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1. INTRODUCTION 

Men live in the world of models created by his own, the construction 
of which is not just a whim but the way to perceive the reality. We got 
used to it so much that regular modeling is considered to be natural. The 
models able to render qualitative characteristic of the studied process are 
called qualitative. More complicated models are quantitative ones with the 
help of which one may predict precise numerical values of phenomenon 
characteristics. Weather casting based on national superstitions is a quali-
tative one. Meanwhile, those used at weather casting stations and meant 
to predict numerical values of weather characteristics (such as tempera-
ture, wind velocity, etc.) refer to quantitative models. Mathematical model 
is the total of equations (algebraic, differential, integral), describing proc-
esses in the phenomenon being modeled. Each equation of such type is al-
ready a lower level process model on its own. Models of more complex 
phenomena are constructed, as a rule, from simple models. Mathematical 
modeling results in range of formulae (in case of successful equation ana-
lytical solution finding), which allow to calculate the characteristics of the 
process modeled and tables for their values (in case of the analytical solu-
tion is impossible to be found). Frequently, one comes across with the last 
case which implies some computational procedures so that to get the solu-
tion being tabled. These procedures are called numerical models. The fea-
ture of such models is the real possibility to get quite approximate solu-
tion. It is caused by computing machines discontinuity, the lack of storage, 
processing speed, etc. Our purpose is to learn how to research the algo-
rithm for finding a model equation numerical solution. 

By means of mathematics, motion of lower number particles systems is 
basically given through ordinary differential equations. In case the number of 
particles is greater, the separate particles motion observation is almost impos-
sible. It becomes more convenient to consider particles system as continuum 
environment and characterize it by the average values, such as density, tem-
perature at the point, etc. 

Continuum environment mathematical models lead to partial derivative 
equations, to which the averages mentioned above are satisfactory. For ex-
ample, temperature changes in motionless body is expressed by means of 
thermal conductivity equation  
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 � �( , , ) div ( , , ) grad  ( , , )uc u r t k u r t u q u r t
t

�
� � � �
�

, (1.1) 

here u is temperature, c is thermal capacity, k is thermal conductivity coeffi-
cient and q is density of thermal sources. 

The partial derivative equations are attached with problems on gas dy-
namics, thermal conductivity, radioactive transmission, neutron diffusion, 
theory of elasticity, electromagnetic fields, transport processes in gases, 
quantum mechanics and many others. 

As for problems of physics the independent variables are presented by 
t – time, r – position data and some others (e. g. v  – particles velocity in dif-
fusion problems). It is demanded to find variation of G(t, r, v , …) independ-
ent variables in some domain. The complete mathematical problem contains 
differential equation, as well as additional conditions to point out the only so-
lution within its range for differential equation. The additional conditions are 
usually given on the boarder of G domain.  

If time t is one of variables, more often a domain becomes 
 0( , (G t r g r t T� 	,...) ,...) [ , ] , (1.2) 

The solution is found in some spatial domain g(r, …) on duration seg-
ment 0t t T
 
 . Thus, the conditions given at t = t0 are called initial and those 
given at the �(r) border of g(r) domain are boundary or edge data. 

A problem with initial conditions only is called Cauchy problem. For 
example, one can set a problem for thermal conductivity equation in non 
bounded space with initial conditions as 
 0( , )  ( )u r t r� � .  (1.3) 

If �(r) is a bounded piecewise continuous function, the solution of the 
equations (1.1) and (1.3) is the only one in bounded functions group (when 
the equation coefficients are limited somehow). 

Problem with initial and boundary conditions is a mixed edge or non 
stationary edge problem. The additional conditions for equation (1.1) may 
become as follows: 
 0 1 0( , )  ( ),    ( ),    ( , )  ( , ),    .u r t r r g r u r t r t t t T�� �  � � 
 
   (1.4) 

Other boundary conditions are feasible for given equation, those con-
taining normal derivative of solution. 

There are problems in which G(t, r) becomes quite different. The mere 
example is a problem with characteristics conditions appearing while there is 
studying of drying process, gas trapping and many other processes. 

While researching established conditions or stationary processes (not 
depending on time) in continuum environment, some mathematical problems 
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independent from time are set. Their solution is searched for in g(r) domain, 
meanwhile the additional conditions are boundary. These are edge problems. 

In this tutorial we take into consideration only correctly identified prob-
lems, where for some class of initial and boundary data where a solution ex-
ists, the sole one, and dependent on these data continuously. One should pre-
sume the continuous dependency of solution on equation coefficients. 

Most of problems mentioned above can be expressed by operator form. 
Accordingly, thermal conductivity equation ,tT T Q� � �� �  wave equation 

,tt xxU U� � ��  a diffusion equation of some value C with velocity v along the 
axis x 0t xC C� � � �v  can be written as 

( ) ;
( ) 0;
( ) 0.

t

tt xx

t x

T Q
U

C

� � �� �

� � �� �

� � � �v
 

All those in brackets are operators. In case of designating it as A, these 
equations become as follows: 

 

1 1

2 2

3 3

A ,   A ;
A 0,   A ;
A 0,   A .

t

tt xx

t x

T Q
U
C

� � � � ��

� � � � � �

� � � � �v
 

Operator equation Af g�  is possible to be interpreted in different ways. 
So, the function f under A becomes a function g. Another interpretation is 
possible (this one is to be followed). Assuming there are two sets of F and G 
functions and f is an element of F set as g is an element of G set. The 
operator A represents the compliance between the sets F and G. Taking into 
account that the subset g from the domain G and the type of the operator A 
are known, we are to find the subset f from the domain F. 

Linear operators properties and other necessary principles from linear 
algebra and functional analysis are given in Appendix.  
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2. SOLVING THE EDGE PROBLEMS 
FOR ORDINARY DIFFERENTIAL EQUATIONS  

AND SYSTEMS 

An edge problem is the problem of finding a particular solution of the 
system 

 1 2( ) ( , , , , )k k p
d U x f x U U ... U
dx

� , 1 k p
 
   (2.1) 

on the segment a x b
 
 , whereas additional conditions are imposed on 
( )kU x  function values at more than one point of this segment. 

Additional conditions may join the values of several functions to one 
another; then for a system (2.1) of order p they become as follows: 

 1 2( ( ), ( ),..., ( )) ,

1 ,      .
k k k p k k

k

U U U

k p a b

� � � � � �


 
 
 � 

  (2.2) 

Generally, there are many problems with more complicated conditions. 
Let’s notice that p-order equation  

 
( ) ( 1)( ) ( , ( ), ( ),..., ( )),p py x F x y x y x y x���   (2.3) 

where y(p)(x) is the derivative of order k, k = 0, 1, …, p, y(0)(x) = y(x), can be 
turned into a system of differential equations (2.1) by variables replacement: 

 

0

1

( 2)
2

( 1)
1

( ) ( );
( ) ( );

.  .  .

( ) ( );

( ) ( ).

p
p

p
p

U x y x
U x y x

U x y x

U x y x

�
�

�
�

�

� �

�

�

  (2.4) 

Indeed, according to the replacement (2.4), 
0 1

1 2

( 1)
2 ( 1)

( ) ( ) ( );
( ) ( ) ( );

.  .  .

( ) ( ) ( ),p
p p

U x y x U x
U x y x U x

U x y x U x�
� �

� �� �
� ��� �

� � �
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and the equation (2.3) becomes the system of formulae (2.1): 

1

1 0 ( 1)

( ) ( ),   0,1,..., 2;
( ) ( , ( ),..., ( )).

k k

p p

U x U x k p
U x F x U x U x

�

� �

� � ��

��
 

Here the last equation is obtained by substitution of the equation (2.4) into (2.3). 
An example of simple edge problem for second-order differential equation 

is the problem of searching for static sag y(x) of loaded string with fixed ends: 
 ( ) ( ),   ,   ( ) ( ) 0.y x f x a x b y a y b�� � � 
 
 � �   (2.5) 
Here f(x) is an external bending load for a unit string length divided by string 
elasticity. 

It should be mentioned that the general edge problem (2.1) may: 
� have no solutions; 
� have one solution; 
� have several or even infinitely many of them. 

 
Examples: 

1. An edge problem 0,    (0) ( ) 0y y y y�� � � � � �  has infinitely many 
solutions like y = C sin(x), where C is an arbitrary constant. 

2. An edge problem 0,     (0) 0,    ( ) 1y y y y b�� � � � �  when 0 b� � � , has 

the only solution sin  
cos  b

xy
b

� , and for b � � , there are no solutions at all. 

Further, the solution of the edge problem supposed to be existing. 
Let’s consider in more details an important particular case, when differ-

ential equation and edge conditions are linear. That is a linear edge problem. 
Linear differential equation of order n can be reduced to 

 [ ] ( ),L y f x�   (2.6) 

where ( ) ( 1)
0 1[ ] ( ) ( ) ... ( )n n

nL y p x y p x y p x y�� � � � . 
It is usually supposed that ( )  ( 0, 1,..., )ip x i n�  and f(x) are known con-

tinuous functions on the given segment [a, b]. 
To simplify, we assume edge conditions to contain two abscissas: x1 = a 

and x2 = b (a � b), as the ends of [a, b] segment. These conditions are called 
two-point edge conditions. The edge conditions are called linear ones if they 
have the form as  
 [ ] ,   1,2,..., ,R y n� �� � � �   (2.7) 

where 
1

( ) ( )( ) ( )

0
[ ] [ ( ) ( )]

n
k k

k k
k

R y y a y b
�

� �
�

�
� � ���  
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and ( ) ( ),  ,  k k
� �

�� � �  are given constants, moreover  
1

( ) ( )

0
( ) 0

n

k k
k

�
� �

�
� � � ��  

for v = 1, 2, …, n. 
For example, the edge conditions given above are linear. 
Linear edge conditions are also presented by periodicity conditions, 

which for second-order differential equation become  
( ) ( ),   ( ) ( ).y a y b y a y b� �� �  

The linear edge problem is homogeneous if: 
� firstly, f(x) � 0 at a � x � b, that means the differential equation (2.6) is 

homogeneous; 
� secondly, �� = 0; � = 1, 2, …, n, that provides homogeneous edge conditions. 

Otherwise, the problem stabed with the formulae (2.6)–(2.7) is inhomo-
geneous. 

Example 1. Let’s take the problem about deflection of a horizontal 
beam of length l, situated on two supports and being under distributed shear 
load with linear density of q = q(x) (Fig. 1). 

 
 x 

x 

y 

0 

l

 
Fig. 1. Horizontal beam deflection problem 

It is known from strength of materials that vertical deflection of homo-
geneous beam satisfies approximately to linear differential equation 
 [ ( ) ] ( ),EI x y q x�� �� �   (2.8) 
where EI(x) is beam flexural stiffness, meanwhile deflecting moment M and 
shearing force Q are defined by the relations 
 ( )M EI x y���  
and  [ ( ) ]Q M EI x y� �� �� � . 

Edge conditions depend on ways of beam-ends restraint. There are some 
basic cases: 
1. The end is free. Moment of deflection M and shearing force Q both equal 

zero. Consequently, the edge conditions for free beam end are as follows: 
 0y�� � ; 0.y��� �   (2.9a) 
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2. The end is supported hingedly. The deflection y and deflecting moment 
M both equal zero. Therefore, the edge conditions for the hinged end are 
as follows: 

 0y �  and 0.y�� �   (2.9b) 
3. The end is fixed toughly. The deflection y and the angle of turning 

arctg y�� �  both equal zero. In the view of this, the edge conditions of 
tightly tailed end are as follows: 

 0y �  and 0.y� �    (2.9c) 
Also, other more complicated cases for edge conditions are possible. 

Obviously, the problems (2.8)–(2.9) are linear edge problems. 
Example 2. Let beam flexural stiffness EI be constant. In this case, the 

equation (2.8) for deflection y is replaced by the following equation: 

 ( ).IVEIy q x�   (2.10) 
Supposing, the beam is fixed hingedly at the end x = 0 and fixed toughly 

at the end x = l. For the deflection y to be fulfilled it provides following edge 
(boundary) conditions: 

 
(0) 0,   (0) 0,
( ) 0,   ( ) 0.

y y
y l y l

��� � �
��� � �

  (2.11) 

The edge conditions (2.11) are linear and homogeneous. 
The problems (2.10)–(2.11) are easy to be solved. Therefore, supposing 

for simplicity that load density is constant: 
( ) ,q x p�  

we have  
4

3 2
1 2 3 4.

24
pxEIy c x c x c x c� � � � �

 
From boundary conditions (2.11) it follows that  

3

1 2 3 4,   0,   ,   0.
16 48
pl plc c c c� � � � �  

Thus, the solution is 
4 3 3(2 3 ).

48
py x lx l x
EI

� � �  

This example makes evident that in case we can find the common solu-
tion for differential equation, solution of the two-point edge problem is 
of near the same difficulty as the problem with initial conditions. However, 
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if one common solution can’t be found using regular means, the edge prob-
lem solution will lead to a new difficulty. It results from absence of initial 
point that could be an origin for constructing the solution with one of above-
mentioned methods. 

2.1. Shooting method 
This is a numerical method, aimed at turning an edge problem to solu-

tion of sequence of Cauchy problems for the same system of differential 
equations. Let’s discuss this method applied to the simplest problem for the 
system of two firs-order differential equations with general edge conditions: 

 
( ) ,
( ) ( , , ),

,

U x f(x, U,V)
V x g x U V
a x b

�� �
 �� �
 �� �� �

  (2.15a) 

 ( ( ),   ( )) 0U a V a� � ; ( ( ),   ( )) 0U b V b! � .  (2.15b) 

Let’s take an arbitrary value ( )U a � �  and examine left edge condition 
as algebraic equation 
 ( ,  ( )) 0V a� � �  

and then find ( ) ( )V a � � �  from it. After that, we use ( ) ,   ( )U a V a� � � �  as 
initial conditions of Cauchy problem for the system (2.15�) and integrate 
Cauchy problem by one of numerical methods. In this case we get solution 

( , ),   ( , )U x V x� �  depending on 	 as on the parameter. 
The value 
 is chosen in such a way that the solution found satisfy left 

edge condition (2.15b). On the other hand, it probably doesn’t satisfy right 
edge condition. On it’s substitution, the left part of edge condition at b point, 
considered as function of parameter 	 
 ( ) ( ( , ), ( , ))U b V b! � � ! � � ,  (2.16) 
isn’t equal to zero. 

It is necessary to change the parameter somehow until we get the value 
	 for which ( ) 0! � "  with required precision. Thus, the solution of the edge 
problem (2.15) turns to finding the root of equation 
 ( ) 0! � � .  (2.17) 

The simplest method to find the root is dichotomy (bisection of the 
segment). 

One makes test “shootings”, so called calculations with hit-and-miss 
chosen values 	i until there will be ( )i! �  values with different signs. The 
pair of such values  1 and  i i �� �  makes up a “bracket”. Successive halving 
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of [	i, 	i+1] segment till the required precision achieved, we make a “zeroing 
in on” parameter 	. That’s why the method was called shooting.  

Searching for each new value of function ( )! �  requires the numerical 
integration of system (2.15a), that is time taking. 

The root of equation (2.17) is better to find by a faster method. 
Let’s try to use the Newton’s method: 

 1
( )
( )

i
i i

i
�

! �
� � � �

�! �
.  (2.18) 

The calculation of the derivative ( )i�! �  is difficult, so it is better to re-
place it with the difference ratio 

 1

1

( ) ( )( ) i i
i

i i

�

�

! � �! ��! � "
� ��

.  (2.19) 

Substituting the formula (2.19) into (2.18), we get an iterative formula 
for secant method: 

 1
1

1

( ) ( )
( ) ( )
i i i

i i
i i

�
�

�

� � � ! �
� � � �

! � �! �
.  (2.20) 

In this method the first two calculations are carried out with occasion-
ally chosen values 	0 and 	1 close to each other. The next parameter values 
are calculated using the formula (2.20). 

It needs to be mentioned that the method converges very quickly near 
the root. The convergence far from the root depends on the proper choice of 
a zero approximation. 

Now let’s consider a linear edge problem, for which the solution is very 
simple:  

 
1 1 1

2 2 2

( ) ( ) ( ) ( ),
( ) ( ) ( ) ( ),

,

U x x U x V x
V x x U x V x
a x b

� � � � � � � � � �
 � � � � � � � � � �
 �� �� �

  (2.21a) 

 1 1 1 2 2 2( ) ( ) ,   ( ) ( ) .p U a q V a t p U b q V b t� � � � � � � �   (2.21b) 
Let’s use well-known principle from the theory of differential equations. 

It provides that a common solution to linear inhomogeneous system equals 
the sum of its any particular solution and common solution of the corre-
sponding homogeneous system. 

Let’s find a particular solution to inhomogeneous system (2.21a), putting 
0( ) 0U a � � �  into the left-hand condition of the formulae (2.21b). We denote 

this solution as 0 0( ),   ( )U x V x  and notice that 1
0

1
( ) tV a

q
� . 
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Now, the corresponding homogeneous system is 

 1 1

2 2

( ) ( ) ( ) ,
( ) ( ) ( )

U x x U x V
V x x U x V
� � � � � � � �

�� � � � � � � �
 

with homogeneous initial conditions 

 1
1

1
( ) 1,     ( ) pU a V a

q
� � � � � . 

Let’s solve this Cauchy problem and express it through 1 1( ),    ( )U x V x . 
Consider functions 0 1( ) ( ) ( )U x U x CU x� �  and 1 1( ) ( ) ( )V x V x CV x� � . Evi-
dently, these functions satisfy the edge condition at point a: 

 
1 1 1 0 1 1 0 1

1 1
1 1 1 1 1 1

1 1

( ) ( ) ( ( ) ( )) ( ( ) ( ))

(0 1) ( ( )) 1 .

p U a q V a p U a C U a q V a C V a
t pp C q C C p t C p t
q q

� � � � � � � � � � � �

� � � � � � � � � � �
 

That is why the common solution to inhomogeneous Cauchy problem, sat-
isfying the left-hand edge condition (2.21b), is presented by one-parameter set 
 0 1 0 1( ) ( ) ( ),  ( ) ( ) ( ).U x U x C U x V x V x C V x� � � � � �   (2.22) 

The value of parameter C is chosen to satisfy the right-hand edge condi-
tion (2.21b): 

 2 0 2 0 2

2 1 2 1

( )    ( )
( )    ( )

p U b q V b tC
p U b q V b
� � � �

� �
� � �

.  (2.23) 

Desired solution of the edge problem (2.21) is found with the formula (2.23). 
Therefore, the solution to the linear edge problem needs only two 

“shootings”, and auxiliary Cauchy problems are solved twice. 

2.2. Method of finite differences or the mesh method 
Let’s consider the linear edge problem 

 

( ) ( ) ( ),
,

y p x y q x y f x
a x b
�� �� � � � �

 
   (2.24) 

 

0 1

0 1

( ) ( ) ,
( ) ( ) ,

y a y a A
y b y b B

�� � � � � � �
��� � � � � � �   (2.25) 

 0 1 0 1( 0,    0)� � � � � � � � , 
where p(x), q(x) and f(x) are continuous on [a; b]. 

Let’s divide the segment [a; b] into n equal parts of length or intervals 
( )b ah

n
�

� . 



 

 13

The points of division ( ),   ( ),   ( )i i i i i i iy y x y y x y y x� � �� ��� � � , where 
0 ,ix x i h� � �  0,  1,...,  i n� , 0 ,    ,nx a x b� �  are called nodes and their ar-

rangement is called a mesh (grid and lattice as well) on the segment [a; b]. The 
values of the desired function ( )y y x�  at nodes 0ix x i h� � �  and the derivatives 

( ),y y x� ��  ( )y y x�� ���  we denote as ( ),   ( ),   ( )i i i i i i iy y x y y x y y x� � �� ��� � � . 
Let’s introduce notation ( ),   ( ),   ( ).i i i i i ip p x q q x f f x� � �  
Then substitute the derivatives for so called one-side finite difference ratio 

 

1

2 1 1
1 2 1

2

,

2 .

i i
i

i i i i
i i i i i

i

y yy
h

y y y y
y y y y yh hy

h h h

�

� � �
� � �

�� "

� �
�� �� � � ��� " � �

�
 
�
 
�

 (2.26) 

Equations (2.26) express approximately the values of derivatives in the 
internal points of interval [a, b]. 

