. The difference
appears as the first element does not have the previous one. Sometimes a so
called heading element, which is never deleted and no element is inserted
before it, is placed at the beginning of the list for uniformity. Usually its data
part is not used.

24.3. DOUBLE-LINKED AND CIRCULAR LISTS

To make an access to the previous elements convenient, let’s add one
more pointer that points to the preceding unit of the list, to each element of
the list:
struct elem{
ETYPE data;
elem * next;
elem * prev;
elem(ETYPE c, elem * n, elem * p){ data = c; next = n;
prev = p; }
};

 187

By means of the elements of such type (Fig. 7) it is possible to make
up a so called double-linked or bidirectional list (with the heading element):

 list
 h data data data
 next . . . NULL
 prev NULL . . .

Heading
element

Fig. 7. Double-linked list

Here in the field prev of the heading unit is an empty pointer NULL,
denoting that the heading element does not have a preceding one. The double-
linked lists are generalized in the following way (Fig. 8 and Fig. 9):
the pointer to the heading (or the first) unit is taken as a value of next of
the last unit, and the pointer to the last unit is taken as a value of the field
prev of the heading (correspondingly the first) unit.

 list
 h data data data
 . . .
 . . .

Heading element

Fig. 8. The first variant of the double-linked circular list

 list
 h data data data
 . . .
 . . .

Heading
 element

Fig. 9. The second variant of the double-linked circular list

Here the list turns into a circle, that is why the lists of such type are
called double-linked circular.

In the first variant (Fig. 8) the insertion of a new unit into both
the beginning of the list after the heading element and into its end is realized
very simply, as the insertion of the unit into the end of the list is equivalent to
its insertion before the heading element. But here during cyclic processing of
the elements it should be checked whether the next unit is heading. The second
variant is free of this imperfection (Fig. 9), but in this case it is more
difficult to realize the addition to the end of the list.

 188

Let’s consider in the next topic the basic operations with circular double-
linked lists of the first variant (Fig. 8).

24.4. THE CIRCULAR LIST OPERATIONS

Element insertion
Let h, p, q be the variables of elem* type, and k be a variable of int

type. The k value must be set in the data part of the element, which must be
inserted after the unit, which the pointer p points to.

This insertion can be implemented like this:
q = new elem(k, p->next, p);
p->next->prev = q; p->next = q; // In such an order!

For insertion of a new element into the beginning of the list it is
enough for the pointer p to possess the value of the address of the heading
element of the list: p=h;

Element deletion
The possibility to move by the pointers in any direction allows to set

a deleted unit by the pointer p directly to this unit:
p->next->prev = p->prev;
p->prev->next = p->next;
delete p;

Element search
Let h be a pointer to the heading element of the list, r be a pointer,

which will point to the obtained unit, containing k. Also let p, q be variables
of elem* type, and b – of int type. The search of the element, containing
the number k, is performed like this:
b = 1; h->data = k + 1; // In the data part of the heading unit
 // the number, different from k, is set.
p = h->next; // First, p points to the first unit.
r = NULL;
q = p; // now q points to the first unit.
do{
if(p->data == k){
b = 0;
r = p;
}
p = p->next;
}while((p != q) && b);

 189

Let’s note that if there is not a unit, containing k, in the list at all,
the value b will remain equal to one, the pointer r will be NULL, p will possess
the value q, i.e. it will point to the first unit (after the heading one) again,
after searching.

24.5. STACKS

In the programming a data structure, which is called a queue, is often
used. Two operations on the queue are defined: they are the enqueue of
the element and the selection of the element from the queue. In this case,
a selected element is excluded from the queue. In the queue, two positions
are accessible – its beginning (from this position an element is selected from
the queue) and the end (an element for enqueue is placed into this position).
There are two main types of the queues, which are different in service proce-
dure. During the first of the procedures, the element, having entered
the queue first, is selected first and deleted from the queue. This queue service
procedure is called as FIFO (First In – First Out).

Let’s consider in more detail the queue with such service procedure,
when that element of the queue is selected for service first, which is entered
the queue as the last. This service procedure is usually called as LIFO (Last
In – First Out). In programming the queue of such type is called a stack.
There is only one position in a stack available, called a top of a stack. This is
a position, where is the element, which entered the queue last in the course of
time. Let’s map a stack onto a suitable structure of data of C++.

Stack Realization through the Array
// File stack0.cpp
typedef char ETYPE;
class stack{
enum{EMPTY = –1};
char *s;
int max_len;
int top;
public:
stack(){s = new ETYPE[100];
max_len = 100;
top = EMPTY; // Stack is empty.
}
stack(int size){s = new ETYPE[size]; max_len = size;
top = EMPTY; }
stack(const ETYPE a[], int len){ // Initialization by the array.
max_len = len;
s = new ETYPE[max_len];

 190

for(int i = 0 ; i < max_len; i ++) s[i] = a[i];
top = max_len – 1; }
stack(const stack & a){ // Initialization by the stack.
s = new ETYPE[a.max_len];
max_len = a.max_len; top = a.top;
for(int i = 0 ; i < max_len; i ++) s[i] = a.s[i];
}
~ stack(){ delete s ;}
void reset(){ top = EMPTY; } // Reset of the stack
 // into the state EMPTY.
void push(ETYPE c){ s[++ top] = c ; } // Putting into stack.
ETYPE pop(){ return(s[top – –]); } // Extraction from the stack.
ETYPE top_show() const{ return(s[top]); }

/* Returns the element from stack, without its actual extracting. A modifier
“const” guarantees that this function will not change data members of
the objects of a stack-type */

int empty() const{ return(top = = EMPTY); }
 // Checks whether the stack is empty. Returns 1,
 // if the stack is empty, 0 – if it isn’t empty.
int full() const{ return(top = = max_len - 1); }
 // Checks whether there is empty space in the stack.
};
// The end of the file stack0.cpp

Now the following operators may appear in the program:

stack data(1000); // Stack creation for the length of 1000.
stack d[5] // A default constructor creates an array
 // of 5 stacks of 100 elements each.
stack w(“ABCD”, 4); // w.s[0] = ‘A’ . . . w.s[3] = ‘D’.
stack cop(w); // cop is the copy of stack w.

As an example, let’s consider the problem of string output in the reverse
order.

include <iostream.h>
include “stack0.cpp”
void main(){
char str[] = “Uncle Vasya!”;
stack s;
int i = 0;
cout << str <<‘\n’;
while(str[i])

 191

if(!s.full()) s.push(str[i++]);
else{cout << “Stack is filled!“ <<‘\n’; break;}
while(!s.empty())cout<<s.pop(); // Print in the reverse order.
cout <<’\n’; }

The result of the program performance

Uncle Vasya!
!aysaV elcnU

It is possible to solve this problem like this:
char str[] = “Uncle Vasya!”;
stack s(str, 12);
while(!s.empty()) cout<<s.pop;cout<<‘\n’;