For boundary points we put 

 1 0 1
0 ,   n n

n
y y y yy y

h h
�� �� �� � � .  (2.27) 

Using equations (2.26), the differential equation (2.24) for ix x� , (i = 1, 
2, …, n – 1) may be approximately replaced by the linear system of equations 

 
2 1 1

2
2 ,  

0,  1,...,  2.

i i i i i
i i i i

y y y y yp q y f
hh

i n

� � �� � � �
� � � � �

� �

  (2.28) 

Besides, because of equations (2.27), the edge conditions (2.25) give 
two more additional equations: 

 1 0 1
0 0 1 0 1,     n n

n
y y y yy A y B

h h
�� �

� � � � � �� � .  (2.29) 

Thus, we have linear system of (n + 1) equations with (n + 1) unknown 
variables 0 1, ,..., ny y y , being the values of desired function y(x) at mesh 
nodes. The system of equations (2.28), (2.29) substituting approximately the 
edge problem (2.24), (2.25) is commonly called the difference scheme. This 
system can be solved by any common numerical method. Nevertheless, the 
schemes (2.28), (2.29) are of specific kind and it may be solved by the spe-
cific method, usually referred to as sweep method. Specific character of the 
system is provided by its formulae content: equations include three neighbor-
ing unknown variables and the matrix of the system is three-diagonal. 
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Let’ s rearrange the equations (2.28): 

 2 2
2 1( 2 ) (1 )i i i i i i iy h p y h p h q y f h� �� � � � � � � � � � .  (2.30) 

Introducing notation 22 ,1 ,i i i i ih p m h p h q n� � � � � � � � �  we get 

 2
2 1i i i i i iy m y n y f h� �� � � � � � , (i = 0, 1, …, n – 2).  (2.31) 

The edge conditions may be written in the same way: 

 1 0 1
0 0 1 0 1,           n n

n
y y y yy A y B

h h
�� �

� � � � � � � � � � � .  (2.32) 

The sweep method’s idea is as follows. Let’s evaluate equation (2.31) 
with respect to  1iy � : 

 2
  1 2

1i i
i i i

i i i

f ny h y y
m m m� �� � � � .  (2.33) 

Supposing that the member containing yi is excluded from equation with 
help of the total system (2.31), the equation can be written as  
 1 2( )i i i iy c d y� �� � � ,  (2.34) 
where ci and di must be defined. Let’s find the equations for these coefficients. 
For i = 0 from equation (2.33) and edge conditions (2.32) it follows that 

2
0

1 0 0 2
0 0 0

1 ,
nhy f y y

m m m
� � � � �  

1 1
0

1 0
.y A hy

h
� � �

�
� �� �

 

Excluding y0 from these two equations we find 
20 0 1 1

1 2
0 0 1 0 0

1f n y A hy h y
m m h m

� � � �
� � � � � �

� � � �
. 

Now, we evaluate y1: 

 

20 0
2

0 1 0 0 0
1

0 1

0 1 0

21 0 0
0 2

0 1 0 0 1 1 0

1

1

( )
.

n fA h h y
m h m my n

m h

h n A h f h y
m h n h

�
� � � � �
� � � �

� ��
� �

� � � �

# $� � � � � �
� � � �% &� � � � � � �� � � � �' (

  (2.35) 
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However, according to the equation (2.34)  
 1 0 0 2( ).y c d y� �   (2.36) 

Comparing Eqs. (2.25) and (2.26), we get 

 

1 0
0 0 1 0 0 1

20 .0 01 0

,( )
h

c m h n

n A h
d f hh

�

� �

�

� � �
�

� �� � ��

�
� �
� ��

�
 
�
 �

  (2.37) 

Let us supposing that i > 0, i. e. i = 1, 2, …, (n – 2). Evaluating yi ac-
cording to the equation (2.34), we have 

1 1 1 1i i i i iy c d c y� �� � � �� � . 

Substituting this into the equation (2.33), we get 
2

1 1 1 1 1 2
1( )i i

i i i i i i
i i i

f ny h c d c y y
m m m

� �� � � � � �� � � � � . 

Solving the obtained equation with regard to y i + 1, we find 
2

1 1 2

1
1

1

1

i i
i i i

i i i
i

i
i

i

f nh c d y
m m my n c

m

�� � �

�

�

� � � �
�

� �
, 

or 

 2
1 1 1 2

1

1 ( )i  i i i i i
i i i

y f h n c d y
m n c� � � �

�
� � �

�
.  (2.38) 

Comparing equations (2.34) and (2.38), we get the recurrent formulae 
for coefficients ci and di: 

 
1

2
1 1

1 ,

,
1  2  2

i
i i i

i i i i i

c
m n c

d f h n c d
i , ,..., n .

� �

� �

�
�

� �

� �

�
 
�
 �

  (2.39) 

Therefore, as c0 and d0 are already found from equation (2.37), the coef-
ficients ci and di to cn – 2 and dn – 2 may be obtained inclusively one after an-
other by means of equation (2.39). These calculations are called the direct 
sweep of sweep method. 

From equation (2.33) for i = n – 2 and the second edge condition (2.32) 
it goes  
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1 2 2

1
0 1

( ),

.

n n n n

n n
n

y c d y
y yy B

h

� � �

�

� � �
 
��

� �� �  �

 

Solving this system with regard to yn, we get 

 1 2 2

1 2 0(1 )
n n

n
n

c d B hy
c h

� �� �
� ��

� � �
�
� � ��

. (2.40) 

Now, using Eq. (2.34) and the first edge condition (2.32), we can find 
,   1 2 0,...,n ny y y� � . It is the inverse sweep of sweep method. 
Thus, we get the following chain: 

 

1 2 2

2 3 3 1

1 0 0 2

1 1
0

1 0

( ),
( ),

...
( ),

,

n n n n

n n n n

y c d y
y c d y

y c d y
y Ahy

h

� � �

� � � �

� � �
 � �  
 
�

� �  
 � �

�  
� � � �

 0 1 0 11,   0,   1,   0.� � � � � � � �   (2.41) 

For the simplest edge conditions ( ) ,   ( )y a A y b B� � , the equations for 
0 0 0,   ,   c d y , and ny  become simplified. Presuming in this case  

 0 1 0 11,   0,   1,   0,� � � � � � � �  
from Eqs. (2.37), (2.40), and (2.41) we have 

 
2

0 0 0 0
0

0

1 ,   ,

,    .n

c d n A f h
m

y B y A

� � � �

� �
 

The considered approach turns the edge linear problem to the system of 
linear algebraic equations. There are three main questions:  
1. Is there any solution to an algebraic system of (2.31) type? 
2. How can this solution actually be found? 
3. Does the difference solution converge to exact one at zeroing of interval? 

We can prove that, if an edge problem is of the type 

 
( ) ( ),

( ) ,   ( ) ,
y p x y f x
y a y b
�� � �

� � � �
 

and �(x) > 0, the solution of the system (2.31) and (2.32) does exist and is to 
be the only one. Practically, searching for a solution may be carried out by, 
for example, sweep method. The next theorem responds the third question.  
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Theorem. In case of p(x) and f(x) are continuously differentiated twice, 
the difference solution corresponding to the scheme with replacement 

 1 2 1
2

2,   ,i i i i i
i i

y y y y yy y
h h

� � �� � � �� ��" "  

converges eventually to the precise one with inaccuracy of O(h) for 0.h )  
Thus, the schemes (2.28), (2.29) give an approximate solution to the edge 

problem, but its precision is low. It is caused by the low order of precision of 

approximation by derivative   1i iy yy
h

� �� " ; inaccuracy of this approximation 

 . 1( ) ( ),   
2i i i
hr h y x x ���� � � � � �  

More precise difference scheme may be obtained when for transfer from 
linear edge problem to finite difference equations we use the central formulae 
of derivatives: 

 1 1
2

i i
i

y yy
h

� ��� " ,  (2.42) 

 1 1
2

2i i i
i

y y yy
h

� �� ��� " ,  (2.43) 

i = 1, 2, …, n. 
Inaccuracy of equation (2.42) is expressed as 

 
2

1 1( ) ( ),   ,
6i i i

hr h y x x� ����� � � � � � �   

it means that this formula has the second order of accuracy with respect to the 
mesh interval h. Substituting the equations (2.42), (2.43) for (2.24), (2.25), 
after some rearrangements we get the following system: 

 

2

  1   1

1 0
0 0 1

  1   1
0 1

2 ,    1,2,..., .
2

,

,
2

i i i i i i
i

n n
n

hy m y n y f i n
h p

y yy A
h

y yy B
h

� �� �

�

� ��

�
� � � � �

� �
�

� � � � �

�
� � � � �

�

*
  
+
 
 ,

  (2.44) 

where 

 
22 4 2,   

2 2
i i

i
i i

q h h pm nih p h p
�� � � �

� �
� � � �

. 
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The system (2.44) is three-diagonal again and may also be solved by the 
sweep method. Here the algorithm looks like the next. First, the coefficients  

 

1 0
1

1 1 0 1 1
2

1
1 1

1 1 0

,
( )

2
2

hc
m h n

f h A hd n
p h h

�

� � �

� � �
�

� �� � �

� �
� �

� � � � � �

�
 
�
 �

  (2.45) 

should be found. Then the next coefficients ci, di are defined by the recurrent 
equations as  

 

1
2

1 1

1 ,

2 ,
2

2,3,..., .

i
i i i

i
i i i i

i

c
m n c

f hd n c d
h p

i n

� �

�
� �� �

�
�

� �
� �

�

�
 
�
 
�

  (2.46) 

The inverse sweep starts with finding yn: 

 1 1 1

0 1 1

2 ( )
12 ( )

n n n
n

n
n

B h d c dy
h c

c

�� �

� � �

� � � � � �
�

�� � � �
.  (2.47) 

Then we find 1 0,..., ,ny y y  by the equations  

 1( ),       1,  2,...,1i i i iy c d y i n n� �� � � � � ,  (2.48) 

 1 1
0

0 1

A h yy
h

�

�

� � �
�

� � �
.  (2.49) 

Concerning the scheme (2.44), we can prove that it has the one solution at  

 2max   ( ) 
a x b

p x
h
 


�  

and 
 ( ) 0

a x b

q x

 



 , 

and this solution can be found by abovementioned sweep method. Besides, 
for scheme (2.44) the next theorem takes place. 

Theorem. Let the solution to the boundary problems (2.44), (2.45) be 
the single and continuously differentiated on [a, b] until the fourth order of 
accuracy inclusively. If the following conditions are fulfilled  



 

 19

 2max  ( ) 
a x b

p x
h
 


� , ( ) 0
a x b

q x

 



 , 0 1 0 10,   0,� � 
 � � -  

the scheme (2.44) will uniformly converge to the solution to the problem 
(2.24), (2.25) with inaccuracy of 2( )O h . 

Let’s notice that the conditions in theorems are sufficient but unneces-
sary. Hence, the violation of these conditions in practical numerical calcula-
tions doesn’t cause worsening of calculation schemes. 

2.3. Semi-analytical methods of edge problem solving  
2.3.1. Collocation method 

It needs to find the function ( )y y x�  satisfying the linear differential equation 
 ( ( )) ( ) ( ) ( )L y x y p x y q x y f x�� �. � � �   (2.50) 
and linear edge conditions 

 
/ 0 / 0
/ 0 / 0

0 1

0 1

a

b

y a y a A
y b y b B

� . � � � � ��  
�

� . � � � ��  �
,  (2.51) 

where 0 1 0 10,   0.� � � � � � � �  
Let’s choose a set of linearly independent functions 

 0 1( ), ( ),..., ( ),nU x U x U x   (2.52) 
and call this set the system of basic functions. 

Let function 0( )U x  satisfy inhomogeneous edge conditions: 
 0 0( ) ,   ( ) ;a bU A U B� � � �   (2.53) 
and others functions satisfy corresponding homogeneous edge conditions: 
 ( ) 0,   ( ) 0,    1,  2,...,  a i b iU U i n� � � � � .  (2.54) 

If the edge conditions (2.51) are homogeneous (A = B = 0), we can put 
0( ) 0U x �  and consider only system of functions ( ),   1,2,...,iU x i n� . 

Let’s find an approximate solution to the edge problem (2.50), (2.51) 
as a linear combination of basic functions 

 0
1

( ) ( )
n

i i
i

y U x c U x
�

� �� .  (2.55) 

In this case the function y satisfies the edge conditions (2.51). Indeed, 
because of linearity of edge conditions, we have  

0
1 1

( ) ( ) ( ) 0 ,
n n

a a i a i i
i i

y U c U A c A
� �

� � � � � � � � �� �  
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and also 
( ) .b y B� �  

Let’s compose the function ( ) ( )R L y f x� � . Substituting here 
Eq. (2.55) for y, we get 

 1 0
1

( ,  ,...,  ) ( ) ( ) ( ) ( ) ( )
n

n i i
i

R x c c L y f x L U f x c L U
�

. � � � �� . (2.56) 

If for a set of coefficients ci the equality 
1( , ,..., ) 0nR x c c .  for a x b
 
  

is satisfied, the function y is a precise solution to the edge problems (2.50), (2.51). 
However, generally it isn’t easy to choose the proper functions Ui and coefficients 
ci. That’s why usually it is required that function 1( , ,..., )nR x c c  turned into zero 
at the given system of points 1 2, ,..., nx x x  for the interval [a, b]. These points are 
called the collocation points. The function R itself is called the misclosure of the 
equation (2.50). Evidently, at collocation points the differential equation (2.50) 
will be satisfied completely, and the misclosure here equals zero. 

Thus, the collocation method brings us to the system of linear equations 

 
1 1

1

( , ,..., ) 0;
...

( , ,..., ) 0.

n

n n

R x c c

R x c c

�

�

�
�
�

 (2.57) 

From the system (2.57), in case of it’s compatibility, we can get coeffi-
cients 1,..., nc c . After that, the equation (2.55) gives us an approximate solu-
tion to the edge problem. 

Example. Solve the edge problem by collocation and mesh methods: 

 
2(1 ) 1 0,

( 1) 0,   (1) 0.
y x y
y y

��� � � � �  
�

� � �  �
  (2.58) 

1. Collocation method 
Let’s choose polynomials 2 2 2( ) (1 ),   1,  2,  ...n

nU x x x n�� � �  
as basic functions. These polynomials satisfy the edge conditions ( 1) 0.nU 1 �  

We take 1 0
1 ,   0,
2

x x� � � �  and 1
1
2

x � �  as collocation points. Limiting 

our set with only two basic functions, we get 
2 2 4

1 2(1 ) ( ).y c x c x x� � � �  

Let’s find function ( ) ( ) :R L y f x. �  
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2 2 2 2 4

1 2 1 2
4 2 6

1 2

( ) 2 (2 12 ) (1 )[ (1 ) ( )] 1

1 (1 ) (2 11 ).

R x c c x x c x c x x

c x c x x

� � � � � � � � � � �

� � � � � �
  (2.59) 

At collocation points 0 1
10,    
2

x x1� � 1  we get 

0 1( ) 0,    ( ) 0R x R x1� � . 
Substituting here the formula (2.59), we find  

 
1 2

1 2

1 2 0,
17 491 0.
16 64

c c

c c

� � �

� � �

�
�
�

  (2.60) 

Solving this system, we obtain the coefficients c1 and c2 
1c  = 0.957, 2c  = �0.022. 

Consequently, an approximate solution is 
2 2 40.957(1 ) 0.022 ( )y x x x" � � � . 

For example, for x = 0 we get y(0) = 0.957. 
 

2. Mesh method 
For rough solution, let’s choose interval h = 1/2 (Fig. 2). 
 

 
Fig. 2. Illustration to the mesh method 

Supposing 2 1 0 1 21,   1/ 2,   0,   1/ 2,   1x x x x x� �� � � � � � � , because of 
the equation symmetry and the edge conditions, we have  
 2 2 1 10;   .y y y y� �� � �   (2.61) 

Thus, it needs to find only two ordinates y0 and y1. Assuming x = 0 and 
using symmetrical equations for derivatives 

1 1 1 1
2

2,    
2

i i i i iy y y y yy y
h h

� � � �� � �� ��� � , 

we get 
1 0 1

0
2 1.1
4

y y y y� � �
� � �  
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Similarly, for x = 1/2 (i. e. for i = 1) we get  

 0 1 2
1

2 1(1 ) 1.1 4
4

y y y y� �
� � � �  

Taking into account the equation (2.61), we find the system 

 
0 1

0 1

7 8 1,
34 6 1.
4

y y

y y

� � � �

� � �

�
�
�

 

Solving the system, we get y0 = 0.967 and y1 = 0.721. Let’s compare: 
collocation method gives y0 = 0.957, mesh method gives y0 = 0.967. 

2.3.2. Galerkin’s method 
Let a differential equation be given with linear edge conditions: 

 ( ( )) ( )L y x f x� ,  (2.62) 

 0 1

0 1

( ) ( ) ( ) ,
( ) ( ) ( ) .

a

b

y y a y a A
y y b y b B

�� . � � � � �
��� . � �� � �

  (2.63) 

We find approximate solution to this edge problem as the summation: 

 0
1

( ) ( ) ( ),
n

n k k
k

y x x a x
�

� � � ��   (2.64) 

where 0( )x�  is some continuous function satisfying inhomogeneous edge 
condition (2.63), and ( ),    1,  2,... (1 )k x k k� � 
 � 2  is a system of linearly 
independent functions satisfying homogeneous edge conditions 
 ( ) 0,    ( ) 0,a k b k� � � � � �   (2.65) 
and besides, the functions / 0k x�  for 1 k
 � 2  form a complete system in the 
class of functions c2[a, b] satisfying conditions (2.65). 

Let’s note that the completeness is understood in the following way. 
Through G we denote the class of functions y(x), belonging to c2[a, b] 

(being twice continuously differentiated on [a, b]) and satisfying the edge 
condition (2.65). It is said that the system of functions { ( )}k x�  is complete in 
G-class, if for any 03 4  and any function ( )y x G  it is possible to point out 
such n and such parameters 1 2, ,..., na a a  that inequality 

 ( ) ( )( ) ( ) ,    0,  1,  2,    ,i i
ny x g x i a x b� � 3 � 
 
  

where 
1

( )
n

n k k
k

g a x
�

� �� , takes place. 
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It means that for any function ( )y x G  there is always such function 
( )ng x , that approximates the function y(x) and its derivatives ( )y x�  and 
( )y x��  on [a, b] to any degree of accuracy. 

Let’s prove that in case for some function F(x) and complete system of 
functions ( )k x� , the relation of orthogonality  

 ( ) ( ) 0  for  1
b

k
a

F x x dx k� � 
 
 25   (2.66) 

is fulfilled, this function ( ) 0F x .  on [a, b]. For proving we create the com-
plete orthogonal system ( )k x!  from complete system ( )k x�  using sequen-
tial orthogonalization 

1
( ) ( ),

k
k km m

m
x c x

�
� � !�  

where 0,kkc �  otherwise, ( )k x�  could be linearly dependent. Expanding 
function F(x) by new system, we have: 

1
( ) ( ).l l

l
F x d x

2

�
� !�  

Substituting this expansion into the relation of orthogonality (2.66), we 
get the equality  

 
1 1

0 ( ) ( ) ( ) ( ) ,  1,  2, ...
b b k

k l l km m
l ma a

F x x dx d c dx k
2

� �
� � � ! ! �� �5 5   (2.67) 

Let’s calculate the last integral: 

1 1

b k

l l km m
l ma

d c dx
2

� �
! � ! � �� �5  

1 1 2 2 1 1 2 2( ... ...)( ... )
b

l l k k kk k
a

d d d c c c dx! � ! � � ! � ! � ! � � ! �5  

1
,

k

m km
m

d c
�

� �  as 
 0,   ,

( ) ( )
 1,   .

b

m l
a

m l
x x

m l
�*

! ! � + �,
5  

Thus, the equation (2.67) becomes 

1
0,   1,  2,...

k

m km
m

d c k
�

� ��  

Taking k = 1, we get 1 11 0d c � . So as 11 0c � , we have d1 = 0. Taking 
k = 2, we get d2 = 0 and so on, and so forth. Consequently, all coefficients dl 
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equal zero in F(x) expansion and hence F(x) itself identically equals zero, 
which was to be proved. 

Going back to the problems (2.62), (2.63) we see that did it happen to 
find function y(x) satisfying condition (2.63) and ( ( )) ( )L y x f x�  be orthogo-
nal to ( )k x�  for any 1k - , it would give ( ( )) ( )L y x f x� , and the problem 
(2.62), (2.63) would be solved. If the orthoganality takes place only for 
k n
 , it means that expansion of ( ( )) ( )L y x f x� , according to the system 

( )k x� , contains 1nd �  and higher coefficients, i. e. ( ( )) ( ).L y x f x"  
Galerkin’s method provides the solving to the problems (2.62), (2.63) in the 

form of the formula (2.64), where it is demanded the orthoganality of 
( ( )) ( )L y x f x�  to functions of the complete system ( )k x�  for k = 1, 2, …, n, i. e. 