Stack Realization through the Dynamic Chain of Links
Let the value of a pointer representing the stack as a whole, be the address

of the top of the stack. As in a case of one-way list, each link will contain
the pointer to the next element, and the “bottom” of the stack (i. e. the element,
placed into the stack as the earliest) contains the pointer NULL.
// File stack.cpp
typedef char ETYPE;
struct elem{
 ETYPE data;
 elem* next;
 elem(ETYPE d, elem* n){ data = d; next = n; }
 };
 class stack{
 elem*h; // The address of the top of the stack.
 public:
 stack(){h = NULL;} // A creation of the empty stack.
 stack(ETYPE a[], int len){ // Stack initialization
 // by the array.
 h = NULL;
 for(int i = 0; i< len; i++) h = new elem(a[i], h);
}
stack(stack &a){ // Stack initialization by the other stack.
elem *p,*q;
p = a.h; q = NULL;
while(p){ q = new elem(p->data, q);
if(q->next = = NULL) h = q;
else q->next->next = q;
p = p->next;
}

 192

q->next = NULL;
}
~stack(){reset();}
void push(ETYPE c){h = new elem(c, h);} // To place into the stack.
ETYPE pop(){
elem *q = h; ETYPE a = h->data; // To extract from the stack.
h = h->next; delete q;
return a;
}
ETYPE pop_show(){return h->data;} // To indicate the top.
void reset(){ while(h){ elem *q = h; h = h->next; delete q;
}
}
int empty(){ return h ? 0:1;}
};
// The end of the file stack.cpp

Let’s cite a problem, in the solution of which it is convenient to use a stack.
The string of letters is given in the file. It is required to check the balance

of the brackets in this string.
The balance is maintained if each of the following conditions is met:

1) for each opening bracket there is a corresponding closing bracket,
which is to the right of it; vice versa, for each closing bracket there is
a corresponding opening bracket to the left of it;

2) corresponding pairs of brackets of different types are correctly put into
each other.
Thus, in the string

{[(a*b)+(n-4)]/[7-sin(x)]+exp(d)}*s

the balance of brackets is maintained, and in the string
[{a+b[i]((x-sin(x))]d))

it is not maintained.
It is necessary to produce the message about the balance maintenance,

and also the beginning of the string up to the first in order imbalance of
brackets as a result.

For solution of the problem let’s form, first, an empty stack. Then
the letters of the string will be considered one after another. If a regular symbol
is an opening brackets, let’s place it to the stack. Then, if a regular symbol will
become a closing bracket, let’s select the last of the opening brackets, placed
into stack, and compare these brackets for their correspondence to each other.
If there is a correspondence, the effect must be the same as if these pairs of
brackets were absent from the string at all. If these brackets do not corre-
spond to each other, there is no meeting of the second condition of brackets

 193

balance. If at the moment of selecting the regular closing bracket from
the string the stack remained empty or if after completion of the look-up
the string, the stack turned out to be empty, the first condition of brackets
balance is not met.

Let’s label the stack as s, a processed symbol as sym, and an integer
variable, fixing the fact of the correspondence of the closing bracket from
the string with the opening bracket from the top of the stack – as b. A special
function accord(), which returns an integer value and deletes an opening
bracket from the stack, must be described for checking the correspondence of
the closing bracket, being the value of the variable sym, and the opening
bracket at the top of the stack.
include <fstream.h>
include <stdlib.h>
include “stack.cpp”
int accord(stack & s, char sym){
 char r = s.pop();
 switch(sym){
 case ‘)’ : return r = = ‘(’;
 case ‘]’ : return r = = ‘[’;
 case ‘}’ : return r = = ‘{’;
 default : break;
 }
}
void main(){
ifstream file(“a.dat”);
if(!file){
cout << “An error during opening the file a.dat!\n”; ex-
it(1); }
stack s;
char sym;
int i, n, b = 1;
while(file.peek() != EOF && b){
 file >> sym; cout <<sym;
 switch(sym){
 case ‘(’ : case ‘[’ : case ‘{’ : s.push(sym);
break;
 case ‘)’ : case ‘]’ : case ‘}’ :
 if(s.empty() || !accord(s, sym)) b = 0; break;
 }
 }
if(!b || !s.empty())
cout <<“\nThere is not a bracket balance!\n”;
else
cout <<“\nThe brackets are balanced\n”;
}

 194

24.6. BINARY TREES

Definition and Construction
A coupled graph, without any cycles, is called a tree graph. The tree is

called directed if the directions (input and output or in and out) are indicated
at each of its edges.

A binary tree is a directed tree, which:
1) has just one node, which contains no input edge; this node is called

a root of the binary tree;
2) there is one input edge in each of the nodes, except for the root;
3) there are no more than two output edges in each of the nodes.
Let’s represent binary trees in such a way that the root is higher than

other nodes.
For edges, coming out from any node, there are two possibilities – to

be directed to the left-downward and to the right-downward. In this case, if
single edge comes out of the node, the direction indication for the edge (left-
downward or right-downward) is not essential. At such agreements, there is
no use to indicate the directions on the edges – all the edges are oriented
downward.

When solving some problems, it is convenient to represent the set of
the objects as binary trees. Let’s consider the problem of coding of the non-
empty sequence of integer numbers.

Let the sequence of the integer numbers �(1), ..., �(n) and the function
F(x) of the integer argument, which possesses integer values, are given.
The value F(x) will be called a code of the number x. It is required to encode
the number data, that is to calculate the values F(a(1)),..., F(a(n)), and there
are frequent repetitions of the element values in the sequence a(1), ..., a(n).

To avoid repeated calculations of the same values, the table of
the codes, found earlier, must be constructed during coding. The structure of
the table must be of the sort that it is possible, firstly, to find the elements
with a given value quite quickly (or to determine its absence from the table),
and secondly, to add new elements into the table without any difficulties.

Presentation of the table in the form of a binary tree, in which nodes
are different elements from the given sequence and their codes, satisfies these
requirements.

The process of binary tree construction is realized in the following
way: the first number and its code form the root. The next number, which
should be coded, is compared to the number in the root, and if they are equal,
the binary tree is not growing and the code can be taken from the root.
If a new number is less than the first one, the edge is growing from the root to

 195

the left-downward, otherwise to the right-downward. This new number and
its code are placed into the formed node.

Let some binary tree has already been built and there is some number
x, which must be coded. First, let’s compare the number at the root with
the x. In case of equality, the search is completed and the code for x is
extracted from the root. Otherwise, it is necessary to turn to the left-
downward node if x is less than the number at the root, or to the right-
downward node if x is greater than considered one. Here, it needs to compare
x with the number at this node, etc. The process finishes in one in two cases:

1) the node, containing the number x, is obtained;
2) the node, which is necessary to turn to for performing the next step,

is absent from the tree.
In the first case, the code of the number x is extracted from the obtained

node. In the second one, it is necessary to calculate F(x) and to connect
the node, where x and F(x) are, to the tree. Let the sequence starts with
the numbers 8, 4, 13, 10, 14, 10. Then at first the tree will grow in the follow-
ing way (see Fig. 10a–e).

When number 10 appears as a sixth element of the sequence, a new node
is not added to the tree, and the value F(10) is extracted from the available node
(Fig. 10e).

Let’s define the following structure in the program of the sequence
code construction:
struct node{
int num, code;
node* left, * right;
node(int n, int c, node *l, node *r){
num = n; code = c;
left = l; right = r;}
};

 a b c d e

Fig. 10. The growing of the binary tree in the coding problem

 196

The objects of node type are the structures, where in each of the fields
left and right there is either NULL or the pointer to the memory space, allocated
by means of new for the object of node type. The tree can be represented as
an ensemble of the objects of node type, connected by the pointers. These
objects themselves will be the nodes of the tree, and the pointers to
the memory space, allocated for the objects of node type, will be the edges of
the tree. If in this case the field left (right) is NULL, it means that in the tree
there is no edge forwarded from the given node to the left-downward
(to the right-downward). Let’s depict a tree presentation in the computer
memory corresponding to Fig. 10e (Fig. 11).