 � �( ( )) ( ) ( ) 0,     1 ,
b

n k
a

L y x f x x dx k n�� � 
 
5   (2.68) 

where 

 0
1

( ) ( ) ( ).
n

n k k
k

y x x a x
�

� � � ��  

It gives the algebraic system of equations for finding the coefficient ak. 
Having found the coefficients from it, we get an approximate solution. 

If the operator L(U) is nonlinear, the system (2.68) is also nonlinear, and 
the solution is difficult to be found. If the operator L(U) is linear, the system 
is also linear, and the problem can be solved for plenty of coefficients.  

In Galerkin’s method, function 0( )x�  must satisfy the edge condition (2.63). 
That’s why the function 0( )x�  is of a kind 0( )x x� � � �� �  may be chosen 
and the coefficients �, � are to be found as solution of the system 

 0 1

0 1

( ) ,
 

( ) .
a A
b B

� � �� � � � � � �
�� � �� � � � � � �

 

Analogously the functions ( )k x�  are to be found. Let’s, for instance, 
choose a complete system ( )k x�  as consequent orders polynomials: 

 
1

0
( ) ,   1, ,

k
i

k ik
i

x c x k n
�

�
� � � �� � . 

Coefficients cik are to be found from homogeneous edge conditions (2.65) 

 0 1

0 1

( ) ( ) 0,

( ) ( ) 0,
k k

k k

a a

b b

��� � � � � �  
�

�� � �� � �  �
  (2.65a) 
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for all values k = 1,2, …, n. 
So, 2

1 01 02 03( )x c c x c x� � � � � �  for 1k �  and condition (2.65a) become: 

 
2

0 01 02 03 1 02 03
2

0 01 02 03 1 02 03

( ) ( 2 ) 0,

( ) ( 2 ) 0.

c c a c a c c a

c c b c b c c b

� � � � � � �

� � � �� � �
 

In this system of two equations there are three unknown variables: c01, 
c02, c03. One of them may be chosen freely, putting, for example, c01 = 1. 
Similarly, other coefficients c0k may be found for k = 2, …, n. 

For simple conditions like ( ) ,    ( )y a A y b B� �  meaning 0 0 1� � � �  
and 1 1 0� � � �  the functions ( )k x�  are found as 

 ( ) ( ) ( ),   1,  2,...,  k
k x x a x b k n� � � � �  

or 

 ( ) ( )( ) ,   1,  2,...,  .k
k x x a x b k n� � � � �  

Let’s note that for a nonlinear edge condition such as ( ) ( ( ))y a g U a� � , 
the linear combination (2.64) with arbitrary coefficients ak won’t satisfy this 
edge condition. Thus, Galerkin’s method may be used only for linear edge 
conditions, but a nonlinear operator L is permitted there.  

Example 1. Using Galerkin’s method, find an approximate solution to 
the equation  
 2y xy y x�� �� � �  
with conditions  
 (0) 1,   (1) 0.y y� �  

As a system of basic functions ( )kU x  we choose  

 0( ) 1 ,

( ) (1 ),   1,  2,...  .  k
k

x x

x x x k

� � �

� � � �
 

Let’s limit the system with only four functions k� , i. e. k = 0, 1, 2, 3. 
The solution is to be found as 

 2 3
1 2 3(1 ) (1 ) (1 ) (1 ).y x a x x a x x a x x� � � � � � � �  

Let’s find function F(x). As ( ) ( ( )) ( )F x L y x f x� �  and 
( ( )) ( )L y x y x xy y�� �� � � , ( ) 2f x x� , we get 

 
2 2 3

1 2
2 3 4

3

( ) 1 4 ( 2 2 3 ) (2 6 3 4 )

(6 12 4 5 ).

F x x a x x a x x x

a x x x x

� � � � � � � � � � �

� � � �
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Let’s introduce orthoganality of F(x) to ( ),k x�  1,  2,  3k � . It gives the system 

 

1
2

0
1

2 3

0
1

3 4

0

( ) ( ) 0,

( ) ( ) 0,

( ) ( ) 0.

x x F x dx

x x F x dx

x x F x dx

�
 � �
 
 
  � � �
 
 
 � �  
 �

5

5

5

 

Replacing F(x) by the expression for this function and integrating, we get 

 
1 2 3

1 2 3

1 2 3

133 63 36 70,
140 108 79 98,
264 252 211 210.

a a a
a a a
a a a

� � � �

� � � �

� � � �

�
�
�

 

The solution to this system are as follows: 
 1 2 30 2090   0 7894   0 2090.a . , a . , a .� � � � �  

Consequently, 2 3(1 )(1 0.2090 0.7894 0.2090 )y x x x x" � � � � . 

Example 2. Let’s solve the problem ,   (0) 0.
2

y y x y y �# $�� � � � � �% &
' (

 

Let 0( ) 0x� �  and choose the complete system of functions 

 ( ) ,    1
2

k
k x x x k�# $� � � 
 � 2% &

' (
. 

Taking only k = 1, we get  

 1 2
5 0.521.

40
a �

" "
� �

 

If we take two members (k = 1, 2), we get 1 20.815,   0.377.a a" "  
The following table may be calculated for this problem: 
 

x 1( )y x  2( )y x  precise solution ( )y x  
/ 8�  
/ 4�  

3 / 8�  

0.241 
0.322 
0.241 

0.445 
0.685 
0.582 

0.208 
0.325 
0.273 
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3. NUMERICAL SOLUTION  
OF PARTIAL DERIVATIVE EQUATIONS 

3.1. Difference schemes. Fundamental issues 
Let independent variables x, y change at some area D, limited by 

�-contour. It is said that the second-order equation for function ( , )u x y  is 
given in D-area, if for any D-area point the ratio takes place: 

 

 

  

 

2 2 2

2 2( ) ( , ) 2 ( , ) ( , )
  

2 ( , ) 2 ( , ) ( , ) ( , ),u

u u uL u a x y b x y � x y
x yx y

ud x y e x y g x y u f x y
x y

� � �
� � � �

� �� �
� �

� � � �
� �

  (3.1) 

where ( , ),   ( , )a x y b x y , … are the coefficients; f(x, y) is an equation free 
member. These functions are known and considered as defined in closed area 

� � �D D . Let’s designate 2( , ) .x y b ac6 � �  An equation ( )L u f�  is called 
elliptical, parabolic or hyperbolic in D if the conditions ( , ) 0x y6 � , 

( , ) 0x y6 � , or ( , ) 0x y6 4  are fulfilled respectively for all ( , )x y D. 
Depending on the type of differential equation, boundary and initial 

conditions for this equation are given in different ways. Further we consider 
particular cases of Eq. (3.1): 
� the Poisson’s equation (elliptical) 

/ 0
  

2 2

2 2
u u f x,y

x y
� �

� �
� �

; 

� the equation of thermal conductivity (parabolic) 

  

2

2 ( , )u u f x t
t x

� �
� �

� �
; 

� the wave equation (hyperbolic) 

  

2 2

2 2 ( , )u u f x y
x y

� �
� �

� �
. 
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3.1.1. Convergence, approximation and stability of difference schemes
Let u be the solution for differential equation 

( ) ,L u f�   (3.2) 
given in D-area. Let’s consider a set Dh = {Mh} containing isolated points Mh,
belonging to the closed area � � �D D . The quantity of points in Dh is to be 
characterized by the value h. The smaller is h, the more points are in Dh. The 
set Dh is called the mesh and points hM  Dh are mesh nodes. Function de-
fined for nodes is called the mesh function.

Let’s denote as U the space of functions u(x, y) continuous in D. Let Uh

is the space formed by the set of mesh functions ( , )hu x y  defined on Dh.
In the mesh method, the replacement U-space by Uh-space takes place. 

Let ( , )u x y  be the precise solution of equation (3.2). Then ( , )u x y  be-
longs to U. The problem is to find the values of ( , )hu x y . Totally, these values 
form a table, in which the number of values is equal to number of point in Dh.
The problem formulated may be rarely solved precisely. Usually it is possible 
to calculate such mesh values u(h) that we may suppose: ( ) ( , ).h

hu u x y"
The values u(h) are called approximate mesh values of the solution 

( , )u x y . To calculate them, the system of numerical equations to be con-
structed, which we write as 

( )( ) ,h h
hL u f�   (3.3) 

where Lh is a linear operator, corresponding to operator L; ( )h
hf F . In case 

( , )f x y F , Fh is arranged from F in the same way as Uh is formed from U.
Eq. (3.3) is called the difference scheme.

Let in linear spaces Uh and Fh the norms      and  U Fh h
� �  respec-

tively are introduced, which are mesh analogues to      and  U F� �  norms 
in initial spaces. 

The difference scheme (3.3) said to be convergent, if for 0h )  the fol-
lowing condition is satisfied  

( )( , ) 0h
h Uh

u x y u� ) .

If the condition
( )( , ) h s

h Uh
u x y u ch� 


is satisfied, where c is a constant independent on h and s > 0, it is said there is 
a convergence of s-order degree relatively to interval h.
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It is considered that difference scheme (3.3) approximates the problem 
(3.2) to the solution u(x, y), if  

 ( ) ( ) ( )( ( , ))   and  0  for  0.h h h
h h Fh

L u x y f f f h� � 6 6 ) )  

The value ( )hf6  is called approximation inaccuracy or misclosure of a dif-

ference scheme. If 
( )h

Fh
f Mh76 
 , where M is a constant independent on h and 

07 4 , it is said that difference scheme (3.3) approximates the problem (3.2) to 
the solution u(x, y) with inaccuracy of order  relatively to the interval h. 

The difference scheme (3.3) is called stable, if such 0 0h 4  exists that 

for all 0h h�  and for any ( )h
hf F , the following conditions are satisfied: 

1) difference scheme (3.3) has the single solution; 

2)
( ) ( )h h

U Fh h
u M f
 , where M is a constant independent on h and f (h). 

In other words, the difference scheme is stable in case its solution de-
pends continuously on input data. The stability characterizes the scheme sen-
sitivity towards any inaccuracy; it is the intrinsic feature of difference scheme 
that does not depend on the initial problem, in contrary to convergence and 
approximation. There is a relation between convergence, approximation and 
stability, which sense is that convergence follows from approximation and 
stability as the next theorem states. 

Theorem. Let difference scheme ( ) ( )( )h h
hL u f�  approximates the 

problem ( )L u f� to the solution ( , )u x y  with order s relatively to h and it is 
stable. Then this scheme converges and the order of its convergence coin-
cides with approximation order, i. e. the evaluation 

 ( )  ( , ) ,h s
h Uh

u x y u kh� 
   (3.4) 

is correct, where k is a constant independent on h. 
Prove. According to definition of approximation, we have 

 ( ) ( ),  where  ( ( , )) .(h) s h h
h hFh

df ch  f L u x y f
 6 � �  

Let’s denote ( )( , ) ( , ) h
h hx y u x y u3 � � . Because of linear character of Lh 

we have for ( , )h x y3  the formula 

 ( )( ( , )) .h
h hL x y f3 � 6  
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From the definition of stability we have 

 ( )( , ) ( )h s s
h U Fh h

x y M f M Ch Kh3 
 6 � 
 � , 

where K = MC. So the evaluation (3.4) is stated and the theorem is proved. 
Usually the mesh method application is as follows: 

1. At the beginning, a rule of choosing the mesh is stated, i. e. the way of 
replacing area D and contouring � by some mesh area. More often the 
rectangular and uniform mesh is used. 

2. Then one or more difference schemes are stated and constructed. The 
condition of approximation is checked, and its order is estimated. 

3. The stability of constructed difference schemes is proved. It is of the 
most important and complicated issues. If the difference scheme has ap-
proximation and stability, the convergence is assessed, according to the 
proved theorem. 

4. Numerical solution of difference schemes is considered. 
If the linear difference schemes it is a system of linear algebraic equa-

tions. The order of such systems might be huge. 

3.2. Difference schemes for parabolic equations  
3.2.1. The solution of Cauchy problem

Let’s view the Cauchy problem for thermal conductivity 

 
  

2

2 ( , )u u x t
t x

� �
� � �

� �
, x�2 � � �2 , 0t 4 ,  (3.5) 

with a condition at the line t = 0 
 ( ,0) ( )u x x� ! , x�2 � � �2 .  (3.6) 

We need to find the function u(x, t), which under t > 0 and x�2 � � �2  
would satisfy the equation (3.5), meanwhile, under t = 0 the condition (3.6). 

Let’s consider the problem (3.5) and (3.6), it has the only solution u(x, t) in 
the upper halve plane. Let’s also this solution and its derivatives are continuous: 

 
 

( )i

i
u

t
�

�
, i=1, 2 and 

 

( )k

k
u

x
�

�
, k =1, 2, 3, 4. 

Write the problem (3.5), (3.6) as ( )L u f� . For this, it is sufficient to put  

   

2

2 ,   ,   0,( )
( ,0),   ,   0,

u u x tL u t x
u x x t

*� �
� �2 � � �2 4 � �+ �

 �2 � � �2 �,
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( , ),   ,   0,
( ),   ,   0.
x t x t

f
x x t

� �2 � � �2 4*
� +! �2 � � �2 �,

 

Further we take t changing in 0 t T
 
 � 2 . In the case considered 
 8 9,   0x t T� �2 � � �2 � �D , 

� is the union of lines t = 0 and t = T.  
Let’s choose a triangular mesh and replace the area � � �D D  by hD  

mesh area. The set of nodes ( ,  )m nx t  is referred to the hD  area, where 

 mx mh� , 0, 1,  2,...m � 1 1 , 0h 4 , 

 nt n� : , 0,  1,...,n N� , 0: 4 , ( 1)N T N: 
 � � : . 

Let’s substitute the problem ( )L u f�  with the difference scheme 
( ) ( )( )h h

hL u f� . Then we designate the precise solution of ( )L u f�  at the 

node ( , )m nx t  as ( , )m nu x t  and through n
mu  we mark the corresponding ap-

proximate solution. Thus, we have 

 

 

  

2

2
( , ) ( , )

( , )

( , )

,

( ) 0,  1,  2,....,  1,  2,...,  ,
( ,  0) ;

x t x tm n m n

x tm n
x tm n

u u
t x

L u m n N
u x

*� �
� 

� � 
  . � 1 1 �+
 
 
 
 ,

 

 
,( , )

( , )

( , )

( ,  )

0,  1,....,  1,  2,...,  ,
( ) .

x tm n

x tm n
x tm n

x t

f m n N
x

*�
  . � 1 �+
 ! ,

 

So that to replace the expressions  

 ( , )x tm n

u
t

�
�

 and 
 

2

2
( , )x tm n

u
x

�

�
, we use 

the formulae of numerical differentiating as follows: 

  

  ( , ) (1)

2
1

2
( , )

( , ) ( , )
2x tm n

m n m n

xm nt

u x t u x tu u
t t

� �� : �
� � �

� : �
,  (3.7) 
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2
1

2 (2)( , ) ( , )

( , ) ( , )
2

m n m n

x t xm n m nt

u x t u x tu u
t t

��� : �
� � �

� : �
,  (3.8) 

  

  

2 3
1 1

(3)( , ) ( , )

( , ) ( , )
32 6

m n m n

x t x tm n m n

u x t u x tu u
t t

� ��� : �
� � �

� : �
,  (3.9) 

 
  

2 2 4
1 1

2 2 4
(1)( , ) ( ),

( , ) 2 ( , ) ( , ) .
12

m n m n m n

x t xm n m nt

u x t u x t u x tu h u
x h x

� �� �� ��
� �

� �
  (3.10) 

Let’s some set of nodes, taken for substitution of the problem ( )L u f�  

at the node ( , )m nx t , of difference scheme ( ) ( )( )h h
hL u f� , be called a pat-

tern. More often the following patterns are used (Fig. 3). 
 

 

(m – 1, n) (m, n) (m + 1, n)

(m, n + 1)

 

 (m + 1, n + 1)(m, n + 1) (m – 1, n+1)

(m, n)  

a) explicit two-layer pattern; b) implicit two-layer pattern 
Fig. 3. Explicit and implicit patterns 

Let’s discuss the explicit two-layer pattern (Fig. 3a) 

( , )

(1)1 1 1
2

( )

( , ) ( , ) ( , ) 2 ( , ) ( , ) ,

( ,0) 0.

xm n

m n m n m n m n m n
mn

m

tL u

u x t u x t u x t u x t u x t r
h

u x

� � �

.

� � �* � � :. +
 �,

 (3.11) 

Here we used formulae (3.7), (3.10) and designated  

  

2 2 4
(1)

2 4
(1) (1)( , ) ( , )

2 12mn
x t x tm n m n

u h ur
t x

: � �
� � � �

� �
. 

Let’s input the value of 

 ( ) ( , ),
( ).

m nh

m

x t
f

x
�*

. +!,
  (3.12) 

Based on formulae (3.11), (3.12), the difference scheme might be writ-
ten for the problem ( )L u f� : 
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 (1) ( ) ( )( )h h
hL u f� ,  (3.13) 

where a difference operator (1)
hL  is defined by the rule  

1
1 1

2
(1) ( ) 0

2
,

( ) ,
0,  1,...,
0,  1,  2,...,  1.

n n n n n
m m m m m

h
h m

u u u u u
h

L u u
m
n N

�
� �* � � �

� 
: 

 . +
 

� 1 
 � �,

 

Similarly, if we take the implicit two-layer pattern (Fig. 3b), the follow-
ing difference scheme may be obtained: 

 (2) ( ) ( )( )h h
hL u f� ,  (3.14) 

where 
1 1 1 1

1 1
2

(2) ( ) 0

2 ,

( ) ,
0,  1,....,
0,   1,   2,...,  1;

n n n n n
m m m m m

h
h m

u u u u u
h

L u u
m
n N

� � � �
� �* � � �

� 
:  . +

 � 1 
 � �,

 

( ) ( , ),
( ).

m nh

m

x t
f

x
�*

. +!,  
On the basis of formulae (3.11), (3.13) we have 

(1) ( ) (1) ( )( ( , )) h h
hhL u x y f f� � 6 , 

where 
(1)

(1) ( ) ( ),
0.

h mnr hf
* 6 � +
 ,

 

The same rule for the Eqs. (3.11), (3.10), (3.14) 
(2) ( ) (2) ( )( ( , )) h h

hhL u x y f f� � 6 , 

  

2 2 4
(2)

2 4(2) ( ) (2) (1)( , ) ( , )1

( )
2 12

0

mnh
x t x tm n m n

u h ur h
t xf

�

* : � �
� � �  � �6 . +

 
 ,

. 
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Let’s define the approximation order of difference schemes (3.13), 
(3.14). As Fh, we take a linear set of all limited function pairs: 

( )
n

h m

m
g

*� � +
� ,

. 

The norm in Fh is to be defined by the rule 
( )

,
max max .h n

m m
m n m

g � � � �  

Let srh: � , where r and s are some positive numbers. 

Supposing that the following bounds should be right for 
2

2 
u

x
�

�
 and 

4

4 
u

x
�

�
, 

 

2

22( , )
max
x t D

u M
t

�



�
, 

 

4

44( , )
max
x t D

u M
t

�



�
. 

Then it is easy to obtain 

 
2

(1) ( ) (1)
2 4

,
max ( )

2 12

S
h S

mn
m nh

r hf r h M M h
F

�# $
6 � 
 � �% &% &

' (
,  (3.15) 

 
2

(2) ( ) (2)
2 4

,
max ( )

2 12

S
h S

mn
m nh

r hf r h M M h
F

�# $
6 � 
 � �% &% &

' (
.  (3.16) 

For parabolic equations, as in case of scheme (3.15) can be taken S = 2, 
but as for scheme (3.14) we can take S = 1. 

From formulae (3.15), (3.16) it becomes known that the difference 
schemes (3.13), (3.14) approximate the problem ( )L u f�  with inaccuracy 
being relevant to h. 

The difference scheme (3.13) allows to calculate the values 
0 , 0, 1,...mu m � 1  on the first level by means of solution on the zero level, in 

other words, by the values 1 , 0, 1,...mu m � 1 . It is sufficient to put n = 0 into 
the formula (3.13) and make calculations of recursive character. Then using 
the values 1

mu , it is possible to calculate 2
mu  the same way at n = 1. That’s 

why this difference (3.13) is called explicit. 
Difference scheme (3.14) has no such feature. Truly, if we put n = 0 into 

(3.14) in left part it will be a linear combination with values 
1 1 1 0

1 1,   ,   ,   m m m mu u u u� � ; there will be values of known function ( ,0)mx�  and 
( )mx!  in the right part. To calculate the values on the first layer –
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1 1 1 1 1
2 1 0 1 2...,  ,   ,   ,   ,   ,...u u u u u� �  – a linear equation discontinuous system is to 

be solved at first. That’s why the scheme (3.14) is called implicit.  
3.2.2. Stability of two-layer difference schemes 

Let’s define the norm in space uh by the rule  
( )

,
maxh n

mu m nh
u u� . 

Let’s view an explicit difference scheme (3.13). Exactly under which 
values r, 2rh: �  the stability of this scheme is possible.  

To prove the stability, we are to outline the difference scheme, which 
will be solved in a single way at any  

( )
n

h m

m
g

*� � +
� ,

, ( )h
hg F  

and the bound is ( ) ( )h h
U Fh h

z M g
 , 

where M is consonant independent on h and g(h), and (1) ( ) ( )( )h h
hL z g� . 

The difference scheme (3.13) is explicit and its single solution is evident. 
Let’s rewrite the formula (1) ( ) ( )( )h h

hL z g�  as  

 1
1 1( ) (1 2 )n n n n n

m m m m mz r z z r z�
� �� � � � � :� , 0

m mz � � ,  (3.17) 
0,   1,   2,...,   0,   1,   2,...,   1m n N� 1 1 � � . 

Let the condition be fulfilled: 

 1 2 0r� -  or 2
1
2

r
h
:

� 
 .  (3.18) 

Then from the formula (3.17) we get 
1max (max max ) (1 2 )max maxn n n n n

m m m m m
m m m m m

z r z z r z� 
 � � � � : � , 

or  

 1max (max maxn n n
m m m

m m m
z r z� 
 � : � .  (3.19) 

The inequality (3.19) means that at 0n
m� . , 1max n

m
m

z �  doesn’t exceed 

max n
m

m
z , so that max n

m
m

z  doesn’t increase with n. 

This property of homogeneous difference scheme is called as principle 
of maximum. Let’s put 0,   1,...,   1n N� �  into the formula (3.19). It gives 
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 1 0
,

max max max n
m m m

m m m n
z z
 � : � , 

 2 1
,

max max max n
m m m

m m m n
z z
 � : � , 

 … 
 1

,
max max maxN N n

m m m
m m m n

z z �
 � : � . 

It should be noticed that 
,

max n
m

m n
�  is the number independent from m and 

n. Having summed the previous inequalities and considering 0 ,m mz � �  we get 

 

,

,

( )
,

max max max

max max

max(1, )(max max ) ,

N n
m m m

m m m n
n

m m
m m n

n h
m m Fm n m h

z N

T

T M g


 � � : � 



 � � � 



 � � � �

  (3.20) 

where M is denoted 

 
1,   for 1,

max(1, )
,  for 1.

T
M T

T T
�*

� � + -,
 

According to the formula (3.20)  

 ( )
,

max n h
m Fm n h

z M g
  or ( ) ( )h h
U Fh h

z M g
 . 

Thus, the scheme (3.13) at the condition (3.18) is fulfilled is stable one. 
So, condition (3.18) is tough as it gives 

 21
2

h: 
 .  (3.21) 

If we’d like to preserve stability, the small pitch at time � should be 
chosen while calculating by the scheme (3.13). Let’s turn to the difference 
scheme (3.14) corresponding to the pattern in the Fig. 4 and rewrite it as 

 

1 1 1
1 1

0

2

( ) (1 2 ) ( , ),

( ),

0,  1,  2,...,  0,  1,  2,...,  1,   .

n n n n
m m m m m n

m m

r u u r u u x t

u x

m n N r
h

� � �
� � �� � � � � � :�

 
 � ! �
 :

� 1 1 � � �  
�

  (3.22) 



 37

(m + 1, n + 1) (m, n + 1) (m – 1, n + 1) 

(m, n)
Fig. 4. Implicit two-layer pattern 

What calculations should be carried out to find values 1
mu  (by the for-

mula (3.22)) on the first-time layer with value 0
mu  on zero-time layer. Putting 

n = 0 into the Eq. (3.22), we have 
1 1 1 0

1 1
0

( ) (1 2 ) ( ,0),

( ),
0,  1,  2,...  .

m m m m m

m m

r u u r u u x

u x
m

� � �� � � � � � :�
  � ! �
 � 1 1  �

  (3.23) 

These formulae are the continuum system of linear equations relevant to 
the unknown 1 1 1 1 1

2 1 0 1 2...,  ,  ,  ,  ,  ,...u u u u u� �
It is difficult to solve such problems being time taking. So, difference 

schemes of the formula (3.14) are not convenient for Cauchy problem on 
continuous segments and is not widely used. If the segment of axis x, taken 
by Cauchy problem, is ended, that means ,a x b b a K
 
 � 
 , and addi-
tional limits to the solution of ( , )u x t  are given on the lines x = a and x = b,
it provides the difference schemes of the Eq. (3.14) to be effective. Particu-
larly, these schemes are absolutely stable at any 2 0r h� : 4 .

If on segments of these lines (mentioned above) the conditions 
0( , ) ( )u a t t� � , 1( , ) ( )u b t t� �  are given, the system (3.23) changes: 

1 1 1
1 1

1 1
0 1 1 1

( ) (1 2 ) ( ) ( ,0),

( ),   ( ),

1,  2,...,  1,   .

m m m m m

m M

r u u r u x x

u t u t
b am M h

M

� �
�

� � � � � ! � :�  
 

� � � � �
 �  � � �
�

  (3.24) 

The formula (3.24) presents the system (M + 1) of algebraic equations 
relevant to 1 1 1

0 1,  ,...,  Mu u u . The matrix of these systems is three-diagonal and 
may be solved by the sweep method. Realization of implicit difference 
schemes requires more calculations for setting the solution on one-time layer. 
There may be few such layers, because of the limits absence to the ra-



 

 38

tio 2/ h: . If we use explicit difference scheme, the recursive rule is used to 
find the solution on the next layer and it doesn’t involve a lot of calculations. 

The number of time layers may be greater, it stands for limits 2
1
2h

:

 .  

Let’s now consider the convergence of scheme (3.13), which approxi-
mates the problems (3.5), (3.6) with inaccuracy 2( )O r h�  is stable at 

1/ 2r 
 . Therefore scheme (3.13) is convergent by the theory on approxima-
tion and stability. Meanwhile inaccuracy of order 2( )O r h�  will be for an 
approximate solution. 

3.3. Difference schemes for the equations of an elliptic type 
These problems are to be considered by the equation of Poisson with 

constant coefficients. 
3.3.1. Construction of difference approximation  

for the Poisson’s equation 
Let the Poisson’s equation be in some area �  with border �  

 
  

2 2

2 2 ( , )u u f x y
x y

� �
� �

� �
.  (3.25) 

A rectangular mesh is chosen by the rule ( , ) hm n � . 
Then all nodes are transferred to the mesh area h� , which belong to the 

area � � �D D  (Fig. 5). 
 

 y  

x

�

D

��

h  
Fig. 5. Difference approximation construction 

Let’s take five-point pattern (Fig. 6). 
Using the location of points at this pattern, let’s divide area nodes into 

two categories: interior and boundary. The node (m, n) is taken as an interior, 
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if it by itself and four adjoining points of the pattern belong to area h�  (the 
nodes are marked by symbol °). Let’s express the set of interior nodes 
through 0

h� . Other nodes will be defined as boundary (marked asterisk “*”), 
and their set will be expressed through �h.  

So, 0 �h h h� �� � . 
 

 (m, n + 1) 

(m, n) 
(m + 1, n)

(m, n – 1) 

(m – 1, n) 

 
Fig. 6. Five-point pattern 

It is clear that division of nodes from h�  into interior and boundary de-
pends on chosen pattern. 

The node 0( , ) hm n � . The substitution of differential equations (3.25) 
by difference one will be fulfilled only in interior nodes. 

We have  

 
  

2 2

2 2
( , ) ( , )

( , )m n
x y x ym n m n

u u f x y
x y

� �
� �

� �
.  (3.26) 

Having used approximation of the second derivatives we get  

 
 

2 4
1 1

2 4
(1)( , )

( , ) 2 ( , ) ( , )
12

m n m n m n

x ym n

u x y u x y u x y h u
h x

� �� � �
� �

�
 

 

2 4
1 1

2 4 (1)( , )

( , ) 2 ( , ) ( , ) ( , )
12

m n m n m n
m n

x ym n

u x y u x y u x y l u f x y
l y

� �� � �
� �

�
,  (3.27) 

0( , ) hm n � , 
(1)

1 1m m mx x x� �� � , (1)
1 1n n ny y y� �� � . 

Let 
 

4

4
u

x
�

�
 and 

 

4

4
u

y
�

�
 be limited by an absolute value in � . Then in for-

mulae (3.27) at sufficiently small h and l we can ignore members, containing 
h2 and l2 as a multipliers, we get the desired difference equation 
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 (1) ( ) ( ) ( )h h
hL u f� ,  (3.28) 

where 1, , 1, , 1 , , 1(1) ( )
2 2

2 2
( ) m n m n m n m n m n m nh

h
u u u u u u

L u
h l

� � � �� � � �
. � , 

0( , ) hm n � , ( ) ( , )h
m nf f x y. . 

Being defined an equation residual we can get 

 (1) ( ) ( )( ( , )) h h
hhL u x y f f� � 6 � ,  (3.29) 

where uh(x, y) is the exact solution at nodes: 

 
  

2 4 2 4
( )

4 4(1) (1)( , ) ( , )
12 12

h

x y x ym n m n

h u l uf
x y

� �
6 � . �

� �
, 0( , ) hm n � . (3.30) 

Under made suppositions relevantly to 
4

4
u

x
�

�
 and 

4

4
u

y
�

�
, as it goes from 

the formula (3.30), there is a bound  

 ( ) 2h
Fh

f Mh6 � 
 .  (3.31) 

Here M is a constant, independent from  and  h l h� � � . 
The bound (3.31) shows that difference equation (3.28) approximates 

the equation (3.25) to the solution u(x, y) with inaccuracy of order 2( )O h . 

3.3.2. Different edge problems and approximation of edge conditions 
There are three types of conditions that join to the equations of elliptical 

type (particularly, to the Poisson’s equation (3.25)): 
1) boundary conditions of the first type: 

 ( )u �� � � ;  (3.32) 
2) boundary conditions of the second type: 

 ( )u M
n �

�
� �

�
,  (3.33) 

 u
n

�
�

 – exterior normal derivative; 

3) boundary conditions of the third type: 

 ( , ) ( , ) ( )ux y x y u �
n �

�; <� �� � �= >�? @
,  (3.34) 
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 , ,� � �  are known functions. 
If it is demanded to define the function u(x, y), which satisfies equa-

tion (3.25) in D-area, and on the boundary � it satisfies one of the edge con-
ditions, the edge problem for elliptical equation is given. 

The problems (3.25), (3.32) are called Dirichlet’s problems, 
Problems (3.25), (3.33) – Neuman’s problems, 
The problems (3.25), (3.34) are mixed boundary problem. 
How boundary conditions of the first type are substituted by difference 

conditions (Fig. 6)? The boundary conditions are substituted by the condi-
tions on the set of boundary nodes �h. 

 

 �y 

��

x
h

D

0 

M B A

 
Fig. 6. Substitution of the boundary conditions of the first type  

by difference conditions 

Let (m, n) be some node from �h. Let’s denote it as B; (m + l, n) is an in-
terior node, the nearest to B at x direction. By letter E we define the point of 
the contour �, the nearest to B at x direction. 

The coordinates of these points are as follows: 
1( , ),  0 ,  ( , ),   ( , )m n m n m nM x y h B x y A x y�� 6 � 6 � . 

By the condition (3.32) we have ( ).�u �� �  
It allows for nodes ( , ) hm n �  to put 

 ( ) ( , ).mn m nu M x y� � � � � 6   (3.35) 
Let’s find inaccuracy of the formula (3.35) 

(1)
(1)( , )

( ) ( , ) ( , ) , .m n m n m m m
x ym n

uM u x y u x y x x x
x

�
� � � 6 � � 6 � 6 � �

�
 

It means  

(1)( , )
( , ) ( ) ( , ) .m n m n mn

x ym n

uu x y M u x y u
x

�
� � � � � �6

�
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The inaccuracy of the formula (3.35) has the first order relevantly to h suppos-
ing that h6 � � . If points M and B coincide, the formula (3.35) will be precise. The 
precision of   at  ( , )mn hu m n �  may be increased by values u(x, y) at A-point. 

We have: 

 
 

2( ) ( , ) ( ) ( )m n
B

uu M u x y u B O
x

�
� � 6 � � 6 � 6

�
,  (3.36) 

 
 

2( ) ( , ) ( ) ( )m n
B

uu � u x h y u B h O h
x

�
� � � � �

�
.  (3.37) 

Having excluded 
B

u
x

�
�

 from the Eq. (3.36) with the help of the for-

mula (3.37), we get  
2( ) ( )( ) ( )h M u Au B O h

h
� � 6

� �
� 6

. 

Taking away the value 2( )O h , we search for difference boundary condi-
tion that approximates the boundary condition (3.32) at the node ( , ) hm n �  

with inaccuracy 2( )O h : 

 1,( ) m n
mn

h M u
u

h
�� � 6

�
� 6

. (3.38) 

Let’s turn to the interchange of the second order boundary condition 
with difference equation (Fig. 7). 

 
 y 

0 x

D �

MA B

C

n�

 
Fig. 7. Substitution of the second order boundary conditions  

by difference conditions 

Let B be a boundary node with coordinates ( , )m nx y , M – the nearest 
point of � contour to B, A – an interior node with coordinates 1( , )m nx y� ,  
C – a boundary node with coordinates 1( ,  ),  m nx y n�

�  – an exterior normal 
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to � at M point. Let’s denote the angle between n
�

 and the axes Ox through �, 

and between n
�

 and Oy – through �. It is clear that 3
2
�

� � � � . 

According to the definition we have 

 
     

cos cos cos sinu u u u u
n x y x y

� � � � �
� � � � � � � �

� � � � �
. 

Let’s suppose that at point B the direction of normal is the same as at 
point M. As far as the distance between B and M is the value of order O(h), 
this supposition will be connected with taking in an accuracy of the same or-
der O(h). It means that 

 
  

.
M B

u u
n n

� �
"

� �
 

Finally we get 

1 1( , ) ( , ) ( , ) ( , )cos sin ( ) ( ).m n m n m n m nu x y u x y u x y u x y O h l M
h l

� �� �
� � � � � � �  

Using approximate mesh values we can find  

 , 1, , , 1cos sin ( )m n m n m n m nu u u u
M

h l
� �� �

� � � � � .  (3.39) 

This formula is a difference approximation at the node ( , ) �hm n   of the 
second order boundary condition with accuracy ( )O h l� . 

The expressions of (3.39) type must be written for all boundary nodes 

� ( )u �� � , afterwards, the difference boundary conditions will be got, ap-
proximating boundary conditions (3.33). The substitution of boundary condi-
tions by the difference conditions might be too complicated particularly if the 
contour � has no simple form. The substitution of the third order boundary 
conditions can be fulfilled with the help of formulae (3.35), (3.37), (3.38). 

3.3.3. The construction of difference scheme  
in case of Dirichlet’s problem for Poisson’s equation 

Let the Poisson’s equation be defined in a rectangular area 
{0  ,   0 }x a y b� � � � �D : 

 
2 2

2 2 ( , )u u f x y
x y

� �
� �

� �
, (3.40) 

and the Dirichlet’s condition be on the border � of D-area  
 ( )�u �� � . (3.41) 
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Let the problem (3.40), (3.41) has the only solution u(x, y) in area 

�� �� �  and this solution has continuous derivatives 
4

4
u

x
�

�
 and 

4

4
u

y
�

�
 in D. 

Let’s take a rectangular mesh  

,      0,  1,  2,...,  ,      ,

,        0,  1,  2,...,  ,       .

m

n

ax mh m M h
M
by nl n N l
N

� � �

� � �
 

Using formulae (3.28), (3.35) we write a difference scheme which ap-
proximates the problems (3.40), (3.41) with inaccuracy of order 2 2( )O h l� : 

 ( ) ( )( )h h
hL u f� ,  (3.42) 

where 

1, , 1, , 1 , , 1
2 2

( )

2 2
,

( ) 1,  2,...,  1;    1,  2,...,  1,
,  ( ,  ) ;

m n m n m n m n m n m n

h
h

mn h

u u u u u u

h l
L u m M n N

u mh nl

� � � �� � � �*
� 

  . � � � �+
 �
 
 ,

 

( )

n

( , ),   1,  2,...,  1;   1,  2,...,  1,
( , ),  ( , ) .

m nh

m h

f x y m M n N
f

x y mh nl
� � � �*

. +� �,
 

The difference scheme (3.42) is a linear algebraic equations system. The 
number of this system equation equals ( 1) ( 1)M N� 	 � . 

There is the same number of unknown quantities: umn at m = 1, 2, …, 
M – 1; n = 1, 2, …, N – 1. 

Prove of the scheme (3.42) stability leads to two qualities: 

1. The difference scheme ( ) ( )( ) ,   where  mnh h (h)
h

mn
L z g g

�*
� . +�,

 is an arbi-

trary element from Fh, is to be solved in a single way. 
2. There is a bound ( ) ( )h h

U Fh h
z C g
 , where C is a constant independ-

ent of h and ( )hg . 
Here the norms mentioned above are defined by the rule 

( ) ( )
,

, , ,
max ,     max maxh h

m n mn mnU Fm n m n m nh h
z z g� � � � � . 

Let’s introduce the designation ( ) ( ) ( )( ) ( ) ( )h h h
h xx yyU U UA . A � A . 
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Lemma 1. Let 8 9( ) ,   h
mn mn constB � B B �  be a mesh function, defined 

on 0 �h h h� �� � . If the condition  

 ( ) 0
( , )

( ) 0, where ( , )h
h m n hx ym n

x yA B - �   (3.43) 

is fulfilled, ( )hB  reaches its highest-range value on ( )h�  at boundary points, 
that means on �h. 

Prove. Let’s take the opposite. Let ( )hB  have its highest-range value ijB  

at 0
h� . We can consider even only of values 1, 1, , 1 , 1;  ;  ;  i j i j i j i j� � � �B B B B  ex-

actly less than ijB . Then we get 

1, 1, 1, 1,( )
2 2( , )

2 ( ) ( )
( ) 0;i j ij i j i j ij i j ijh

xx x yi j h h
� � � �B � B � B B � B � B � B

A B � � 
  

, 1 , 1 , 1 , 1( )
2 2( , )

2 ( ) ( )
( ) 0i j ij i j i j ij i j ijh

yy x yi j l l
� � � �B � B � B B �B � B �B

A B � � 
 . 

One of them is fully negative in virtue of the supposition about value 
ijB . Finally we get  

 ( ) ( ) ( )
( , ) ( , ) ( , )

( ) ( ) ( ) 0h h h
h xx yyx y x y x yi j i j i j

A B � A B � A B � .  (3.44) 

The formula (3.44) contradicts the condition of the lemma (3.43), and, 
consequently, our supposition is wrong. 

Lemma 2. Let 8 9( )h
mnB � B  be a mesh function, defined on 

,   h mn constB �� . If the following condition is fulfilled: 

 ( ) 0
( , )

( ) 0,    ( , )h
h m n hx ym n

x yA B � � .  (3.45) 

Then ( )hB  reaches its lowest-range value on hD  at the boundary 
points that is on �h. 

The proof is the same. 
Theorem (maximum principle). Each solution of difference equation 

 ( ) 0
( , )

( ) 0,    ( , )h
h m n hx ym n

x yA B � �  

takes its highest and lowest-range value at some points of the boundary �h . 
The prove follows lemma 1 and 2. 
Let’s use the theorem to prove a single solution of the difference scheme 

 ( ) ( )( )h h
hL z g�   (3.46) 
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at any ( )h
hg F . So, we consider a homogeneous difference scheme 

( )( ) 0h
hL z �  and show that it has only zero solution ( ) 0hz . . We write down 

the homogeneous difference scheme ( )( ) 0h
hL z �  as 

 

( ) 0
( , )( )

( )
( , )

( ) 0,    ( , ) ;
( )

0,            ( , ) � .

h
h m n hx ym nh

h h
m n hx ym n

z x y
L z

z x y

*A � 
  . +

�  
 ,

�
 

If z(h) doesn’t equal zero identically, the value z(h) could have the highest-range 
and lowest-range values at points in view of maximum principle. On �h z(h) � 0, 
that means even in Dh it will be the same z(h) � 0. But z(h) is the solution to the ho-
mogeneous system of algebraic equations. If this system has only a trivial solution, 
the determinant of the array equals zero. The difference scheme (3.46) is the system 
of algebraic linear equations with the same array. As its determinant is different, the 
scheme (3.46) has only one solution. The scheme (3.46) is solvable. 