Fig. 11. Presentation of the tree in the computer memory

Assignment v = v->left (v = v->right) means transition to the node,
located immediately to the left-downward (to the right-downward) from
the given one, if, of course, a corresponding field of the given top is not
NULL. Thus, it is possible to move from one node to another one top-down.
Introduction of the new node into the tree means the value alteration of
the fields of node* type of some nodes of the given tree.

Along with each tree a variable, which value is a pointer to the tree
root, is considered. If the tree does not have any nodes, this variable value
must be equal to a zero pointer NULL.

Let’s make the program, during which the sequence of natural num-
bers, placed in the input file NUM.DAT, is coded. For coding the file
COD.DAT is used, which components are integer numbers. The code F(k) of
the number k is considered to be a component of the file COD.DAT, which is
the k-th in the order.
struct node{
int num, code;
node* left, *right;
node(int n, int c, node* l, node* r){
num = n; code = c; left = l; right = r;}
};
int f(int);
void insert(int n, node* root){
node*temp = root;
node* old;
while(temp !=0){

 197

old = temp;
if(temp->num = = n){ cout << temp->code <<” ”; return; }
if(temp->num > n) temp = temp->left;
else temp = temp->right;
}
int k = f(n); cout << k << “ “;
if(old->num > n) old->left = new node(n, k, 0, 0);
else old->right = new node(n, k, 0, 0);
}
ifstream num(“num.dat“), cod(“cod.dat“);
int f(int k){ int i, j;
cod.seekg(0); // Determines the position of
 // reading from the file into 0.
for(i = 1; i <=k; i++) cod >> j;
return j;
}
void main(){
int n;
num >> n;
node* root = new node(n, f(n), 0, 0);
cout << root->code << “ “;
while(num.peek() != EOF){ num >> n;
insert(n, root);
}}

24.7. TABLES

The tree, built in the last example, is often called a searching tree.
The searching tree is sometimes used for table construction, where different
data are stored, usually in the form of structures. In this case they are usually
named for structure ordering, and for the effective search of the structure by
its name it is necessary to compare any two names and to determine which of
them is “greater”, and which is “less”. The structure name in the table is often
called a key of the structure. Integer numbers or the strings of the equal
length are often used as a key.

The following operations are defined over the table as a structure:
� searching in the table for the structure with a given key;
� including into the table a structure with a given key;
� excluding from the table a structure with a given key.
We will consider the table organization in the form of the binary tree.

In the example of coding, the numbers from the file NUM.DAT serve as a key.
In fact, the operations of searching in the tree and including an element into
the tree according to the given key have already been considered. Now let’s
design the operation of element with a given key excluding from the tree in

 198

the form of the function. The direct deletion of the structure is realized simply,
if a deleted node of the tree is final or only one edge comes out of it (Fig. 12).

Fig. 12. Element deletion from the tree,

when a deleted node is final or only one edge comes out of it

The difficulty is in node deletion, of which two edges come out. In this
case, it is necessary to find an appropriate edge of the tree, which can be in-
serted into the place of the deleted one, so as this appropriate edge must be
only moved. Such edge always exists: it is either the very right element of
the left subtree, or the very left element of the right subtree. In the first case,
it is necessary to pass into the next node along the left edge, and then to pass
into the regular nodes only using the right edges until the regular pointer
becomes equal to NULL. In the second case, vise versa, it is necessary to
pass into the next node along the right edge, and then to pass into the regular
nodes only using the left edges until the regular pointer becomes equal to
NULL. Such appropriate edges cannot have more than one branch. Below
(Fig. 13) the excluding of the node with the key 50 from the tree is sketched.

Fig. 13. Excluding the node with the key 50 from the tree

 199

Let’s write a program, realizing the searching tree with all the operations
by means of the class tree and the function insert that is slightly changed.
#include <fstream.h>
struct node{
int key, code;
node *left, *right;
node(int k, int c, node *l, node *r){ key = k; code = c;
left = l; right = r; }
};
int f(int);
class tree{
node *root;
void print(node *r); // Print starting with the pointer r.
public:
int insert(int);
void del(int);
tree(){ root = 0; } // Creation of the empty tree.
node *&find(node *&r, int key); // Searching the element
 // in the subtree
 // with the top r.
node *&find(int key){ // Searching throughout
 // the whole tree.
return(find(root, key));
}
void print(){ print(root); } // Print of the whole tree.
};
int tree::insert(int key){ // Returns the code.
node* t = root;
node* old;
int k;
if(root = = 0){ k = f(key);
root = new node(key, k, 0, 0);
return k;
}
while(t !=0){
old = t;
if(t-> key = = key){
return t->code; }
if(t->key > key) t = t->left;
else t = t->right; }
k = f(key);
if(old->key > key) old->left = new node(key, k, 0, 0);
else old->right = new node(key, k, 0, 0);
return k; }
node *&tree::find(node *&r, int key){ // Recursive function

 200

if(r = = 0) return r; // of the search in the subtree r.
if(r->key = = key) return r;
if(r->key > key) return(find(r->left, key));
else
return(find(r->right, key));
}
void del_el(node *&r, node *q){ // Recursive function
if(r->right = = 0){ // of the element deletion,
q->key = r->key; // to which q points to.
q->code = r->code;
q = r; r = r-> left;
} else
del_el(r->righ, q);
}
void tree::del(int key){ // Deletion of the element with the key key.
 node *&q = find(key); // Adjustment of the pointer q to the deleted
 // element.
if(q = = 0){ cout << “than the element with the key “ <<
key <<“ no\n“;
return; }
if(q->right = = 0) q = q->left;
else
if(q->left = = 0) q = q->right;
else
del_el(q->left, q);
}
void print(node *r){ // Global function of printing
 // of the element of the tree r.
cout << r->key << “ “ << r->code << “ “;
}
void tree::print(node *r){ // Recursive function of printing
if(r != 0){ // of the subtree, starting with r.
::print(r);
print(r->left);
print(r->right);
}
}
ifstream numb(“num.dat“), cod(“cod.dat“);
int f(int k){ int i, j;
cod.seekg(0);
for(i = 1; i <= k; i++) cod >> j;
return j;
}

void main(){

 201

cout << “--\n“;
int key;
tree t;
while(num.peek() != EOF){
numb >> key;
cout << t.insert(key) << “ “; // Insertion and printing
 // of the element,
} // or simply printing, if
cout << ‘\n’; // the element already exists.
t.print();
cout << “\n\n“;
key = 50;
t.del(key);
t.print();
cout << ‘\n’;
}

Let’s note that the recursive function del_el() is called, if two edges of
the tree are directed from the extracted top. It descends up to the very right
node of the left subtree of the extracted element *q, and then it replaces
the values of members key and code of *q with corresponding values key
and code of the node *r. After it the node, which r points to, can be excluded
by means of the operator r = r->left. It is possible to modify this function,
releasing the memory, occupied by the deleted node by means of the operator
delete.