Now let’s show that the scheme (3.46) has the property  
 

0, ( , ) ( , ) �
max ( max max )mn mn mn
m n m n m nh h

z C
 


 � � �
�

.  (3.47) 

If we find it out, the scheme stability (3.42) will be proved. The bound (3.47) 
is to be got by constructing the majorants for function ( )hz  by Guershgorin’s rule. 

Firstly, let ( , )P x y  be a polynomial of the second order for two argu-

ments: 2 2
00 10 20 01 02 11( , ) .P x y a a x a x a y a y a xy� � � � � �  

Then 
 ( )

20 02( , )
( ) 2( )h

h x ym n
P a aA � � .  (3.48) 

Actually, let’s view  

� �

( )
1, , 1,2( , )

2

2 2
00 10 20 01 022

2
11 00 10 20 01

2
02 11 00 10

1( ) 2

1 ( , ) 2 ( , ) ( , )

1 [ ( ) ( )

( ) ( ) ( )

( ) 2(

h
xx m j m j m jx ym n

m n m n m n

m m n n

m n m m n

n m n m

P P P P
h

P x h y P x y P x h y
h

a a x h a x h a y a y
h

a x h y a a x h a x h a y

a y a x h y a a x a

� �; <A � � � �? @

� � � � �

� � � � � � � � �

� � � � � � � � �

� � � � � � 2
20 01

2
2 20

02 11 202
2)] 2 .

m n

n m n

x a y

a ha y a x y a
h

� �

� � � �
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Similarly we get ( )
02( , )

( ) 2h
yy x ym n

P aA � . 

The majorant ( , )z x y  is to be defined by rule 

2 2 2 2
( , ) �0( , )

1( , ) ( ) ( ) max max
4 mn mn

m n hm n h

z x y a b x y




; <� � � � � � �? @
�

. 

Let’s illustrate a geometrical sense of the function 
2 2 2 2( , ) ( ) ( )S x y a b x y� � � � . 

Let’s view the Fig. 8 at which there is the area D with � contour.  
 

 y 
 b �                 A 
        
 � 
 
 O           a         x 

 
Fig. 8. Attached to the prove of maximum principle 

The length of a diagonal OA equals 2 2a b� , that’s why the equation 
of the curve ( , ) 0S x y �  is the equation of circle with the center at the origin 

of coordinates and the radius equals to 2 2OA a b� � . So if 

( , ) �x y  � �� � , then ( , ) 0S x y - , while ( , ) 0S x y �  only for one point 
from h� , when x = b, y = b. This point doesn’t belong to h�  and 

( , )( , ) 0x ym n h
S x y  4� . 

Let’s show that 

 ( ) ( )h hz Z
 ,  (3.49) 

or, in other words, ( )hZ  is a majorant for ( )hz . 
Taking the sum of / 0( ) ( )h hz Z�  on the set of �h we get 

 

( ) ( ) ( ) ( )
( , ) �� �( , ) �

( , ) � 0 ( , ) �( , )

1 ( , ) max max 0,
4

h h h h
mn x ym n hx y h hm n h

mn mnx ym n h m nm n hh

z Z z Z

S x y



 

; <� � � � � �? @

� � � � � -
�

  (3.50) 
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as far as 
( , ) �

max mn
m n h

� ( , ) �mn x ym n h- � . 

Besides, 

 ( ) ( )
0( ) )h h

h
h

z Z �A �
�

 

 ( ) ( )
,0 0 0( , )0( , )

( ) ( ) ( max ) 0.h h
h h m n mn

h h m n hm n h

z Z�
CC

� A A � � � � � 

� � ��

 (3.51) 

In virtue of the second lemma it goes from (3.51) that function 
( ) ( )( )h hz Z�  takes its lowest value at points �h, but according to (3.50) on �h 

the inequality ( ) ( )( ) 0h hz Z� -  is fulfilled. So everywhere in h�  there is 

 ( ) ( ) 0h hz Z� - .  (3.52) 

If we consider the difference ( ) ( )( )h hz Z�  and use the first lemma, we 
get everywhere in h�  

 ( ) ( ) 0.h hz Z� 
   (3.53) 
From the Eqs. (3.52), (3.53) it follows 

 ( ) ( )h hz Z
   (3.54) 

for every ( , )m n hx y � . From the bound (3.54) we find  

 
0 ( , ) �( , )

1 ( , ) max max
4mn m n mn mn

m n hm n h

z S x y



 � � � 

�  

 

2 2

0 ( , ) �( , )

1 ( ) max max
4 mn mn

m n hm n h

a b



 � � � � 

�  

 

2 2

0 ( , ) �( , )

1max ( ),  1 max max
4 mn mn

m n hm n h

a b


; <
* � = >
 � � � � �+ �= >, � = >? @�  

 
0 ( , ) �( , )

max max  .mn mn
m n hm n h

C


; <
= >� � � � �= >
= >? @�  
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So, 
, 0 ( , ) �( , )

max max maxmn mn mn
m n m n hm n h

z C


; <
= >
 � � �= >
= >? @�

. 

It means that the bound (3.53) is defined, and, consequently, the stability 
of difference scheme (3.42) is proved. 

The difference scheme (3.42) approximates the problems (3.40), (3.41) 

with inaccuracy of order 2( )O h  (we suppose that h const
l
� ). Besides, this 

scheme is stable. Finally the scheme is convergent, and the rate of its conver-
gence is 2( )O h .  

3.3.4. Matrix sweep method 

Let’s rewrite the difference scheme (3.42): 
2

1, 1, , 1 , 12 ( 2 ) ( , ),m n mn m n m n mn m n m nu u u u u u h f x y� � � �� � � � � � �   (3.55) 

 
0

0 ,
2

2

1,  2,...,  1;    1,  2,...,  1;
(0, ),      ( , ),   1, 2, ... , 1;
( 0),     ( , ),   1, 2, ... , 1;

0.

n n Mn n

m m mN m

m M n N
u y u a y n N
u x u x b m M

h
l

� � � �
� � � � � �

� � � � � �

� � 4

 

Let’s be M > N. We introduce the following symbols: 

 
,1

, 1

    ,   0,...,
m

m

m N

u

u m M
u �

� �� .  (3.56) 

Let’s put n = 1, …, N – 1, into the formula (3.55), using (3.56), and 
write the system of equations (3.55). 

In some way 

 
1 1

0 0 ,     

,        1,  ...,  1,
,

m m m m

M a

u Au u f m M
u u

� �� � � � � � 
�� � � �  �

  (3.57) 

where A is a three-diagonal matrix of (N – 1) order 
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(2 2 ) 0 ... 0 0 0
(2 2 ) ... 0 0 0

. . . . . . .
0 0 0 ... (2 2 )
0 0 0 ... 0 (2 2 )

�

� � � �
� � � � �

�
� � � � �

� � � �

; 

 

2
1

2
2

2
2

2
1

( , ) ( ,0)

( , )

( , )

( , ) ( , )

m m

m

m

m N

m N m

h f x y x

h f x y
f

h f x y

h f x y x b
�

�

� ��

�

���

� ;

 

 

1

2
0

1

(0, )
(0, )

(0, )N

y
y

y �

�
�

� �

�
�

,

 

1

2

1

( , )
( , )

( , )

a

N

� y
� y

� y �

�
�

� �

�
�

.

 
The problem (3.57) is identical to the problem having been solved with 

us by the matrix sweep method. Particularly, it has a vector form. 
Let’s state the algorithm of (3.57) problem solution, which is called 

the matrix sweep method. 
1. By formula Rm+1 = –(A + Rm)–1, m = 1, …, M – 1, supposing R1 = 0, we calcu-

late matrices ( )( ),   1,  2,...,  .m
m ijR R m M� �  Their order is (N – 1) � (N – 1). 

After that we place vector S1 = �0, then by the formula 
 1 1( ),    1,  2,...,  1m m m mS R S f m M� �� � � �  
we calculate vectors 

 

( )
1
( )
2

( )
1

,    1 ,2,...,  .

m

m

m

m
N

S

SS m M

S �

� �
�

 

2. Let’s put uM = �a. By the formula 
 1 ,   ,  1,  ... ,  1,m m m Mu R u S m M M� � � � �  

calculate the desired values of the problem solution (3.57) 1 1 0,  ,  ... ,  ,  M Mu u u u� . 
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3.3.5. Iteration method of difference solution method
for Dirichlet’s problem 

Let’s express the values of umn from the scheme (3.42) 

 

2
1, 1, , 1 , 1 ,

2

,2

1 ( ) ,
2(1 )

1,  2,...,  1;    1,  2,...,  1;

,     ( , ).

mn m n m n m n m n m n

m n m n

u u u u u h f

m M n N

h f f x y
l

� � � �
�; <� � � � � �  ? @� �   � � � � �
 
 � � �
 �

  (3.58) 

The values on the boundaries are known: 

 0

0

(0, ),     ( , ),    1,  2,...,  1;
( ,0),   ( , ),   1,  2,...,  1.

n n Mn n

m m mN m

u y u a y n N
u x u x b m M

� � � � � � �
�� � � � � � �

  (3.59) 

In equality (3.58) the value mnu  is expressed through four adjoining 
values iju  by five-point pattern. 

In the iteration solution method the values mnu  at all inner points of the 
area h�  it’s supposed to be equal to some arbitrary values. 

Often it is thought as 
 (0) 0,   1,  2,  ... ,  1;   1,  2,  ... ,  1mnu m M n N� � � � � . 

Then with the help of formulae (3.58), (3.59) new values (1)
mnu , then (2)

mnu  
(and any others) are calculated until the maximum deflection of mesh func-
tions values on previous and current iterations becomes less by module, than 
some of given accuracy 3 in advance. So the iterations are stopped when the 
following condition fulfilled: 

 ( ) ( 1)
,

max l l
mn mn

m n
MAX u u �� � � 3 .  (3.60) 

3.4. Difference schemes for simple equations of hyperbolic type 
A typical and the simplest equation of the hyperbolic type is a wave 

equation 

 
2 2

2 2 ( , )u u f x y
x y

� �
� �

� �
.  (3.61) 

With respect to this equation, we are going to view the following problems: 
1. Caushy problem. In area { 0,   }y x� 4 �2 � � 2D  it is to be found the 

function ( , )U x y  satisfying the equation (3.61), and on the line y = 0 it 
satisfies the initial conditions 
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0

( ,0) ( ),        ( )
y

uu x x x
y �

�
� � � !

�
.  (3.62) 

2. Mixed boundary problem. In area { 0,   }y x� 4 � � � �D  it is to be 
found the function ( , )u x y , which satisfies the equation (3.61). On the 
boundary � of D-area at y = 0 it satisfies the initial conditions (3.62). At 

,   x x� � � �  it satisfies one of the boundary conditions: 
a) conditions of the first type 

 1 2( , ) ( ),    ( , ) ( )u y y u y y� � � � � � ;  (3.63) 
b) conditions of the second type  

 1 2( ),    ( )
x x

u uy y
x x�� ��

� �
� 6 � 6

� �
;  (3.64) 

c) conditions of the third type 

 
1 2 1

1 2 2

( ) ( ) ( ),

( ) ( ) ( ).

x

x

uy y u y
x
uy y u y
x

��

��

��; <: � : � D  = >�? @  
��; <  6 � 6 � D= >  �? @ �

  (3.65) 

3.4.1. Solving Cauchy problem 
Let’s choose a triangular mesh, taking 

 
,     0,  1,   ;

,       0,  1, .
m

n

x mh m
y nl n

� � 1

� �

�
�

 

Let’s view three-layer pattern (Fig. 7) 
 

                              (m, n+1) 
 
 
 
(m–1, n)                     (m, n)        (m+1, n)
 
 
 
 
                              (m, n–1)  

Fig. 7. Three-layer pattern 
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According to this pattern we define the set 0
h�  of interior nodes and the set 

�h of boundary nodes. We refer nodes on the line y = 0 to the set �h, and nodes 
( , )m nx y �  – to 0

h� . The total mesh area 0 �h h h� �� �  contains the nodes 
( , ) �m nx y  � �� � . Using the given pattern we get the difference scheme 

 ( ) ( )( )h h
hL u f� ,  (3.66) 

where 

 

1 1
1 1

2 2

0
( )

1 0

2 2 ,

,( )

,

0,  1,   ;   1,  2,  …; 

n n n n n n
m m m m m m

h m
h

m m

u u u u u u
h l

uL u
u u

l
m n

� �
� �* � � � �

� 
 
  � +
 �
 
 

� 1 � , �

 

 ( )

( , ),
( ),
( ),

0,  1,  ... ;   1,  2,   .

m n

mh

m

f x y
x

f
x

m n

*
 � � +
! 

 � 1 �, �

 

This scheme, that is easy to be proved, approximates the equation (3.61) with 
inaccuracy of order 2 2( )O h l� , and the initial conditions with inaccuracy ( )O l . 

The order of initial conditions approximation can be increased. To this 

purpose we replace 
( ,0)xm

U
y

�
�

 by formula  

 
2 3

1 1
3 (1)( ,0) ( , )0

( , ) ( , )
2 6

m m

x x ym m

u x y u x yu l u
y l y

��� �
� �

� �
,  (3.67) 

where (1)
1 0 ,   y l l y l� � � � � � . From formula (3.67) we get a mesh condi-

tion, approximating the initial condition 
 0

( )
y

u x
y �

�
� !

�
 with inaccuracy of 

order 2( )O l : 

 
1 1

( ),    0,  1,   
2

m m
m

u u x m
l

��
� ! � 1 � .  (3.68) 
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The value 1
mu�  may be excluded with the help of difference equation (3.66), 

having put into it n = 0. We have  

 
0 0 0 1 0 1

1 1
02 2

2 2 ( , )m m m m m m
m

u u u u u u f x y
h l

�
� �� � � �

� � . 

That’s why the Eq. (3.68) can be rearranged 

 
1 0

0
0

1 1( ) ( ) ( , )
2 2

m m
m xx m m

u u x l U lf x y
l
�

� ! � A � ,  (3.69) 

where 
0 0 0

0 1 1
2

2( ) m m m
xx m

u u uu
h

� �� �
A . . 

So, instead of the difference scheme (3.66) another one can be written, 
approximating problems (3.61), (3.62) with inaccuracy of order 2 2( )O h l� : 

 ( ) ( )( )h h
hL u f� .  (3.70) 

The operator Lh is calculated in the Eq. (3.66) but  

 ( )
0

( , ),
( ),

( ) ( ( ) ( ,0)),
2

0,  1,  ;    1,  2,   .

m n

m
h

m xx m m

f x y
x

f lx u f x

m n

*
 �  � +
! � A � 

 
� 1 � , � �

 

Let’s demonstrate how to calculate values 2
mu  using values 

0 1 and  m mu u . By virtue of the formulae (3.66) and (3.70) we have 

 

0

1

( ),
1 1( ) ( ( ) ( ( )) ( ,0)),
2 2

0,  1,   .

m m

m m m xx m m

u x

u x l x l x lf x

m

� �

� � � ! � A � �

� 1 �

  (3.71) 

The difference equation in the scheme (3.70) is to be rewritten as  

 
1 2 1 22 ( ) ( , ),
0,  1,  ;    1,  2,   .

n n n n
m m xx m m m nu u l u u l f x y

m n

� �� � A � �

� 1 �� �
  (3.72) 

At n = 1 by the formula (3.72) we calculate values 2 ,     0,  1,mu m � 1 �; val-
ues 0 1 and  m mu u  are known in the view of the Eq. (3.71). Then by the formu-

la (3.72) at n = 2 we find values 3
mu  through known quantities: 1 2 ,  m mu u , and so on. 
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3.4.2. Solving mixed problem 
Let the equation be solved 

 
2 2

2 2 ( , )u u f x y
x y

� �
� �

� �
,  (3.73) 

given in the area {0 ,   }y Y x� � 
 � 2 � � � �D . 
We are going to consider that the initial conditions are joined the equa-

tion (3.73) 

 
0

( ,0) ( ),   ( ),   
y

uu x x x x
y �

�
� � � ! � 
 
 �

�
  (3.74) 

and also the boundary conditions of the third order  

 
1 2 1

1 2 2

( ) ( ) ( ),

( ) ( ) ( ).

x

x

uy y u y
x
uy y u y
x

��

��

�; <: � : � D= >�? @

�; <6 � 6 � D= >�? @

  (3.75) 

We choose the plain triangular mesh, taking  

 
,    0,  1,...,  ,   ;

,     0,  1,   ,  ,   ( 1) ,    0.

m

n

bx mh m M h
M

y nl n N Nl Y N l l

� �
� � �

� � 
 � � � 4�
 

To substitute the equation (3.73) by difference one we use by five-points 
three-layer pattern. The mesh area Dh is to be divided into set of 0

h�  interior nodes 

 0 {( , ),   1,  ... , 1;  1, , 1}h m nx y m M n N� � � � ��� , 
and a set of �h boundary nodes  

 � {( , ),   0,  ... , ,   0;  
0,   0, ..., ;   ,   0,  ..., }.

h m nx y m M n
m n N m M n N

� � �

� � � �
 

On the set of 0
h�  the equation (3.73) and the initial conditions (3.74) 

are approximated by the difference scheme of (3.70) type. To substitute the 
boundary conditions on lines x = � and x = �, we use formulae of (3.68) type 

 

1 0
1 2 0 1

1
1 2 2

,

,

n n
n

n n n

n n
nM M

n n M n

u u u
h

u u u
h

�

��
: � : � D   

�
�  6 � 6 � D  �

  (3.76) 

0, 1, , ,n N� �  
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where :1n = :1(y), :2n = :2(yn), and so on. 
Difference condition (3.76) approximates the boundary conditions (3.75) 

with inaccuracy of order ( )O h . 
The numerical realization of the scheme (3.70) with the conditions (3.76) 

is carried over as well as numerical realization of the scheme (3.70). Firstly, us-
ing formulae of (3.71) type, we calculate the values on a zero-layer 0

mu , then 

values on the first-layer 1
mu . In both cases m changes in the range 0 m M
 
 . 

Further, by the formula (3.72) at n = 1 we calculate 2 2 2
1 2 1,  ,  ,  Mu u u �� . 

To fulfill calculations on the second layer of values 2
0u  and 2

Mu  we use 

difference boundary conditions (3.76) at n = 2. Similarly, by values 1
Mu , 2

Mu , 

m = 0, …, M the values 3 3 3
1 2 1, ,..., Mu u u �  are calculated, and so on. 

In conclusion, the following condition for stability of difference 
scheme / 0( )h h

hL u f�  according to initial data is sufficient: 

 
2

2
1 ,   > 0

1
l
h


 3
� 3

. 

It is noticeable, implicit difference schemes are also viewed for equa-
tions of the hyperbolic type. 

3.5. Method of finite elements (MFE) 
3.5.1. General remarks 

The basic idea of the finite elements method provides that any contin-
uum value, such as temperature, pressure, etc., may be approximated by 
a discrete model, which is constructed on the set of piecewise continuous 
functions defined at the finite number of points in viewed sub-area. 

Continuous value is unknown in advance, and we should find the val-
ues of this quantity at some interior points of the area. 

While constructing a discrete model, it is carried out: 
1. The finite number of points is fixed in the viewed area. They are called 

node points or nodes. 
2. The value of continuous quantity at each node point is regarded as vari-

able that must be defined. 
3. The area of defining a continuous quantity is divided into finite number 

of sub areas called the elements. These elements have common node 
points and all together approximate the form of the area. 

4. Continuous quantity is approximated on each element of the polynomial, 
which is defined with help of these quantities node values. The polynomial 
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is defined for each element. The polynomials are chosen so that to have the 
quantity continuous along the boundary of the elements. Polynomial con-
nected with each element is called the function of the element. 

5. Joining of the finite elements together into ensemble. Here the node val-
ues must be regulated so as to provide the best approximation to the real 
continuous distribution. This step leads to an algebraic system of linear 
equations relevantly to node values. This system is the model of desired 
continuous function. 

6. Solution to the system has been found (finding out the node values). 
7. Searching for value of desired quantity at any point of the area by the 

node values and elements functions. 
The basic concept of MFE can be demonstrated by the uni-dimensional 

example of distribution of temperature in the pod (Fig. 9) 
The continuous quantity T(x) is to be considered. The area of definition 

is the segment OL along the axis x. There are five fixed and numbered points 
on the axis x. They are node points. 

Let’s consider the case if the values T(x) are known at each node point: 
T1, … , T5. 

The division of area into elements can be carried out by two different 
methods. It is possible to limit each element by two adjoining node points, so 
making four elements. It is also possible to divide the area into two elements; 
each of these contains 3 nodes (Fig. 11). 