 202

ADVICE
1. Use templates to express algorithms that apply to many argument types.
2. Use templates to express containers.
3. Provide specializations for containers of pointers to minimize code size.
4. Always declare the general form of a template before specializations.
5. Declare a specialization before its use.
6. Minimize a template definition’s dependence on its instantiation contexts.
7. Define every specialization you declare.
8. Consider if a template needs specializations for Cstyle strings and arays.
9. Parameterize with a policy object.
10. Use specialization and overloading to provide a single interface

to implementations of the same concept for different types.
11. Provide a simple interface for simple cases and use overloading and default

arguments to express less common cases.
12. Debug concrete examples before generalizing to a template.
13. Remember to export template definitions that need to be accessible from

other translation units.
14. Separately compile large templates and templates with nontrivial context

dependencies.
15. Use templates to express conversions but define those conversions very

carefully.
16. Use explicit instantiation to minimize compile time and link time.
17. Prefer a template over derived classes when runtime efficiency is at

a premium.
18. Prefer derived classes over a template if adding new variants without

recompilation is important.
19. Prefer a template over derived classes when no common base can be

defined.
20. Prefer a template over derived classes when built-in types and structures

with compatibility constraints are important.

 203

EXERCISES
1. Fix the errors in the definition of List (below) and write out C++ code

equivalent to what the compiler must generate for the definition of List
and the function f (). Run a small test case using your handgenerated code and
the code generated by the compiler from the template version. If possible, on
your system given your knowledge, compare the generated code.

template<classT> class List {
struct Link {
Link* pre;
Link* suc;
T val;
Link(Link* p, Link* s,const T&v):pre(p), suc(s), val(v) { }
} // syntax error: missing semicolon
Link* head;
public:
List() : head(7) { } // error: pointer initialized with int
List(const T&t) : head(new Link(0,o,t)) { }
 // error: undefined identifier ‘o’
// ...
void print�all() {for(Link* p=head; p; p=p–>suc)
 cout << p–>val << ´\n´; }
};

2. Write a singly linked list class template that accepts elements of any
type derived from a class Link that holds the information necessary
to link elements. This is called an intrusive list. Using this list, write
a singly linked list that accepts elements of any type (a nonintrusive
list). Compare the performance of the two list classes and discuss
the tradeoffs between them.

3. Write intrusive and nonintrusive doubly linked lists. What operations
should be provided in addition to the ones you found necessary to supply
for a singly linked list?

4. Define a sort() that takes its comparison criterion as a template argument.
Define a class Record with two data members count and price. Sort
a vector<Record> on each data member.

5. Write a program that reads (key, value) pairs and prints out the sum of
the values corresponding to each distinct key. Specify what is required
for a type to be a key and a value.

 204

6. Make the sum program from previous exercise work correctly for names
containing spaces; for example, “thumb tack.”

7. Construct an example that demonstrates at least three differences
between a function template and a macro (not counting the differences
in definition syntax).

8. Write readline() templates for different kinds of lines. For example
(item, count,price).

9. Rewrite the following class definition to make it a class template:
class example1 {
public:
 example1(double min, double max);
 example1(const double *array, int size);
 double& operator[](int index);
 bool operator==(const example1&) const;
 bool insert(const double*, int);
 bool insert(double);
 double min() const { return _min; };
 double max() const { return _max; };
 void min(double);
 void max(double);
 int count(double value) const;
private:
 int size;
 double *parray;
 double _min;
 double _max;
};

10. Given the following class template
template <class elemType>
class Example2 {
public:
 explicit Example2(elemType val = 0)
 : _val(val){}
 bool min(elemType value) { return _val < value; }
 void value(elemType new_val) { _val = new_val; }
 void print(ostream &os) { os << _val; }
private:
 elemType _val;
};
template<class elemType>
ostream& operator<<(ostream &os, const Example2<elemType> &ex)
 { ex.print(os); return os; }

what happens when we write the following?

 205

(a) Example2< Array<int>* > ex1;
(b) ex1.min(&ex1);
(c) Example2< int > sa(1024), sb;
(d) sa = sb;
(e) Example2< string > exs("Walden");
(f) cout << "exs: " << exs << endl;

11. Identify which, if any, of the following template class declarations
(or declaration pairs) are illegal.

(a) template <class Type>
 class Container1;
 template <class Type, int size>
 class Container1;

(b) template <class T, U, class V>
 class Container2;

(c) template <class C1, typename C2>
 class Container3 {};

(d) template <typename myT, class myT>
 class Container4 {};

(e) template <class Type, int *ptr>
 class Container5;
 template <class T, int *pi>
 class Container5;

(f) template <class Type, int val = 0>
 class Container6;
 template <class T = complex<double>, int v>
 class Container6;

 206

C++ GLOSSARY
A

abstract class – a class that can only be used as a base class for some other
class. A class is abstract if it has at least one pure virtual function.

access control – a C++ mechanism for prohibiting or granting access to
individual members of a class. See public, private, protected, and visibility.

access declaration – a way of controlling access to a specified member
of a base class when it is used in a derived class.

access specifier – a way of labelling members of a class to specify what
access is permitted. See public, private, and protected.

aggregate – an array or object of a class with no constructors, no private or
protected members, no base classes, and no virtual functions. See initializer
and initialization.

allocation – the process of giving memory space to an object. See dynamic
storage, static storage, and deallocation.

ANSI – acronym for American National Standards Institute, a standards body
currently standardizing C++.

argument – when calling a function, refers to the actual values passed to
the function. See parameter.

argument matching – the process of determining which of a set of functions
of a specified name matches given arguments in a function call.

ARM – acronym for the book The C++ Annotated Reference Manual, a C++
reference book by Ellis and Stroustrup.

array – an ordered and indexable sequence of values. C++ supports arrays
of a single dimension (a vector) or of multiple dimensions.

asm – C++ keyword used to specify assembly language in the middle of C++
code.

 207

assignment – the process of giving a value to a pre–existing object. See copy
constructor and initialization.

assignment operator – an operator for doing assignment. See also copy
constructor.

auto – a C++ keyword used to declare a stack–based local variable in a function.
This is the default and is normally not needed. See storage class.

B

base class – a class that serves as a base for a derived class to inherit members
from. See inheritance.

bit field – a member of a class that represents small integral values.

bitwise copy – to copy an object without regard to its structure or members.
See memberwise copy.

bool – C++ keyword used to declare a Boolean data type.

break – C++ keyword used to specify a statement that is used to break out of
a for or while loop or out of a switch statement.

browser – a software development tool used for viewing class declarations
and the class hierarchy. See programming environment.

built-in type – see fundamental type.

C

C – a programming language in widespread use. C++ is based on C.

C-style string – refers to a char* and to the contents of any dynamic storage
it may point at. C++ does not have true strings as part of the language proper,
though a standard string class library is envisioned as part of the ANSI
standardization effort.

call by reference – passing a pointer to an argument to a function. The function
can then change the argument value. See call by value.