 

 
Fig. 9. Using of MFE for given distribution of temperature  

in uni-dimensional pod 

Polynom (relevant to the element) is defined by the values T(x) at node 
points. In case of area division into four elements (there are two nodes for 
each element), the function of the element is linear by x. The final approxi-
mation T(x) will consist of four piecewise continuous functions (each one is 
defined on a separate element). 
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Fig. 10. Division of area into elements by two different methods 

Another method of area division into two elements with three node 
points that gives the element function in the form of polynomial of the sec-
ond order. In this case the final approximation T(x) is the total of two piece-
wise continuous quadratic functions. 

Constructing a discrete model of continuous quantity, defined in 
two- or three-dimensional area, the basic method of finite elements is 
used identically. 

In two-dimensional case the elements are described by functions x, y. 
More often the elements are viewed in triangular or quadrangle form. Ele-
ment functions are constructed as flat or curved surfaces (Fig. 11 a, b). Ele-
ment functions are given as plane, if for this element minimal number of 
node points is given. For triangular element the number is 3, and for quad-
rangular element the number is 4. 

 

  
Fig. 11. Elements in a form of triangle (three nodes) and quadrangle (four nodes) 

(a) and in a form of triangle (six nodes) (b) 

If used number of nodes is more than minimal, the element function is 
relevant to the curved surface. 

Besides, an excessive number of nodes allows to consider elements with 
curved boundaries. 

The final approximation of two-dimensional quantity ( , )x y�  is the set 
of piecewise continuous function, each of these is defined on a separate ele-
ment with the help of values ( , )x y�  at the relevant node points. 
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3.5.2. Discretization of area and numbering of nodes 
The division of unidimensional area into elements is brought to the divi-

sion of a segment into shorter areas. The division of two-dimensional area is 
started from it’s boundary to fulfill more precise approximation of boundary 
form. Then the division of interior area takes place. Particularly, the division 
of area into elements is fulfilled by several steps. At first, the area is divided 
into quite large subareas. The boundaries between them lie whereon there are 
changes of material quality, geometry, applied load, etc. Afterwards, each 
subarea is devided into elements. More often these elements are triangles as 
they are the simplest of two-dimensional elements in sense of analytical pro-
vision. The body is divided into quadrangular and triangular subareas that are 
subdivided into almost equilateral triangles. 

Changes of finite elements in size on the boundaries of subareas are avoided. 
Numbering of nodes is the next procedure at pointing out finite ele-

ments. The order of numbering is of vital importance as it has influence on 
the method effectiveness. 

The array of algebraic linear equations, leading to MFE, is absolutely 
disperse matrix of a band structure. Non-zero elements of such matrix are 
situated in a parallel way relevantly to the principle diagonal. The whole 
number L, being the highest-range difference between numbers of non-zero 
elements in a line, is called a bandwidth. The less the width is, the fewer vol-
ume of matrix storage is needed for at fulfilling MFE on computer and the 
less time spending is for equation system solving. 

The width of the band depends on number of orders for free nodes and 
on method of numbering nodes. 

Number of freedom order is amount of unknown functions, defined at 
each node. For example, for two-dimensional problems on hydraulics at each 
node there are three variables to be defined: pressure and components of speed 
by axis x and y. On numbering nodes, it is preferably to use method, providing 
minimal difference between node numbers at each separate element. If we de-
fine the highest-range difference between node numbers over the whole area 
through R, but the number of freedom orders through Q, the bandwidth is 
 ( 1)L R Q� � � . 

In some cases decreasing of R may be done by sequent numbering of 
node numbers at moving to the direction of smaller given area size. 

At Fig. 12 there are two different methods of numbering nodes in an ar-
bitrary area, divided into finite elements. 

In the first method R = 14 and in the second R = 6. 
The width of band for these methods at one node freedom order is 15 

and 7, at two freedom orders it is 30 and 14 respectively. Rational numbering 
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in case b reduces the volume of Random access memory (RAM) twice in 
comparison to a. 

 

Fig. 12. Two different methods of node numbering 

In MFE we number the elements too. It may be done randomly, as num-
bering of elements doesn’t influence the calculations of the problem. 

3.5.3. Linear interpolar polynomials 
The classification of finite elements can be carried out in accordance 

with polynomials order (the function of these elements). Three groups of 
elements are taken: 
� simplex elements, 
� complex elements, 
� multiplex elements. 

Simplex elements are presented by first order polynomials and complex 
elements by higher order polynomials. In simplex element the number of 
nodes equals the dimension of area +1. In complex element there is a greater 
number of this quantity. 

For multiplex elements the higher order polynomials are used. The 
boundaries of elements must be parallel to coordinates axis.  

3.5.4. One-dimensional simplex element  
One-dimensional simplex element is a straight-line segment L with two 

nodes, one at each end of the segment (Fig. 13). Nodes are given by indices i 
and j, node values are �i, �j. 

Function of the element � 
 1 2x� � � � � .  (3.77) 

Coefficients �1 and �2 are easily to be defined. 
At ix X� , i� �E , and the formula (3.77) gives 1 2i iXE � � � � . 



 

 61

 
Fig. 13. One-dimensional simplex element 

Identically 1 2j jXE � � � � . 
Solving two last equations relevantly to �1 and �2 we derive 

 1
i j j iX X

L
E � �E �

� � ,  (3.78) 

 2
j i
L

E �E
� � .  (3.79) 

Substituting the values �1 and �2 into the formula (3.77), we get expres-
sion for �: 

 i j j i j iX X
x

L L
E � �E � E �E

� � � � ,  (3.80) 

that can be rewritten as 

 j i
i j

X x x X
L L
�# $ �# $� � �E � �E% & % &

' (' (
.  (3.80�) 

Linear functions from x in the formula (3.80) are called form functions 
or interpolar functions. We express them through Ni and Nj: 

 j
i

X x
N

L
�

� , i
j

x XN
L
�

� .  (3.81) 

Here indices i and j at N define the node, which form function refers to. 
Now the ratio (3.80) can be written in matrix form 
 � �{ }i i j jN N N� � E � E � E ,  (3.82) 

where � � [ , ]i jN N N�  is a matrix line and 8 9 i
j

E* �
E � + �E, �

 is a column vector. 

It is seen from the inequality (3.81) that the function Ni equals 1 at node 
of i-number and equals zero at node j-number. Identically, the function Nj 
equals zero i-number node and equals 1 at j-number node. 
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These values are particular for form function. They equal 1 at one defi-
nite node and equal zero at the rest of nodes. 

3.5.5. Two-dimensional simplex element 
Two-dimensional simplex element is demonstrated in the Fig. 14. 
 

 
Fig. 14. Two-dimensional simplex element 

Let’s numerate nodes counter-clockwise. The interpolar polynomial is  
 1 2 3x y� � � � � � � � � .  (3.83) 

Conditions at nodes i, j, k leads to the combined equations 

 
,1 2 3

1 2 3

1 2 3

,

.

i i i

j j j

k k k

Y� X
X Y

� X Y

�� �� � � � � �
 

E � � � � � � � � �
 � � � � � � � � �

  (3.84) 

The solution of this system is 

 
/ 0 / 0

/ 0
1

1 [2
],

j k k j i k i i k j

i j j i k

X Y X Y X Y X Y�
X Y X Y

�� � � � � �E � � � � �E�
� � � �E

 

 / 0 / 0 / 02
1

2 j k i k i j i j kY Y Y Y Y Y�
; <� � � �E � � �E � � �E? @� , 

 / 0 / 0 / 03
1

2 k j i i k j j i kX X X X X X�
; <� � � �E � � �E � � �E? @� . 

Here A is an area of the triangle ijk connected with the determinant of the 
system (3.84) in the following way: 

 
1

2 1

1

i i

j j

k k

X Y
A X Y

X Y

� � .  (3.85) 
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Substituting the values �1, �2, �3 into the formula (3.83), we transform 
the expression for � to make it similar to the Eq. (3.82) 
 i i j j k kN N N� � �E � �E � �E ,  (3.86) 

where 

 � �1
2i i i iN a b x c y

A
� � � � �

�
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,

,

,

i j k k j

i j k

i k j

a X Y X Y

b Y Y

c X X

* � � � �
  � �+
 � � ,

  (3.86a) 

 1
2j j j jN a b x c y

A
; <� � � � �? @�

, 

,

,

,

j k i i k

j k i

j i k

a X Y X Y

b Y Y

c X X

* � � � �
  � �+
 � � ,

  (3.86b) 

 � �1
2k k k kN a b x c y

A
� � � � �

�
, 

,

,

,

k i j j i

k i j

k j i

a X Y X Y

b Y Y

c X X

* � � � �
  � �+
 � � ,

  (3.86c) 

It is easy to demonstrate that the value Ni at j-number node equals to 1, 
Ni = 0 at the second and third nodes, and at other points of the line con-
structed through these nodes. 

3.5.6. Local system of coordinates 
Getting of the system for node values of unknown quantities includes in-

tegrating of form function elements or their partial derivatives over the 
square. Integrating can be simplified, if we write interpolar ratios in the coor-
dinate system, connected with the elements. This is the local system. 

Let’s view a triangular element, where the scalar quantity is as follows: 
 i i j j k kN N N� � E � E � E , 

The form function is defined by the formulae (3.86a), (3.86b), (3.86c). 
Let’s mark the beginning of the local system in the centre of the element 

(Fig. 15). 
Let’s write formulae of coordinate transformation: 

 
,

.

x X s

y Y t

�� �  
�

� �  �
  (3.87) 

Here X  and Y  are coordinates of the triangle centre: 
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,

3

.
3

i j k

i j k

X X X
X

Y Y Y
Y

� �
�

� �
�

  (3.88) 

 t
y 

x

 

Y 

j

i

k

s

X  
Fig. 15. Local coordinate system  

Form function Ni after inserting (3.87) becomes 

 / 01
2i i i i i iN a b X c Y b s c t

A
; <� � � � � � � � �? @�

.  (3.89) 

Taking in consideration (3.86a) and the ratio (3.88), we can derive 

 2
3i i i

Aa b X c Y �
� � � � � . 

So form function in the local system becomes 

 1 2 ( ) ( )
2 3i j k k j

AN Y Y s X X t
A

�; <� � � � � � �= >� ? @
.  (3.90�) 

We obtain identically 

 1 2 ( ) ( )
2 3j i k k i

AN Y Y s X X t
A

�; <� � � � � � �= >� ? @
,  (3.90b) 

 1 2 ( ) ( )
2 3k i j j i

AN Y Y s X X t
A

�; <� � � � � � �= >� ? @
.  (3.90c) 

Integral from a function given in the global coordinate system can be 
calculated in the local coordinate system with the help of ratio 

 � �
 *

( , )    ( , ),  ( , )     
R R

f x y dx dy f x s t y s t J ds dt�5 5 ,  (3.91) 
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where R and R* are old and new areas of integrating relevantly, |J| is Jaco-
bean module of coordinate system transforming, that equals the ratio of two 
squares in two systems of coordinates Axy/Ast. As two systems are rectangular 
and the sizes of measurement coincide in there, it gives |J| = 1. Besides, 
forms of elements R and R* remain. 

So, the ratio (3.91) becomes 

 � �
*

( , )  ( , ),  ( , )  
R R

f x y dxdy f x s t y s t dsdt�5 5 .  (3.92) 

The function f(x, y) in the left part of this equality is a form function, 
expressed in the global coordinate system, whereas [ ( , ),   ( , )]f x s t y s t  comply 
with element form function, given in the local system. 

3.5.7. Two-dimensional L-coordinates 
For triangular element the most frequent form is a coordinate system de-

fined by three coordinates: L1, L2, L3 (Fig. 16). 
Each coordinate is a ratio of distance from the chosen point of the trian-

gle to one of its sides s and height h, dropped to one side from the opposite 
top. The coordinates Li change in the range of 0 to 1. The coordinates L1, L2, 
L3 are called L-coordinates. Their values give relevant quantities of triangle 
squares, into which the element is divided (Fig. 17).  

 
 

 i 

 j 

k

 h 
bL1

 L2

 L3 
s

 
Fig. 16. L-coordinates for a triangle element 

L-coordinates of point B are squares of triangles in the Fig. 17. The 
square At of the triangle ijk is given as  

 
2t

b hA �
� .  (3.93) 

The square A1 of the hatched triangle (Bjk) equals 
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 1 2
b sA �

� .  (3.94) 

 

A2

A3

B

i

k
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h
b

A1

j

 
Fig. 17. Geometrical interpretation of L-coordinates 

Therefore, 

 1
1

t

A s L
A h

� � .  (3.95) 

Identically  

 32
2 3;  =

t t

AAL L
A A

� .  (3.96) 

As A1 + A2 + A3 = At, we have  
 1 2 3 1.L L L� � �   (3.97) 

The coordinates 1 2 3, ,L L L  are form functions for the simplex element of 
the triangle: 
 1 2 3,    ,    .i j kN L N L N L� � �   (3.98) 

As it goes from Fig. 17 

 1
1  at the nodes with the number   ,
0  at the nodes    and  .

i
L

j k
*

� +
,

 

Such ratios are the same for 2L  and 3L . Besides, the formula (3.97) states 
that at arbitrary point of function element the forms sum is always equal to 1.  

The advantage of L-coordinates is existence of integral formulae, which sim-
plify calculation of integrals along the sides of the element sides and its square: 

 1 2
! !

( 1)!
a b

L

a bL L dL L
a b

� �
� �5   (3.99) 
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(L is a distance between two nodes of a taken side); 

 1 2 3
! ! ! 2

( 2)!
a b c

A

a b cL L L dA A
a b c

� �
� � �5 .  (3.100) 

Using the ratio (3.100) can be shown while calculating the integral  

 i j
A

N N dA�5 , 

where Ni and Nj are functions of x and y. The integral over square of the ele-
ment is transformed as 

1 1 0
1 2 3

1!1!0! 22
(1 1 0 2)! 4! 12i j

A A

A AN N dA L L L dA A� � � � � � � �
� � �5 5 . 

3.5.8. Aggregation of elements into ensemble 
Interpolar polynomial for each element is 

 ( ) ( ) ( )( ) ( )[ ] {�} � � �e e ee e
i j ki j kN N N N� � � � � � � � � ,  (3.101) 

where index (e) presents an arbitrary element. 
The method of including element into area can be demonstrated by an 

example of simple five-element configuration (Fig. 18).  
 

 
Fig. 18. Five-element configuration 

Nodes are numbered from one to six. Quantities – �1, �2, �3, �4, �5,  
�6 – present global orders of freedom. Coordinate of nodes (X�, Y�), � = 1, …, 6 
are supposed to be known. Numbers of element are given in the round brackets. 

To number element nodes the indexes i, j, k given above can be used 
as soon as the first node is defined in each element. At the Fig. 18 i-node 
in each element is markes by an asterisk (*). 
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Fixing of node i allows to write following equalities for different elements: 
element one: 
 i = 2, j = 3, k = 1;  (3.102a) 
element two: 
 i = 3, j = 2, k = 4;  (3.102b) 
element three: 
 i = 5, j = 3, k = 4;  (3.102c) 
element four: 
 i = 6, j = 3, k = 5;  (3.102d) 
element five: 
 i = 1, j = 3, k = 6.  (3.102e) 

These ratios allow to include the element into the area, as they put ele-
ment indexes i, j, k to the global numbers of nodes relevantly. This process 
fixes coordinates of element nodes. 

Values of the indexes i, j, k can be put into the formula (3.101). This 
gives the following equations:  

 

(1) (1) (1)(1)
2 3 12 3 1

(2) (2) (2)(2)
3 2 43 2 4

(3) (3) (3)(3)
5 3 45 3 4

(4) (4) (4)(4)
6 3 556 3

(5) (5) (5)(5)
1 3 61 3 6

� � � ;

� � � ;

� � � ;

� � � ;

� � � .

N N N

N N N

N N N

N N N

N N N

�� � � � � � �
 
 � � � � � � �
  � � � � � � � �
 

� � � � � � �  
 

� � � � � � �  �

  (3.103) 

Form functions are the multipliers at nodes values in the formula (3.103) and 
they are defined by putting numerical values of i, j, k into equations of form functions. 

So function Nk
(e) is given as 
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  (3.104) 
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For the 5th element i = 1, j = 3, k = 6 that gives 

 

(5) (5) (5) (5)
6 6 6 6(5)

(5)
6 1 3 3 1
(5)
6 1 3
(5)
6 3 1

1 ,
2

,

,

.

N a b x c y
A

a X Y X Y

b Y Y

c X X

�; <� � � � �? @  
  � � � � �
 � �
 

� �  �

  (3.105) 

Functions of form (4)
6N  and (5)

6N  in (3.103) are different values, even if 
the quatities of (4)A  and (5)A  are equal. 

There are constants of the expression (4)
6N : 

(4)
6 3 5 5 3
(4)
6 3 5
(4)
6 5 3

,

,

.

a X Y X Y

b Y Y

c X X

� �

� �

� �

 

It makes clear that 4 (5)
6 6N N� . 

With the help of the equalities (3.103) the finite elements are united into 
an ensemble, and interpolar functions are expressed through global node val-
ues and global coordinates, which are introduced instead of arbitrary , ,i j k . 

3.5.9. Finding the equations  
for element with the help of Galerkin’s method 

If we take differential equations 
0Lu f� �  

and approximate solution is to be found as 

i iu N u� � , 
we will have  

Lu f� � 3 , 

where 3 is an error, as the solution u  is approximate. 
It is necessary to make 3 a small quantity. In Galerkin’s method it is 

done with the help of ratios of orthogonality for each basic function Ni: 

0i
R

N dR� 3 �5 . 

This equality means that basic functions must be orthogonal to the error 
by area R. 

The usage of this method in the framework of MFE gives the following 
equations: 
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 ( ) 0 ,  ,  ,   ,	
R

N L  dR ,   i j k� � � � �5 �   (3.106) 

where � is a desired quantity, which is approximated by the expression 
 [ ,  ,  ,  ...]{ }i j kN N N� � E ,  (3.107) 

and L(�) is the left part of the differential equation L(�) = 0, which is to be solved. 
3.5.10. Example. Calculation  

of one-dimensional temperature field in a homogeneous rod 
Supposing there is a rod with length L and square of cross-section S. 

One end of the rod is fixed and it is provided with heat flow q of given inten-
sity (Fig. 19). 

At the free end of the rod there is convection heat exchange with the en-
vironment. 

Coefficient of heat exchange is �, and temperature of environment is T0. 
Along the side surface the rod is heat-insulted. 
The temperature field in the rod is given by the equation of heat conductivity: 

 
2

2 0d T
dx

F � � .  (3.108) 

 
Fig. 19. Illustration to the example (3.5.10) 

The edge conditions are  

 0dT q
dx

F � � �  for 
 = 0,  (3.109a) 

 / 00 0dT T T
dx

F � � �� � �  for x = L.  (3.109b) 

Here F is the coefficient of heat-conductivity, and � is the coefficient of heat 
transmission. 

Let divide the rod into two finite elements and define the length of each 
through L(e), � = 1, 2. 
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Having used Galerkin’s method to the equation (3.108), we derive 

 � �
2

2 0T

V

d TN dV
dx

F � �5 ,  (3.110) 

where [N]T is a column vector, got by transposing the line [N] from form 
function of one-dimensional simplex element (3.81). 

Let’s put into the formula (3.110) a formula for differentiation of the 
multiplication: 

 
� �

2

2
T

V

d TN dV
dx

F � �5
 

 � � � �/ 0 T T

V V

d dT d dTN dV N dV
dx dx dx dx

# $F � � F �% &
' (5 5 .  (3.111) 

Interpolar function T is piecewise-linear one, therefore integrals in the 
Eq. (3.111) can be given as the sum of corresponding integrals for separate elements. 

So the 2nd integral in the Eq. (3.111) can be presented as 

 � �
( )

( ) ( )2
( ) ( )

1 e

TeT e
e e

eV V

d Nd N dT dTdV dV
dx dx dx dx�

; <? @F � F�5 5 .  (3.112) 

Let’s calculate the integrals in (3.112), referring to the separate elements 
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e
ie e

e
j

TdT d N T
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We have 
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5 5
 (3.115) 

The 1st integral on the basis of Ostrogradsky–Gauss theorem is trans-
formed as 
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 � � � � ,T T
x

V S

d dT dTN dV N l dS
dx dx dx

# $�F � � �F � �% &
' (5 5   (3.116) 

where x
dT dTl
dx dn

� , and n is an exterior normal to the viewed surface. 

Under the edge conditions (3.109a) at the point x = 0 at the 1st element 
the integral (3.116) will be the following: 

 
/ 0
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(1) (1)
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  (3.117) 

Under the edge conditions (3.109b) at the point x = L for the 2nd element 
the integral (3.111) will be the following 

 
/ 0

(2)
(2) (2)

3 0

0
 

1
T

S S

dTN dS T T dS
dx

; <; < F � � � �� � �; <= > ? @? @ ? @
5 5

 

 
3 3 0

0
( ).

1
S T T; <

� �� � �= >
? @   (3.118) 

Here S1, S3 are the left and right cross-sections of the rod. 
Taking into consideration the fact there are matrixes under the integrals 

(3.112), (3.117), (3.118), we are to find that at summation the lines of these 
matrixes must be summed, which respond to the same nodes. 

Having summed the expression (3.115) for the 1st and the 2nd elements 
and the expressions (3.117), (3.118), and having equated the sum to zero, we 
get the combined equations 

 
1 1 1

1 1 2 2 2

2 2 3 3 3 0

1 0
0 0

0

c T q S
c c c c T

c c S T S T

� � �; < ; < ; <
= > = > = >� � � � � �= > = > = >

� � �� ��� �= > = > = >? @ ? @ ? @

.  (3.119) 

Here we have 
(1) (1)

1 (1)
Sc

L
�F

� , 
(2) (2)

2 (2)
Sc

L
�F

� . 

The system (3.119) defines the node values 1 2 3,  ,  T T T  at the final proce-
dure MFE is the solution of algebraic linear equation system 
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3.5.11. Two-dimensional equations of the field theory 
The range of problems on physics and engineering are described by the 

equation 

 / 0
2 2

2 2 0L Q
x y

# $� � � �
� � F � � � �% &� �' (

.  (3.120) 

In particular, the equation (3.120) is used to solve problems about liquid 
current, heat-transmission, torsion of tight pod, search for electrostatic field, etc. 

Let’s use Galerkin’s method to solve to this equation in the problem on 
heat transmission. 

In this case F is the coefficient of heat conductivity, � is temperature, 
Q is the source of heat inside the body (Q > 0, if the hit is transmitted to the 
body). For example, in some part of the boundary there is convection heat 
exchange that gives the edge condition. Here h is the coefficient of heat 
transmission: 

 / 00 0h T T
n

��
F � � � �
�

.  (3.120a) 

The insertion of (3.120) into (3.106) gives  

 � �
2 2

2 2 0T

V

N Q dV
x y

# $� � � �
� F � � F � � �% &� �' (

5 .  (3.121) 

First of all, it is needed to transform the equation (3.121): the way it 
could contain only the 1st derivatives. 

Using the multiplication differentiation formulae we find  

 � � � � � �
2

2
 

     
T T TN N N

x x x x x
� � � � � � � �# $� � �% &� � � � �' (

.  (3.122) 

The 1st item in integral (3.121) gives 

 � � � � � �
2

2
  .

     
T T T

V V V

N dV N N dV
x x x x x

� � � � � � � �# $� �% &� � � � �' (5 5 5   (3.123) 

By Ostrogradsky–Gauss theorem we have 

 � � � �  
   

T T
x

V S

N dV N l dS
x x x
� � � � �# $ � �% &� � �' (5 5 .  (3.124) 

Identically with the member containing 
2

2y
� �
�

 and supposing that 

,    dV tdA dS tdL� � , the equation (3.121) becomes 
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T
x y
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N l l dL
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N N
N Q dA

d x x y y

# $� ��� � �
F � � � � �% &% &� � �' (
5 .  (3.125) 

The thickness of the element is t = 1. The surface integral (3.125) can be 

expressed through the derivative 
n

��
�

, as a result we have 
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N N
dA

x x y y
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5  
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T T

A L

N Q dA N dL
n

� �
� � � F � � �

�5 5 .  (3.126) 

Evidently, if 
n

��
�

 becomes zero on the boundary, the 3rd integral disappears. 

Interpolar function � is piecewise linear, therefore the integrals (3.126) 
can be given as a summation of relevant integrals for separate elements: 
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T Te ee eR

e eA
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eT Te e e

e eA L

N Q dA N dL
n

���  ; < ; <� � F ��? @ ? @ �  �
5 5   (3.127) 

Unknown functions �(e) in the equation (3.127) are defined by the ratio 
( ) ( )[ ]{ }e eN� � E .  (3.128) 

Let’s find the integrals for separate elements. Meanwhile, we are going 
to drop the upper index (�) in all symbols of element matrixes except the case 
when it is necessary to distinguish two elements. 

Let’s view the 1st integral in (3.127). Taking (3.128) we derive 

 � � � �
    

 
T T

A

N N
I dA

x x y y

# $� ��� � �
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5  
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N N N N
dA �

x x y y
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5 .  (3.129) 
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Introducing symbols 

 

� �

� �
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�= >? @

,  (3.130) 

we rewrite this integral as  
 � � � � { }T

A

I B B dA� F � � � E5 .  (3.131) 

The unknown function � in the equation (3.131) is defined by the formula 
[ ]{ }N� � E , 

therefore, 

� �/ 0 � �/ 0
    

  { }  , { }N N
x x y y

� � � � � �
� E � E

� � � �
. 

Inserting this formulae into the 1th intergral in (3.126), we have 

 � � � � � � � � 8 9
    

�
T T

A

N N N N
dA

x x y y

# $� � � �
� � � �% &% &� � � �' (

5 .  (3.132) 

Let’s take the 3rd integral into equation. 
Supposing we have the range of triangular elements along the vertical 

boundary (Fig. 20) along this boundary: 

 � �
 

 .T

L

N dL
n

� �
�5   (3.133) 

 

 
Fig. 20. Referents to the derivation of the 3rd integral in the equation (3.126) 
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The thermal current along the boundary is relevant to the heat loss, 
caused by convection heat exchange, and presented by the value 

 / 0
 

0
 

Sh
n

� �
� � � ��

�
,  (3.134) 

where �S is boundary temperature of body, and �0 is temperature of environment. 
Temperature inside the element 

 i i j j k kN N N� � �E � �E � �E ,  (3.135) 
and we have four points of the surface at L-coordinates 
 2 30s i j kL L� � �E � �E � �E ,  (3.136) 
as far as along the taken boundary 1 0L �  

For heat flow we get 

 / 0 � �
 

0 2 3 0

�
0    �

�

i

S j

k

h h L L h
n

* �
��   � � � �� � � � � ��+ ��   , �

.  (3.137) 

Inserting (3.137) into (3.133) gives 

 � � � � � � � � 0{ }T T T

L L L

N dL h N N dL N h dL
n

��
� � � � E � � ��

�5 5 5 ,  (3.138) 

where [N] = [0 L2 L3]. Let’s fulfill integration with L-coordinates, taking so as 
form function for linear triangle element really is as follows: 
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Then 
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Inserting (1.140) into (3.138), we find 
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Let’s view the 3rd integral in (3.137) 
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This integral is different from zero on the side of the triangle, on which 

0
n

��
�

�
. The same thing is on the boundary side, which heat loss goes 

through, caused by the convection heat exchange. This current is presented 
by the quantity / 00h � ��  on the boundary side 
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Taking (3.143) for the integral (3.142), we have  
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where integral is calculated along the side of the triangle, which the heat ex-
change takes place (Fig. 21). 

Firstly, let’s calculate the integral: 
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Fig. 21. Convection heat exchange through the side ij 

Let the side between nodes i and j be under influence of convection 
Nk = 0 along this side and the integral becomes 
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Let’s use L-coordinates and put 
L1 = Ni, L2 = Nj, L3 = Nk = 0. 

Using the formula (3.99), we get for the side ij 
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1 2 0

6
0 0 0

T

L
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Identical formulae can be got for the sides jk and ki. 
Let’s find the integral 
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Fulfilling the calculations for the side ij and using L-coordinates, we get 
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The last integral in (3.127) is 
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Supposing Q to be a constant one in the element, we have 
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So all integrals in (3.137) for each element are calculated. 
It is needed to calculate matrixes for each element and to unite them into 

an ensemble. It leads to the system of algebraic linear equations. 
Obtaining such a system and its solving is a complicated procedure. 

As a rule, a computer is used to fulfill them. 
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APPENDIX 
ELEMENTS OF FUNCTIONAL ANALYSIS 

1. Transformations 
Let’s consider two sets F and G, containing arbitrary elements. Let there 

is a rule A, according to which the only element g from the set G is taken for 
any element f from the set F relevantly. Thus, we state that a transformation 
of the set F into G is given (Fig. 22). 

The following symbols are to be used: 
A : F G)  A is the transformation of F into G. 

,   ,  f g f F g G �  the element f from F is transformed into g from G. 
 

 

F G 

A

f g

 
Fig. 22. Transformation A of the element f F  into the element Ag f� ;  

the element g = Af is an image of element f 

As far as transformation A is for any element from f, we say that A is 
defined on the set F, and the set F is called the domain of A and signify it as 
D(A). In this case D(A) = F. If (A)f D , Af belongs to G and is called an 
image of the element f. Identically the image of set is defined. Let P be a sub-
set of D(A). The set of images of all these elements from P make the image 
of P set. The image of a domain is called the set of transformation A values 
and is signified as R(A). If (A)Q RG , the set of the elements (A)f D , so 

that Af Q  is called a preimage of the set Q and is signified as 1A Q� . Sym-
bol A–1 is not, generally speaking, transformation, because according to the 
statement there are several elements 1 2, ,…, nf f f (A)D  which are able to 
have one and the same image (A)g R , therefore, the element g has the set 
8 91 2, ,..., (A)nf f f DG  as its pre-image. In case when each element (A)g R  
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has a pre-image containing one element 1A (A)g D�  , A is called one-one 
transformation. The A–1 is another one-one transformation called inverse to 
A. Some transformations have special names: 
� if (A) nD G �  and 1(A)R G � , such transformation is called the func-

tion of n-variables (by dimension); 
� if transformation is defined on the function set, and 1(A)R G � , such 

transformation is a functional one; 
� if transformation is defined on the function set with values in functions, 

it is called the operator; 
� if there are two transformations A and B giving A : M N)  and 

B: N P) , we can define another transformation C : M P) , called the 
composition of A and B transformation and is defined through B A� . 
If m M , A transforms m into the element Am N , meanwhile B turns 
it into element B( )Am P . Thus, (B A) B(A )m m�� . 

2. Vector space 
Let’s find out what we can say about those sets between each element 

the transformation A establishes conformity. Let’s view plane. Let’s choose 
some point, call it zero and signify it by 0. Afterwards, to any point of the 
plane we can connect a vector (as it is presented at school: a directed segment 
with an arrow going from point 0 to any point of the plane). The set of points 
can be interpreted as the set of vectors, having common start from point 0. 
This interpretation is one-one transformation of points set to the set of copla-
nar vectors going from point 0. Let two points p and q lie at the same line 
with point 0 (or similarly two vectors p and q lie on the same line). Let us be 
able to measure the length. We signify the length of vector by l. If /p ql l � � , 
it provides that p q� � , when p and q lie on the one side from point 0, and 
p q� �� , when they are lying on different sides (Fig. 23 a). Thus, we have 

defined multiplication of vector by number. Further, let p and q be two arbi-
trary vectors. Let’s find their sum r as a vector, directed along the diagonal of 
the parallelogram, constructed of these vectors with the length equal to the 
length of the diagonal, what means r = p + q (Fig. 23 b). 

It is important to understand that methods of finding �q and p q�  were 
so-to-say defined by us. The set of point by itself doesn’t provide the method to 
define �q and p q� . We can (if necessary) define these operations in a different 
way and even to call differently (there no interior reasons to call vector r 
a summation but not by multiplication). The way we defined the multiplication 
by number, and summation provides respect for traditions. Multiplication by num-
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ber and the sum of vectors are examples of transformation, which were men-
tioned above. The 1st one transforms the plane into itself: some point of the 
plane is transformed into point of the same plane. The 2nd one transforms any 
pair of vectors (element of the domain presents any pair of vector by itself) into 
a vector: there is the 3rd point of this plane, which is put relevantly to any pair 
of points. The defined transformations have the range of features. At first there 
is commutativity and associativity of addition and multiplication by number: 
1. p q q p� � � , 
2. / 0 / 0p q r p q r� � � � � , 
3. / 0p q p q� � � � � � , 
4. / 0 p p p� �� � � �� , 
5. / 0 / 0p p�� � � � . 
Here ,� �  are numbers and p, q, and r are vectors. Further the zero vector is 
relevant to point 0, for which it is right 0p p� � . 

 � b

0 0

q 

p = �q 

q 

p r = p+q 

 
Fig. 23. Operations with vectors 

Besides, for any vector p there is always vector q 0,p q� �  and it is 
actually, expressed through p. If vector p is multiplied by 1, it will finally 
transform into itself (the length and direction remain the same). The set, for which 
elements there is addition and multiplication by number defined, having the 
pointed features, is called vector space. It is particular that a vector, an element 
of vector space, can be presented not only by the point of the plane (or an arrow), 
and also by object of any origin (as we will see it further – number, function, 
operator, etc.). It is necessary to define addition and multiplication by number, 
possessing the features mentioned above. Let’s take all those given above by the 
following way. Let V be some not empty set and f, g, h be some of its elements. 
This set is called vector (or linear) space, if there is mentioned rule, according to 
which the 3rd element from V respectively called the sum of elements, is put in 
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compliance with two elements of V. The same is about the rule according 
to which to any element from V and any number (generally, complex number) we 
put an element from V respectivety called multiplication of element by number. 
Both these rules obey the following axioms: 
1. f g g f� � �  is the commutative law; 
2. / 0 / 0f g h f g h� � � � �  is the associative law; 
3. There is an element 0 called zero, at which f � 0 = 0; 
4. For any f there is an opposite element –f, at which ( ) 0;f f� � �  
5. 1 ;f f� �  
6. ( ) ;f g f g� � � � � �  
7. ( ) ;f f f� �� � � � �  
8. ( ) ( ).f f�� � � �  

In axioms 5–8 1, ,� �  are numbers. The elements , , ,f g h V�  are 
called the points (or the vectors). 

Example 1. 1�  is the set of substantial numbers. Fulfilling the axioms 1–8 
for defined by usual way addition and multiplication is not difficult to be 
proved. So 1�  is the vector space, the points and vector of which are presented 
by substation numbers. If we “place” all substation numbers on the line 
(to choose zero point, to connect p with number �, if the distance from 0 to p 
equals �), the vectors can be presented as arrows directed from point 0 to point p. 

Example 2. n�  is the set, an element of which is ordered totality from 
n-numbers 1 2( ,  , , )nx x x�  (the sign above x is not a power but index). The 
number xi will be called i-component of the element. Let’s define the addition 
of elements n�  and their multiplication by number component. 

If / 01 2, , ..., nf f f f�  and / 01 2, , ..., ng g g g�  are elements of n� , and 

� is the number, thus 

/ 01 1 2 2, , ..., n nf g f g f g f g� � � � �  

and 

/ 01 2, , ..., nf f f f� � � � � . 

The element (0, 0, … 0) is called zero element. The axioms 1–8 are 
again easily checked, so that the set n�  is also vector space. 

Let’s make addition to the example 2. Let P, Q be two arbitrary sets, con-
sisting of elements pi and qi respectively. A new set can be formed, the ele-
ments of which will be possible ordered pairs (pi and qi). This new set is called 
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a direct product of P and Q and it is signified through P × Q. Let V and W be 
vector spaces. The direct product V × W may be turned into vector space, if 
addition and multiplication by number are to be defined by the following way:  

/ 0 / 0 / 0, , ,f g p q f p g q� � � � , 

/ 0 / 0, ,f g f g� � � � , 

for , ;f p V  , ;g q W  / 0 / 0, , , ,f g p q V W 	  and � are substantial or com-

plex numbers. It is clear, the space n�  can be interpreted as a direct product 
n of vector spaces 1� : 

1 1 1...n

n
� 	 	 		

�

�� � � � . 

Example 3. �  is a set of complex numbers ( )i� � � , where ,� �  are 
sustention numbers and i is an imaginary unit. Addition and multiplication by 
number is to be defined by the following way: 

( ) ( ) ( ) ( )i i i� � � � � � 6 � � � � � � � 6 , 

( ) ( ) ( )i i� � � � � �� � �� . 
The element (0 + i0) is called the zero element. Axioms 1–8 are also ful-

filled here, it means that �  is also vector space.  
Example 4. The set n × n of matrixes will be also vector space, if the 

sum of matrixes and multiplication of matrix by number, as it is done in lin-
ear algebra that is component by component. A zero element of this space 
will be a zero matrix, all elements of which equal zero. 

The number of examples can be increased. 
If some subset S of vector space V arranges the vector space itself, it will 

be called sub space of vector space V. For example, any plane going through 
point 0 at 3�  is subspace 3� , as far as it is itself vector space 2�  itself. 
Identically any line going through point 0 is subspace 3� . Besides, the given 
line is subspace of those planes 2� , in which the line lies.  

The sum of non-zero vectors products is called a linear combination of 
vectors f, g, h… 

...f g h� �� � � �  
It is evident, if V is vector space, it contains any linear combination of its 

elements (a linear combination is a vector). Vector which is a linear combina-
tion of some other vectors is called the linear dependent. If it can’t be pre-
sented as linear combination of mentioned vectors unit, it is linear independent 
from them. If we chose any vector f in 1� , not equal to zero, all other vectors 
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are called linear dependent on it and they can be written as �f, where � is the 
number. In vector space 2�  it is different. Having chosen non-zero vector f, 
we can’t state that other vectors will be linear dependent on it, as vectors linear 
dependent on f will lie on the line going through point 0 and f. Two vectors not 
lying on the same line is enough for other vector to be linear dependent on 
them. The totality of non-zero vectors f, g… from some linear space is called 
linear independent, if there’s no such unit of numbers �, �, … giving 
 ... 0.f g� �� � �  
For arbitrary set of vectors the maximum number n of linear independent 
vectors is called its dimension. So the set of points on the line is one-
dimensional, and the set of points on the plane is two-dimensional. If there’s 
no such maximum number (the number of linear independent vectors is lar-
ger than any number n given in advance), the set is called infinite dimen-
sional, in the contrary case, it is called infinite dimensional. 

3. Basis of vector space 
Let’s view some vector space V, and let n be its dimension. It means that in 

V it is possible to choose n linear independent vectors (there are different 
method to choose). Any (n + 1) – number vector will be surely linear dependent 
on them; it can be written as a linear combination of the 1st linear independent 
vectors. In other words, if ,   1,...,if V i n �  are chosen by us n linear inde-

pendent vectors (at which 0i if� ��  for non-zero unit 1
i� � ), in this case 

for any another vector g V  there are always real numbers ,i� � , such as 

 
1

0
n

i i
i

f g
�
� �� �� . (4.1) 

So, having chosen n linear independent elements 1{ }n
i if � , we can write 

another element from V. In fast, from (4.1) we have 

 
1

n
i

i i i
i i

g f f
�

�
� � � �

�� � . (4.2) 

This set { }if  of linear independent elements is called basis of vector 
space V. Numbers { }i�  are called components of vector g in basis { }if . 
Pointing out basis is important, as there can be a lot of basis and in each 
new basis the components of one and the same vector g will be different. 
We are going to enumerate basic vectors by a lower index, for example ei, 
and components of the vector in this basis will be signified by the same 
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letter (of each the vector itself with upper index). Thus, for element f we 
have a division by basis 1{ }n

i ie � : 

 
1

n
i

i
i

f f e
�

�� . (4.3) 

4. Coordinate transformation 
From all mentioned above, each element f from n-dimensional vector space 

V can be given by set of numbers { }if , responding to the chosen basis { }ie . 

Each vector f V  is put in accordance with the set of n-numbers / 01 2, , ...f f , 
1if �  that provides the transformation �, turning any vector from vector space 

V into vector n� , or : nV� )� . Such transformation is called coordinate, and 
the unit { }if  is called coordinates of vector f (or point) related to the transforma-
tion �. It is necessary to mention transformations as well as basis. Different trans-
formations give a different coordinate system. Let the transformation � put the 
point f  in compliance with the unit coordinates { }if  and the transformation � 
be put in accordance with f the unit of coordinates { }ig  (Fig. 24). 

 
 

1

         n

�! ��


 
V 

{ }ig

n  

H

{ }if

�

�–1

 
Fig. 24. Two coordinate transformations �, and � transforms point f  

of vector space V into different points n� . One-one coordinate transformations �, 
and � gives transformation of coordinates 1 : n n�! � )� � �  

As far as different points { }if  and { }ig  from n�  are images of one and 
the same point f V , there must be a connection between them. In other 
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words, there must be a connection between different coordinate system { }if  

and { }ig . We are going to consider only one-one coordinate transformations. 

As transformation � is one-for-one, it has inverse transformation 1�� , which 
transforms point { }i nf �  into point f V  the point f is transferred to the 
point { }i ng �  by the transformation �. 