 208

call by value – passing a copy of an argument to a function. The function
cannot then change the argument value. C and C++ use call by value argument
passing. But also see pointer and reference, also call by reference.

calling conventions – refers to the system-specific details of just how
the arguments to a function are passed. For example, the order in which they
are passed on the stack or placed in machine registers.

case – a C++ keyword used to denote an individual element of a switch
statement.

cast – a way of doing explicit type conversion via a cast operator. See new-style
cast, old-style cast.

catch – a C++ keyword used to declare an exception handler.

cerr – in C++ stream I/O, the standard error stream.

cfront – a C++ front end that translates C++ source code to C code, which
is then compiled via a C compiler. Originally developed by AT&T Bell Labs
in the mid-1980s.

char – a C++ keyword used to declare an object of character type. Often con-
sidered the same as a byte, though it is possible to have multi–byte characters.

cin – in C++ stream I/O, the standard input stream.

class – a C++ keyword used to declare the fundamental building block of
C++ programs. A class has a tag, members, access control mechanisms, and
so on.

class hierarchy – see base class, derived class.

class layout – the way in which data class members are arranged in a class
object.

class library – a set of related classes declared in header files and defined in
object files

class member – a constituent member of a class, such as a data declaration,
a function, or a nested class.

class template – a template used for generating class types.

 209

comments – C++ has C-style comments delimited with /* and */, and new
C++–style line-oriented comments starting with //.

compilation unit – see translation unit.

compiler – a software tool that converts a language such as C++ into
a different form, typically assembly language. See front end.

const – a C++ keyword used to declare an object as constant or used to
declare a constant parameter.

constant – a literal or variable declared as const.

constant expression – a C++ expression that can be evaluated by the compi-
ler. Used to declare bounds for an array among other things.

constructor – a function called when a class object comes into scope.
The constructor is used to initialize the object. See allocation, copy constructor,
and destructor.

const_cast – a C++ keyword used as a style of cast for explicitly casting
away const.

container class – a type of class or template that is used to hold objects
of other types. Lists and stacks would be examples of container classes.

continue – C++ keyword used with for and while statements to continue
the iteration at the top of the loop.

conversion – to convert from one data type to another.

copy constructor – a special type of constructor that is called when
an object is copied. See memberwise copy.

cout – in C++ stream I/O, the standard output stream.

D

data abstraction – the idea of defining a data representation (for example,
to represent a calendar date), and a set of operations to manipulate that
representation, with no public access to the representation except via
the operations. See class.

 210

deallocation – the processing of freeing memory space previously used by
an object. See allocation.

debugger – a tool for stepping through the execution of a program, examining
variables, setting breakpoints, and so on.

declaration – a C++ entity that introduces one or more names into a program.

declaration statement – a declaration in the form of a statement that may be
used in C++ where statements would normally be used.

declarator – a part of a declaration that actually declares an identifier name.
A declarator appears after a sequence of type and storage class specifiers.

default argument – an optional argument to a function. A value specified
in the function declaration is used if the argument is not given.

delete operator – C++ keyword and operator used to delete dynamic
storage.

delete[] operator – See delete operator. Used to delete array objects.

demotion – converting a fundamental type to another fundamental type, with
possible loss of precision. For example, a demotion would occur in converting
a long to a char.

deprecate – to make obsolete (a language feature).

derived class – a class that inherits members from a base class. See inherit-
ance.

destructor – a function called when a class object goes out of scope.
It cleans up the object, freeing resources like dynamic storage. See
constructor and deallocation.

dialect – refers to a variant of a programming language, used by a subset of
the software community. Can also refer to a particular style of programming.

do – see while.

dominance – refers to the case where one name is used in preference to another.
See multiple inheritance.

double – C++ keyword used to declare a floating point type.

 211

dynamic storage – refers to memory allocated and deallocated during
program execution using the new operator and delete operator.

dynamic_cast – a C++ keyword that specifies a style of cast used with run-time
type information. Using dynamic_cast one can obtain a pointer to an object of
a derived class given a pointer of a base class type. If the object pointed to
is not of th specified derived class, dynamic_cast will return 0.

E

else – C++ keyword, part of the if statement.

embedded system – a low-level software program that executes without
much in the way of run-time services, such as those provided by an operating
system.

encapsulation – a term meaning to wrap up or contain within. Used in relation
to the members of a class. See access control.

enum – C++ keyword used to declare an enumeration.

enumeration – a set of discrete named integral values. See enum.

enumerator – a member of an enumeration.

exception – a value of some type that is thrown. See exception handling.

exception handler – a piece of code that catches an exception. See catch and
try block.

exception handling – the process of signalling that an exceptional condition
(such as divide by zero) has occurred. An exception is thrown and then
caught by an exception handler, after stack unwinding has occurred.

explicit – a C++ keyword used in the declaration of constructors to indicate
that conversion of an initializer should not take place.

expression – a combination of constants, variables, and operators used to
produce a value of some type.

 212

expression statement – a statement that is an expression, such as a function
call or assignment.

extern – a C++ keyword used to declare an external name.

external name – a name available to other translation units in a program.
See linker and global variable.

F

false – C++ keyword used to specify a value for the bool type.

finalization – to declare that an object or resource is no longer needed, and
initiate cleanup of that object. See initialization.

float – a C++ keyword used to declare a floating point type.

floating point – non-integral arithmetic. A floating-point number is typically
represented as a base–two fraction part and an exponent.

for – a C++ keyword used to specify an iteration or looping statement.

forward class – a class for which only the tag has been declared. Such
a class can be used where the size of the class is not needed, for example
in pointer declarations.

free store – see dynamic storage.

friend – a type of declaration used within a class to grant other classes
or functions access to that class. See access control.

front end – often refers to the early stages of C++ compilation, such as parsing
and semantic analysis.

function – a C++ entity that is a sequence of statements. It has its own scope,
accepts a set of argument values, and returns a value on completion.

function template – a template used for generating function types.

fundamental type – a type built in to the C++ language. Examples would be
integral types like int and pointer types such as void*.

 213

G

garbage collection – a way of automatically managing dynamic storage such
that explicit cleanup of storage is not required. C++ does not have garbage
collection. See new operator and delete operator.

generic programming – see template.

global name – a name declared at global scope.

global namespace – the implicit namespace where global variables reside.

global scope – see global namespace.

global variable – a variable that is accessible throughout the whole program,
whose lifetime is that of the program.

goto – C++ keyword, used to transfer control within a C++ function. See label.

grammar – a way of expressing the syntax of a programming language, to
describe exactly what usage is valid and invalid.

H

header – see header file.

header file – a file containing class declarations, preprocessor directives, and
so on, and included in a translation unit. It is expanded by the preprocessor.

heap storage – see dynamic storage.

helper class – a class defined as part of implementing the details of another
class.

hiding – see encapsulation.

 214

I

if – C++ keyword used in conditional statements.

implementation–dependent behavior – not every aspect of a programming
language like C++ is specified in a language standard. This term refers to
behavior that may vary from implementation to implementation.

implicit conversion – a conversion done as part of another operation, for
example converting a pointer type to bool in an if statement.

inheritance – the process whereby a derived class inherits members from
a base class. A derived class will also add its own members to those of
the base class.

initialization – to give an initial value to an object. See constructor and
assignment.

initialize – the process of initialization.

initializer – a value or expression used to initialize an object during
initialization.

inline – C++ keyword used to declare an inline function.

inline function – a function that can be expanded by a compiler at the point
of call, thereby saving the overhead time required to call the function.

instantiation – see template instantiation.

int – a C++ keyword and fundamental type, used to declare an integral type.

integral conversion – the process by which an integer is converted to signed
or unsigned.

integral promotion – the process by which a bool, char, short, enumerator, or
bit field are converted to int for use in expressions, argument passing, and so on.

K

keyword – a reserved identifier in C++, used to denote data types, statements
of the language, and so on.

 215

L

label – a name that is the target of a goto statement.

layout – refers to the way that objects are arranged in memory.

library – a set of object files grouped together. A linker will search them
repeatedly and use whatever object files are needed. See class library.

lifetime – refers to the duration of the existence of an object. Some objects
last for the whole execution of a program, while other objects have a shorter
lifetime.

linkage – refers to whether a name is visible only inside or also outside
its translation unit.

linker – a program that combines object files and library code to produce
an executable program.

literal – a constant like 1234.

local – typically refers to the scope and lifetime of names used in a function.

local class – a class declared local to a function.

local variable – a variable declared local to a function.

long – C++ keyword used to declare a long integer data type.

long double – a floating point type in C++.

lvalue – an expression referring to an object. See rvalue.

M

macro – a preprocessor feature that supports parameter substitution and
expansion of commonly-used code sequences. See inline function.

mangling – see name mangling.

 216

member – see class member and namespace member.

member function – a function that is an element of a class and that operates
on objects of that class via the this pointer to the object.

memberwise copy – to copy an object a member at a time, taking into
account a copy constructor for the member. See bitwise copy.

method – see member function.

mixed-mode arithmetic – mixing of integral and floating point arithmetic.

module – see translation unit.

multiple inheritance – a derived class with multiple base classes. See
inheritance.

mutable – C++ keyword declaring a member non-constant even if it is
a member of a const object.

N

name – an identifier that denotes an object, function, a set of overloaded
functions, a type, an enumerator, a member, a template, a namespace, or
a label.

name lookup – refers to taking a name and determining what it refers to,
or its value, based on the scope and other rules of C++.

name mangling – a way of encoding an external name representing a function
so as to be able to distinguish the types of its parameters. See overload.

name space – a grouping of names.

namespace – a C++ keyword used to declare a namespace, which is a collection
of names such as function declarations, classes, and so on.

namespace alias – an alias for a namespace, that can be used to refer to
the namespace.

namespace member – an element of a namespace, such as a function, typedef,
or class declaration.

 217

nested class – a class declaration nested within another class.

new handler – a function established by calling set_new_handler. It is called
when the new operator cannot obtain dynamic storage.

new operator – C++ keyword and operator used to allocate dynamic storage.

new-style cast – a cast written in functional notation.

new[] operator – see new operator. Used to allocate dynamic storage for
array objects.

NULL – a special constant value that represents a null pointer.

null pointer – a pointer value that evaluates to zero.

O

object – has several meanings. In C++, often refers to an instance of a class.
Also more loosely refers to any named declaration of a variable or other en-
tity that involves storage.

object file – in C or C++, typically the output of a compiler. An object file
consists of machine language plus an external name list that is resolved by
a linker.

object layout – refers to the ordering of data members within a class.

object-oriented – this term has various definitions, usually including
the notions of derived classes and virtual functions. See data abstraction.

old-style cast – a cast written in C style, with the type in parentheses before
the value being casted.

OOA / OOD – acronym for object-oriented analysis and object-oriented
design, processes of analyzing and designing object-oriented software.

OOP – acronym for object-oriented programming.

operator – a builtin operation of the C++ language, like addition, or
an overloaded operator corresponding to a member function of a class. See
function and operator overloading.

 218

operator overloading – to treat a C++ operator like << as a function and
overload it for particular parameter types.

overload – to specify more than one function of the same name, but with
varying numbers and types of parameters. See argument matching.

overload resolution – see argument matching.

P

parameter – refers to the variables passed into a function. See also
argument.

parameterized type – see template.

parser – see parsing.

parsing – the process by which a program written in some programming
language is broken down into its syntactic elements.

placement – the ability to define a variant of the new operator to take
an additional argument that specifies what storage is to be used.

pointer – an address of an object.

pointer to data member – a pointer that points at a data member of a class.

pointer to function – an address of a function or a member function.

pointer to member – see pointer to data member, pointer to function.

polymorphism – the ability to call a variety of member functions for a given
class object using an identical interface in each case. See virtual function.

postfix – refers to operators that appear after their operand. See prefix.

pragma – a preprocessor directive used to affect compiler behavior in
an implementation-defined way.

prefix – refers to operators that appear before their operand. See postfix.

 219

preprocessing – a stage of compilation processing that occurs before
the compiler proper is invoked. Preprocessing handles macro expansion among
other things. In C++ use of const and inline functions makes preprocessing less
important.

preprocessor – see preprocessing.

private – a C++ keyword used to specify that a class member can only be
accessed from member functions and friends of the class. See access control,
protected, and public.

programming environment – a set of integrated tools used in developing
software, including a compiler, linker, debugger, and browser.

promotion – see integral promotion.

protected – a C++ keyword used to specify that a class member can only be
accessed by member functions and friends of its own class and by member
functions and friends of classes derived from this class. See private, public,
and access control.

PT – see parameterized type.

public – a C++ keyword used to specify that class members are accessible
from any (non–member) function. See access control, protected, and private.

pure virtual function – a virtual function with a "= 0" initializer. See
abstract class.

Q

qualification – to prefix a name with the name of a class or namespace.

R

recursive descent parser – see parsing. This is a type of parsing used in
C++ compilers. It is more flexible than the older Yacc approach often used in
C compilers.

 220

reference – another name for an object. Access to an object via a reference is
like manipulating the object itself. References are typically implemented as
pointers in the underlying generated code.

register – C++ keyword used as a hint to the compiler that a particular local
variable should be placed in a machine register.

reinterpret_cast – a C++ keyword used as a style of cast for performing
unsafe and implementation dependent casts.

repository – a location where an instantiated template class can be stored.
See template instantiation.

resolution – see overload resolution.

resumption – a style of exception handling where program execution continues
from the point where an exception is thrown. C++ uses the termination style.

return – C++ keyword used for returning values from a function.

return value – the value returned from a function.

RTTI – acronym for run-time type information.

run-time – refers to actions that occur during program execution.

run-time efficiency – refers to the issue of whether basic C++ operations
will cause a performance penalty when the program is run.

run-time type information – a system for determining at run–time what
the type of an object is.

rvalue – a value that may appear on the right–hand side of an assignment.

S

scope – the region of a program where a name has visibility.

semantic analysis – a stage that a compiler goes through after parsing.
In this stage the meaning of the program is analyzed.

semantics – the meaning of a program, as opposed to its syntax.

 221

separate compilation – refers to the process by which each translation unit
of a program is compiled separately to produce an object file. The object files
are then combined by a linker.

set_new_handler – a function used to establish a new handler.

short – a C++ fundamental type used to declare small integers.

signed – C++ keyword used to indicate a signed data type.

sizeof – C++ keyword for taking the size of an object or type.

smart pointer – an object that acts like a pointer but also does some process-
ing whenever an object is accessed through them. The C++ operator –> can
be overloaded to achieve this effect.

specialization – a special case of a template defined for particular template
argument types.

stack frame – refers to a region of storage on the hardware stack, used to
store information such as local variables for each invocation of a function.

stack unwinding – see exception handling. When an exception is thrown,
each active stack frame must be removed from the stack until an exception
handler is found. This process involves calling a destructor as appropriate
for each local object in the stack frame, and so on.

standard conversion – refers to standardized conversions between types,
such as integral conversion.

standard library – see library. The C++ standard library includes much of
the C standard library along with new features such as strings and container
class support.

statement – the parts of a program that actually do the work.

static – see static member, static object, and static storage.

static member – a class member that is part of a class for purposes of access
control but does not operate on particular object instances of the class.

static object – an object that is local to a function or to a translation unit and
whose lifetime is the life of the program.

 222

static storage – storage that persists throughout the life of the program. See
static object and dynamic storage.

static type checking – refers to type checking that occurs during compilation
of a program rather than at run-time.

static_cast – a C++ keyword specifying a style of cast meant to replace
old-style C casts.

storage class – see auto and static.

stream – an object used to represent an input or output channel. See stream
I/O.

stream I/O – a C++ I/O library using overloaded operators << and >>.
It has more type safety than C-style I/O.

string – see C-style string.

struct – a C++ class in which all the class members are by default public.

switch – C++ keyword denoting a statement type, used to dispatch to one of
several sequences of statements based on the value of an expression.

symbol table – a compiler structure used to record type information about
program names. The symbol table is used to generate compiler output.

syntax – the rules that govern how C++ expressions, statements, declarations,
and programs are constructed. See grammar and semantics.

systems programming – refers to low-level programming, for example writing
I/O drivers or operating systems. C and C++ are suitable languages for this
type of programming.

T

tag – a name given to a class, struct, or union.

template – a parameterized type. A template can accept type parameters that
are used to customize the resulting type.

 223

template argument – an actual value or type given to a template to form
a template class. See argument.

template class – a combination of a template with a template argument list
via the process of template instantiation.

template declaration – a declaration of a template with its associated tem-
plate parameter list.

template definition – an actual definition of a template or one of its
members.

template instantiation – the process of combining template arguments with
a template to form a template class.

template parameter – a value or type declared to be passed in to a template.
See parameter.

temporary – an unnamed object used during the evaluation of an expression
to store intermediate values.

termination – a style of exception handling where control does not return to
the point where an exception is thrown. C++ uses this style of exception handling.

this – C++ keyword used in a member function to point at the object currently
being operated on.

throw – C++ keyword used to throw (initiate) an exception. See exception
handling.

translation limit – a limit on the size of a source program that a compiler
will accept.

translation unit – a source file presented to a compiler with an object file
produced as a result.

trigraph – a sequence of characters used to represent another character, for
example to represent a character not normally found in the character set.

true – C++ keyword used to specify a value for the bool type.

 224

try – C++ keyword used to delimit a try block.

try block – a statement that sets up a context for exception handling. A sub-
sequent throw from a function called from within the try block will be caught
by the exception handler associated with the try block or by a handler further
out in the chain of handlers.

type – a property of a name that determines how it can be used. For example,
an object of a class type cannot be assigned to an integer variable.

type checking – see type system.

type conversion – converting a value from one type to another, for example
via a constructor.

type safety – see type system.

type system – a system of types and operations on objects of those types.
Type checking is done to ensure that the operations for given types are
appropriate, for example that a function is called with arguments of
the appropriate types.

type–safe linkage – refers to the process of encoding parameter type
information in external names so that the linker will reject mismatches
between the use and definition of functions. See name mangling.

typedef – a C++ keyword used to declare an alias for a type.

typeid – an operator that returns an object describing the type of the operand.
See run-time type information.

U

union – a structure somewhat like a class or struct, except that individual
union members share the same memory. See class layout.

unsigned – a C++ keyword used to declare an integral unsigned fundamental
type.

unwinding – see stack unwinding.

 225

user-defined conversion – a member function that supports conversion from
an object of class type to any target type.

user-defined type – a class or typedef.

using declaration – a declaration making a class or namespace name available
in another scope.

using directive – a way of making available to a program the members of
a namespace.

using namespace – see using directive.

V

variable – an object that can be assigned to.

vector – a one-dimensional array.

virtual base class – a base class where a single subobject of the base class
is shared by every derived class that declared the base class as virtual.

virtual function – a member function whose interpretation when called
depends on the type of the object for which it is called; a function for
an object of a derived class will override a function of its base class.

virtual table – a lookup table used for dispatching virtual function calls.
A class object for a class containing virtual functions will contain a pointer to
a virtual table.

visibility – refers to the processing of doing name lookup without regard to
whether a name is accessible. Once a name is found, then type checking and
access control are applied.

void – a C++ keyword used to declare no type. It has special uses in C++, for
example to declare that a function has no parameter list. See also void*.

void* – a pointer to a void type. Often used as the lowest common denominator
type of pointer in C and C++.

 226

volatile – a type qualifier used to indicate that an object may unpredictably
change value (for example if it is mapped to a machine register) and thus
should not have accesses to it optimized.

W

wchar_t – C++ keyword to declare a fundamental type used for handling
wide characters.

while – C++ keyword used to declare an iteration statement.

 227

APPENDIX

PUNCTUATION MARKS AND SPECIAL SYMBOLS

Symbol Name Symbol Name
, comma { left curly bracket
. point } right curly bracket
; semicolon < greater
: colon > less
? question mark [left square bracket
‘ apostrophe] right square bracket
! exclamation mark # number or grid
| vertical bar % percent
/ slash & ampersand
\ backslash ^ logical NOT
~ tilde - minus
* asterisk = equals sign
(left round bracket “ quotation mark
) right round bracket + plus

 228

CONTROL SEQUENCES

Control sequence Name
\a Ring
\b Step back
\t Horizontal tabulation
\n Line feed
\v Vertical Tab
\r Carriage return
\f Form feed
\" Quotation marks
\' Apostrophe
\\ Backslash

 229

DATA TYPES

Type Length, bytes Range Decimal digits
signed char 1 –128 … 127 –
unsigned char 1 0 … 255 –
int 2 –32 768 … 32 767 –
unsigned int 2 0 … 65 535 –
long 4 0 … 4 298 876 555 –
float 4 3.4e–38 ... 3.4e38 7
double 8 1.7e–308 ... 1.7e308 15
long double 10 3.4e–4932 ... 1.1e4932 19

 230

OPERATORS PRECEDENCE AND THE EXECUTION ORDER

Priority Operator Note Execution order
1 :: -> .

[]
()
()

context resolution, extrac-
tion
array indexing
function call
type conversion

left-to-right

left-to-right
left-to-right
left-to-right

2 ++ -- ~ !

– +
&
*
new, delete
sizeof

increment, decrement,
complement, not
unary - unary +
address of
pointer resolving
create and destroy
size of object

right-to-left

right-to-left
right-to-left
right-to-left
right-to-left
right-to-left

3 *
/
%

multiplication
division
remainder

left-to-right
left-to-right
left-to-right

4 ->* .* extraction left-to-right
5 +

–
binary addition
binary subtraction

left-to-right
left-to-right

6 << >> shifts left-to-right
7 < <= > => comparison left-to-right
8 == != equal not equal left-to-right
9 & bitwise AND left-to-right
10 ^ XOR (excluding OR) left-to-right
11 | bitwise OR left-to-right
12 && AND-logical left-to-right
13 || OR-logical left-to-right
14 ? : ternary operator right-to-left
15 = *= /= %= += so

on
assignment operators right-to-left

16 , sequencing left-to-right

 231

C++ KEYWORDS

and and_eq asm auto bitand bitor
bool break case catch char class
compl const const_cast continue default delete
do double dynamic_cast else enum explicit
export extern false float for friend
goto if inline int long mutable
namespace new not not_eq operator or
or_eq private protected public register reinterpret_cast
return short signed sizeof static static_cast
struct switch template this throw true
try typedef typeid typename union unsigned
using virtual void volatile wchar_t while
xor xor_eq

 232

STANDARD FUNCTIONS

abort fmod isupper mktime strftime wcrtomb
abs fopen iswalnum modf strlen wcscat
acos fprintf iswalpha perror strncat wcschr
asctime fputc iswcntrl pow strncmp wcscmp
asin fputs iswctype printf strncpy wcscoll
atan fputwc iswdigit putc strpbrk wcscpy
atan2 fputws iswgraph putchar strrchr wcscspn
atexit fread iswlower puts strspn wcsftime
atof free iswprint putwc strstr wcslen
atoi freopen iswpunct putwchar strtod wcsncat
atol frexp iswspace qsort strtok wcsncmp
bsearch fscanf iswupper raise strtol wcsncpy
btowc fseek iswxdigit rand strtoul wcspbrk
calloc fsetpos isxdigit realloc strxfrm wcsrchr
ceil ftell labs remove swprintf wcsrtombs
clearerr fwide ldexp rename swscanf wcsspn
clock fwprintf ldiv rewind system wcsstr
cos fwrite localeconv scanf tan wcstod
cosh fwscanf localtime setbuf tanh wcstok
ctime getc log setlocale time wcstol
difftime getchar log10 setvbuf tmpfile wcstombs
div getenv longjmp signal tmpnam wcstoul
exit gets malloc sin tolower wcsxfrm
exp getwc mblen sinh toupper wctob
fabs getwchar mbrlen sprintf towctrans wctomb
fclose gmtime mbrtowc sqrt towlower wctrans
feof isalnum mbsinit srand towupper wctype
ferror isalpha mbsrtowcs sscanf ungetc wmemchr
fflush iscntrl mbstowcs strcat ungetwc wmemcmp
fgetc isdigit mbtowc strchr vfprintf wmemcpy
fgetpos isgraph memchr strcmp vfwprintf wmemmove
fgets islower memcmp strcoll vprintf wmemset
fgetwc isprint memcpy strcpy vsprintf wprintf
fgetws ispunct memmove strcspn vswprintf wscanf
floor isspace memset strerror vwprintf

 233

REFERENCES
1. Krogstie J., Halpin T., and Siau F. Information Modeling Methods and

Methodologies. – Hershey, PA: Idea Group Publishing, 2005. – 356 p.
2. Bergeron, B.P. Essentials of knowledge management. – Hoboken, NJ:

John Wiley & Sons, 2003. – 225 p.
3. Knowledge Management: Current Issues and Challenges / E. Coakes (ed). –

Idea Group Publishing, 2003. – 303 p.
4. Oualline S. Practical C++ Programming, Second Edition. – O'Reilly,

2003.– 574 p.
5. Stroustrup B. The C++ Programming Language, Third Edition. – Addi-

son-Wesley, 1997. – 1022 p.
6. Lippman S. B., Lajoie J. C++ Primer, 4rd Edition. – Addison-Wesley,

2005. – 912 p.
7. Press W. H., Teukolsky S. A., Vetterling W. T. Numerical recipes in

C++: the art of scientific computing. – New York: Cambridge University
Press, 2002. – 318 p.

8. Programming languages – C++. International Standard ISO/IEC
14882:1998(E). – New York: American National Standards Institute,
1998. – 776 p.

9. Cline M. P. C++ FAQs, 2nd Edition. – Addison-Wesley, 1998. – 624 p.
10. Davis S. R. C++ for Dummies. – For Dummies, 2004. – 432 p.
11. Sutter. H. Exceptional C++: 47 Engineering Puzzles, Programming Prob-

lems, and Solutions.– Addison Wesley, 1999. – 240 p.
12. Dale N.B. C++ plus Data Structure. Sudbury: Jones and Bartlett Publish-

ers, 2003. – 820 p.
13. Josuttis N.M. C++ Standard Library: A Tutorial and Reference, The. –

Addison Wesley, 1999. – 832 p.
14. Vandevoorde D., Josuttis N.M. C++ Templates: The Complete Guide. –

Addison Wesley, 2002. – 552 p.
15. Alexandrescu A. Modern C++ Design: Generic Programming and Design

Patterns Applied. – Addison Wesley, 2001. – 352 p.

 234

16. Gromov G.R. The essays of information technology [in Russian]. – M.:
InfoArt, 1990. – 254 p.

17. Introduction into the information business: Textbook [in Russian] / Edited
by V.P. Tikhomirov, A.V. Khoroshilov. – M.: Finansy i Statistika, 1996. –
320 p.

18. Tsimbal A.A., Maiorov A.G., Kozodoev M.A. Turbo C++: Language and
Application [in Russian]. – M.: “Jan I Ltd”, 1993. – 512 p.

19. Klimova L.M. Fundamentals of Hands-on Programming in C++ [in Rus-
sian]. – M.: Prior, 1999. – 464 p.

20. Karpov B., Baranova. T. C++: Special Reference Manual [in Russian].
SPb: Piter, 2001. – 480 p.

21. http://ru.wikipedia.org/wiki/C++; http://en.wikipedia.org/wiki/C++
22. http://www.cplusplus.com
23. http://www.cprogramming.com
24. http://www.intap.net/~drw/cpp
25. http://cyberdiem.com/vin/learn.html
26. http://www.oonumerics.org/blitz
27. http://www.boost.org
28. http://www.awprofessional.com/meyerscddemo/demo/magazine/index.htm
29. http://anubis.dkuug.dk/jtc1/sc22/wg21/docs/cwg_toc.html
30. http://www.josuttis.com/libbook/auto_ptr.html
31. http://www.osl.iu.edu/research/mtl
32. http://www.cantrip.org/traits.html
33. http://www.robertnz.com/nm_intro.htm
34. http://www.pooma.com
35. http://www.research.att.com/~bs/glossary.html
36. http://www.erwin-unruh.de/primorig.html
37. http://osl.iu.edu/~tveldhui/papers
38. http://reality.sgi.com/austern/std-c++/faq.html
39. http://www.dinkumware.com/refxcpp.html
40. http://www.cyberport.com/~tangent/programming/stl/resources.html

235

Educational Edition

������� 	�
����������� �����������

��	����� ������ A����
�����
����
�� ��
���� �����
����

�������	
��	 �	�������

� ����	 � ��
��������

������� 	������
������
����� �������� 	�
������������ ������������, 2008

�� ���
������ !�"��

Science Editor
Doctor of Physics and Mathematics,
Professor V. K. Pogrebnoy

Typesetting V. P. Arshinova
Cover design O. Yu. Arshinova
 O. A. Dmitriev

Signed for the press 03.09.2008. Format 60х84/16. Paper “Snegurochka”.
Print XEROX. Arbitrary printer’s sheet 13.67. Publisher's signature 12.36.

Order 79•. Size of print run •00.

Tomsk Polytechnic University
Quality management system

of Tomsk Polytechnic University was certified by
NATIONAL QUALITY ASSURANCE on ISO 9001:2000

. 30, Lenina Ave, Tomsk, 634050, Russia