So compositions 1�! ��  are the transformation n n�� �  or 

 1( { }) { }.i if g�! � �  (4.4) 

As a result we have functional ratios, defining the transformations of 
coordinates 

 

1 1 1 2

2 2 1 2

1 2

( , ,..., ),

( , ,..., ),
       . . .

( , ,..., ).

n

n

n n n

g g f f f

g g f f f

g g f f f

�

�

�

 (4.5) 

Let V be the plane. Let’s transform it on 2�  the following way. Let’s 
chose point 0 in the plane with which we connect zero vector 2� , exactly (0, 0). 
Let’s construct the line at any direction through point 0. It will be called abscissa 
axis, and to its each point we put vector from 2�  according to the type (�, 0), 
where � is a substation number. Let’s construct through point 0 another line 
perpendicular to the 1st and call it the axis of ordinates. Then let’s connect vec-
tors from 2�  of type (�, �), where � is substation number with it identically. To 
other points of the plane we put accordingly the vectors from 2�  of type (�, �), 
if perpendiculars derived from point on the axis cross this axis respectevely at 
the points (�, 0) and (0, �). So the coordinate transformation is constructed: each 
element from V is transformed into an element from 2�  (Fig. 25) such coordi-
nates of plane point are called Cartesian coordinates. 

Let’s transform the plane into 2�  in a different way. We start to con-
struct this transformation as well as Cartesian one, including the construction 
of the abscissa axis. In new transformation, it will be called polar axis. Fur-
ther, to each plane point we put the vector ( , )I B  accordingly, and if this 
point lies on the cross of circumference of radius � with the centre at point 0 
(this circumference crosses the polar axis at point (�, 0)) with a half line, go-
ing from point 0 at the angle B  to the polar axis. 

Angle is measured anticlockwise and called the polar angle. 
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V 
 

 f 

2  

0 (�,0) 
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2�

(0,�)

2  

Cartesian coordinates 

Polar coordinates 
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(0,0)

(0,�)

(�,0)

(�,�)

0 

 
Fig. 25. Constructions of coordinate transformations 

In the 1st case the plane is transformed onto all 2� , and in the 2nd – onto 
subset consisting of vectors ( , )I B : [0, ),   [0,2 ]I �2 B � . 

Now we can construct ratios (4.5), and the dependency � and B  on � 
and �. It is evident, 

2 2( , ) ,   ( , ) arctan �
I � I � � � � �� B � B � � �

�
 

and 
( , ) cos ,   ( , ) sin .� � � I B � I B � � � I B � I B  

The rule putting to each point f some number accordingly (value of 
function at this point) will be called the function given on V. 

So coordinates { }if  are functions in vector space V: to each point f V  
there are n-coordinates accordingly and their values change from point to point. 

5. Metrics and norm 
We have already used the notion of distance without mentioning the way of 

measuring. Let’s view this issue in detail. If we took only point on the line in the 
plane or in a 3-dimensional space, everything could be clear. Now points are pre-
sented by elements of vector spaces. As far as the plane is a particular case of vec-
tor space, the distance between points of this space is identical to the distance be-
tween points in the plane. Firstly, the distance is not negative. Secondly, it depends 
on mutual location of points and doesn’t depend on their location relevant to zero. 
Thirdly, it is not important to know how to measure distance: from the 1st point to 
the 2nd or vice versa. Fourthly, if points coincide, the distance between them equals 
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zero. Finally, if we view distance between three points, any of them doesn’t over-
come the sum of two others (the length of a triangle side doesn’t overcome the 
sum of two lengths of two other sides). The same features belong to the distance 
between points of any vector space or even just arbitrary set (in the plane the dis-
tance between point has the sense, if we even consider only one part of it). Let X 
be an arbitrary set and , ,f g h X . We put to each pair f, g not negative number 
d(f, g) accordingly so that for any f, g, h from X it is right that 
1. d(f, g) > 0, for f � g, 
2. d(f, f) = 0, 
3. d(f, g) = d(g, f), 
4. d(f, g) � d(f, h) + d(h, g). 

It is evident that d(f, g) is the function transformation defined at any pair 
of vectors from X with values in numbers (in 1� ). Such function is called 
the metrics to X. And X itself provided with metrics is metrical space. Pay at-
tention that in order to make any set metrical space there we should introduce 
metrics. It doesn’t become vector space, because the addition of elements and 
their multiplication by number is not defined in it. In this case when we work 
with vector space V, we can use one bold point 0 and introduce a quite defi-
nite notion of a vector norm, in fact, the distance from the element to 0. As 
here we suppose some rule, putting a sustention number to the point which is 
the distance to point 0, we have function transforming V into 1�  to signify 
the norms a special sign is used � , the norm of vector f is signified as f . 
Let’s write the definition to the norm for more general complex case we need 
later. Let V be vector space and f V  is the norm of vector f is called not 
negative new metrical function f  defined in V, such that for any ,f g V  

and 1��  the following conditions are fulfilled: 
1) 0, 0f f4 � , 
2) 0 0� , 
3) f f� � � � , 
4) f g f g� 
 �  (triangle inequality). 

Changing the element g into ( )h f�  and the following re-symbolizing it 
is easy to get other variants of triangle inequality. They can be presented as 

f g� f g f g
 � 
 � , 

f g� f g f g
 � 
 � . 

Linear space provided with the norm is called the normed vector space. 
If we know the distance to 0 (norm) for each point from V, it is easy to meas-
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ure the distance between points from V that means to get metrics. The dis-
tance between two points f and g can be the norm of their distance: 
 ( , )d f g f g� � . (4.6) 

The definition of the norm given above doesn’t present it in the only 
way. Very often we can introduce several norms for one and the same vector 
space. Here the spaces found are considered to be different: 
1. Linear space 1x�  becomes normed, if the norm x  of the element 

1x�  is its module x . It is evident that this definition in 1�  is correct. 

2. The vector norm / 01 2, ,..., nx x x x�  can be introduced by different ways 

in the space n� . The used norms are the following:  
a) octahedral norm or norm 1� : 

 1
1

;
n

i

i
x x

�
��  (4.7) 

b) spherical (euclidean) norm or norm 2� : 
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�  (4.8) 

c) norms p� , where p is a natural number (norms 1� , 2�  are par-

ticular cases of norms p� ): 

 

1

1
;

ppn
i

p
i

x x
�

# $
% &�
% &
' (
�  (4.9) 

d) cubic norm 2� : 

 max i
i

x x2 � . (4.10) 

3. Visible presentation of these norms is given by the set of the elements 
nx� , for which 1x � , or so called unit sphere. It is demonstrated by 

the Fig. 26. 
4. The vector spaces are very important in our course, elements of which 

are functions (functions will be points of vectors of the given space). 
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Let’s view the set � �/ 0,F a b  of sustention functions defined on the seg-

ment � �,a b . Let’s take ,f g F  and 1�� . Let’s define new functions 
( )f g�  and f�  taking for all � �,x a b : 

 ( )( ) ( ) ( )f g x f x g x� � � , 
 ( )( ) ( )f x f x� � � . 

 
 

2 �  1  �   
2
�  

(–1,0) (–1,0) (–1,0)

(0,1) (0,1) (0,1) 

(0,–1) (0,–1) (0,–1)

(0,1) (0,1) (0,1) 

 

Fig. 26. The view of unit sphere to 2�  for different norms 

In other words, the value of function sum equals the sum of values for 
function-items at the same point. It is identical for �f. The axiom of vector space 
is fulfilled as a rule; such generally linear spaces of functions are not viewed. 
The sub-set F is studied, which in their turn form linear spaces, for example, the 
space C0([a, b]) of continuous functions defined on � �,a b , or the space Ck([a, b]) 
of functions having k as limited continuous derivative. Functional linear spaces 
are infinitely dimensional. These spaces can be normed by constructing a rele-
vant norm. So C0([a,b]) are often provided with so-called the uniform norm 
 

[ , ]
max ( )

x a b
f f x


� . (4.11) 

It is clear, this is an infinitely dimensional norm 2� . Another possible 
norm is a norm 1� : 

 1 ( )
b

a
f f x dx� 5 . (4.12) 

There are other variants of norms. The uniform norm can be given visi-
ble interpretation. Let M be the set of functions, which gives ( )f x � �  for 

all ( )f x M  and � > 0, 1�� . All f from M must belong to to the band 1�  
relative to the abscissa axis (Fig. 27). 
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If P is the set of function f, for which the distance from the given func-
tion g doesn’t overcome �, it gives f g� 
 � . All changes of f must be con-
cluded in the band with width 2�, including function g. For norm 1�  
it is not right as only the integral is limited, whilst the value of function at 
separate points are possible not to satisfy this limit. Thus, the limitation of 
point f 
 �  is more definite than 1f 
 � , and from the first we have the 
second, but not in another way. 

 

 
Fig. 27. The oscillations of function f, for which f � � , must occur in the band A; 

functions f, the distance of which doesn’t overcome � > 0 (that is f g� 
 � ), 
change in the band B 

6. Banach space  
At solving the equation as Af g�  very often the interational procedures 

are used. They state that with the help of some algorithm by chosen initial 
approximation 0f  the sequence { }nf  is made up, each following member of 
which must be more precise approximation of solution f. The sequence of ap-
proximations { }nf  must converge to the precise solution f. If functions nf  
are to be interpreted as vectors (points) of vector space, there will be a need 
in definition of convergence of vector sequence. It is known that a numerical 
sequence 1{ }n na 2

�  converges to some number �, when the difference module 

na a�  goes to zero at n tending to �. If members of the sequence { }nf  be-
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long to an arbitrary set X, it is impossible to use the convergence defined for 
numerical sequences. If we introduce X metrics or norm, we will be able to 
define the convergence { }nf  as well as it was done for the numbers. Let’s 
view some linear space V with metrics ( , ),   ,d f g f g V  (if V is normed, 

( , )d f g f g� � ). Let 1{ }n nf 2
�  is the sequence of points from V, i. e. countable 

subset of V (as it is numbered). If there is such point f V , that with increase 
of n the distance between fn and f reduces within the limits to zero 

lim ( , ) 0,n
n

d f f
)2

�  or lim 0n
n

f f
)2

� � , 

the sequence { }nf  will be convergent, and the element f is a sequence limit 
{ }nf . It is represented in the following way: 

lim ,n
n

f f
)2

�  or nf f) . 

To appreciate whether the sequence is convergent, we must know the 
limit, and be sure that the distance from sequence points goes to zero till the 
limit. It is not convenient, as the limit is usually unknown, and we have only 
sequence members. It is clear that with the increase of points fi and fj size the 
distance between them goes to zero. The increasing numbers i and j are not 
necessary to be connected. Indeed, let , { }i j nf f f  and nf f) , so that ac-
cording to the triangle inequality we have 

( , ) ( , ) ( , )i j i jd f f d f f d f f
 � . 

If i )2  (independently on i) and j )2 , ( , ) 0id f f )  and 
( , ) 0jd f f ) , we have ( , ) 0i jd f f ) . The sequence { }nf  with the feature 
( , ) 0i jd f f )  at ,i j )2  is called fundamental or Cauchy sequence. So each 

convergent sequence is Cauchy sequence. What about the reverse? It is 
proved as right for the finite-dimensional. As for the non-finite dimensional 
(the set of functions are non-finite dimensional as a rule) case it is not so. The 
example is as follows. Let 0([ 1,  1])V C� �  be the space of non-finite func-

tions defined on the segment [ 1,  1]�  with a norm 
1

1
1

( )  f f x dx
�

� 5 . Let’s 

consider the function sequence { }nf  defined as 

 
1,
1 ,
0,

nf nx
*
 � �+
 
,

 1

1

[ 1,0],

(0, ),

[ ,1].
n

n

x

x

x

 �





 (4.13) 
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The first few functions are demonstrated in the Fig. 28. Surely, these 
functions belong to the viewed normalized linear space: they are continuous 
at each point of function definition. Besides, it is easy to check that  

1

1
1

( ) ( ) 0i j i jf f f x f x dx
�

� � � )5 . 

 

1

1 –1 

f4 

f2 

f1 

f 

x  
Fig. 28. Functions defined by the expression (4.13) 

Indeed let’s view the module of difference equation i jf f� , j i4 . The 

norm 
1i jf f�  is the square of the triangle, base of which equals 1

i
, and the 

height is defined by difference 1 i
j

� . With i increasing, the base of the tri-

angle goes to zero, consequently, the norm 
1i jf f�  goes to zero too.  

So the sequence of function { }nf  is the sequence of Cauchy. As far as 
1 0
n
) , the limit { }nf  is a function 

1,   [ 1,0],
( )

0,   [0,1],
x

f x
x2
 �*

� + ,
 

having the breach at point 0 not belonging to V. Thus, we have constructed 
Cauchy sequence, not converging to any point of the viewed space of con-
tinuous functions. 
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Let’s consider the same function sequence, but in space W different only 
by norm: let W has a uniform norm max ( )

x
f f x� . 

It is easy to understand 

max ( ) 1i jf f i j x i j� � � � � . 

As far as i and j go to the infinity independently, their ratio can be any 
like, as the result, their norm doesn’t go to 0. For example, if 2i j� , then 

1i jf f� ) . So in the space W sequence { }nf  is not Cauchy sequence and 

doesn’t converge. Let’s view the similar sequence of functions { }ng  (Fig. 29) 
to be sure there are no sequences in W: 

 

1 1,    [ 1,  ],
1( )

10,             [ ,  1].
n

nx x
n ng x

x
n

�*  �  �� +
 
 ,

 (4.14) 

 

1 

1 -1 

g

x 

g1 

g2 

g4 

 
Fig. 29. Functions defined by the expression (4.14) 

Simple calculations give 1 0
1i

i jg g
i

�
� � )

�
. 

Thus, the sequence { }ng  is Cauchy sequence and goes to the continuous 
function: 

 
,   [ 1,0],

( )
 0,    [0,1].
x x

g x
x

�  �*
� + ,
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Functions ng  belong to the space V, where the sequence of Cauchy is 
also formed. 

If any Cauchy problem converge by the norm (the limit is the element of 
the same space) in the normalized vector space, it will be called fully normal-
ized vector space (these spaces we are to define by B). A completeness 
of some subset S of normalized vector space V may be stated. If 1V � � , each 
segment [ , ]S a b�  is complete as so as any Cauchy sequence of its points 
converge to some point S. Vice versa, the interval P = (a; b) is not complete, 

as there are sequences going to a (for example, 1{ }a
n

� ), and point a doesn’t 

belong to P. The set containing all its limit points is called the closed set. It is 
a sphere with surface and a circle with boundary. 

Statement. The subset S of Banach space B is complete when it is 
closed in B. 

Let S be some subset V. If it is not closed (doesn’t contain all its limit 
points), a new subset may be defined S VG , constructing by adding to S all its 
limit points, and is called the closing of S. So, if S is closed, S S� . The term 
completeness is easy to be presented: the set is complete when there is a lack of 
points in it to make any Cauchy sequence convergent. If vector space given one 
norm is complete, and given another norm – it doesn’t, the question arises what 
norms do not disturb the completeness of vector space. The answer is the 
equivalent norm. Two norms  a�  and  b�  in the vector space V are equiva-
lent, if the numbers 1 0c 4  and 2 0c 4  are found, at which for any f V  

 1 2a b ac f f c f
 
 . (4.15) 

Similarly, we may limit the norm af : 

 
2 1

1 1
b a bf f f

c c

 
  

or in different symbols 
 1 2b a bk f f k f
 
 , 1 2, 0.k k const� 4  

If norms   a�  and   b�  are equivalents, from the convergence by 
norm   a�  follows the convergence by norm  b� , and vice versa. Indeed 

let 0n af f� )  at n )2 . Then it goes from the formula (4.15) that nu-
merical sequence n bf f�  is majorated by sequence going to 0 and con-
verging to 0 as well. 



 

 96

7. Hilbert space 
One of methods to introduce norms in Banach space is to give a scalar 

(or interior) product in it. A scalar product is a numerical function of two ar-
guments ( , )� � . It puts a number to each pair of vectors accordingly. The scalar 
product must satisfy the following conditions. Let V be vector space, 

, ,f g h V  and 1�� , then: 
1. ( , ) 0,    ( , )=0 0f f f f f- J � ,  
2. ( , ) ( , ) ( , )f g h f g f h� � �  – associative,  
3. ( , ) ( , )f g g f�  – symmetry,  
4. ( , ) ( , )f g f g� � �  – homogeneity.  

Vector space V with the inserted product into it is called pre-Hilbert one 
or Cartesian.  

Examples 
1. In n�  (which elements are ordered sets of numbers 1( ,..., ),nf f f�  

1( ,..., )ng g g� ) a scalar product is defined by  

 1 1 2 2( , ) ... .n nf g f g f g f g� � � �  
All axioms of scalar product are easy to be checked. 

2. Let 0([0,1])V C�  be the set of continuous functions defined on [0, 1]. 
A scalar product can be as follows: 

 
1

0
( , ) ( ) ( ) .f g f x g x dx� 5  

Having found the scalar product (having obtained), we can introduce a norm: 
 ( , ) .f f f�  (4.16) 

The fact that it is a norm is easy to be proved. The first 3 features are 
satisfied. So there is a triangle inequality to be checked. We take it as  

2 2( )f g f g� 
 � . 
For any f and g from the very space we have 

 
2 2 2

2 2 2 2

( , ) ( , ) ( , )

2( , ) 2 ( , ) .

f g f g f g f f g g f g

f f g g f f g g

� � � � � � � � �

� � � 
 � �
 

If it becomes possible to demonstrate that ( , )f g f g
 � , the triangle 
inequality will turn out to be right. This ratio is really fulfilled. Let’s take the 
norm of the vector f g� � , where � is a number. It is evident that 
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2 2 2

2 22

0 2( , )

2 ( , ) .

f g f f g g

f f g g


 � � � � � � � �

� � � � �
 

This implyies 

 2 2.22 ( , )f g f g� � 
 � � . (4.17) 

As far as � is an arbitrary number, we take  

 
( , )
( , )

f g f
f g g

� � �
�

, 

and, inserting it into the Eq. (4.17), we get 

 
22 2

2 2
22

( , ) ( , )
2

( , ) ( , )

f g f f g f
f g

f g g f g g

 �

� �
, 

or 

 ( , )f g f g
 � . (4.18) 

The equality (4.18) is called the equality of Cauchy–Bunyakovsky. It al-
lows to get 

 2 2 2 22 ( , ) ( ) ,f g f f g g f g� 
 � � 
 �  

or 

 .f g f g� 
 �  

So any pre-Hilbert space may be normalized, if the norm is defined by 
the equality (4.16). If the pre-Hilbert space is complete by the norm (4.16), it 
is called Hilbert one (we define such spaces by the letter H). In other words, 
Banach space is called Hilbert one in which the norm is defined through sca-
lar product. Initially, it is needed to define the scalar product. Not every Ba-
nach space may be done Hilbert. There is one important result: if in each 
space for any vectors f, g, the rule of parallelogram is fulfilled 

 2 2 2 22( ).f g f g f g� � � � �  

In this case we can introduce the scalar product into it (to make the sys-
tem Hilbert one), defining it by the formula 

 2 21( , ) ( )
4

f g f g f g� � � � . 
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8. Orthogonality and the theories of Fourier 
From Cauchy–Bunyakovsky inequality (4.18) it is stated that function 

( , )f g
f g�

 doesn’t overcome by 1 module. This allows to equal it with cosine 

of angle � between vectors f and g, and also to write the scalar product as 
( , ) cos .f g f g� � �  

Numbers cos( )  and  cos( )g ff f g g. � . �  are called the projection 
f on g and g on f accordingly. In case when the norm of one of the vectors, for 
example g, equals one, we have ( , ) cos gf g f f� � � . It means that the sca-
lar product of the vector f  by the unit vector g equals the projection f on g. If 

( , ) 0f g �  and 0,   0f g� � , it follows 
2
�

� � 1 . In this case the vectors 

are orthogonal that is signified by f gK . If there is a sequence of the 
non-zero vectors { }nf  and for each pair of the vectors if , jf  the equality 
( , ) 0,    i jf g i j� �  is right, such sequence is orthogonal. It is easy to show 
that an orthogonal vector is linear independent, i. e.  
 1 1 2 2 ... 0n nf f f� � � � � � � , 

only if 1 2 ... 0n� � � � � � . Let 1{ }n
i if �  be an orthogonal vector and suppose 

they are linear dependent, i. e. 0i if� ��  is zero vector. Let’s take any vec-

tor 1{ }n
j i if f �  and multiply it by both parts of the equality in a scalar way 

 ( , ) ( ,0) 0.j i i jf f f� � ��  

At the same time from orthogonality of vectors it is a provided formula  

 
2

( , ) ( , ) 0.j i i i j i j j
i i

f f f f f� � � � � �� �  

Supposing that a sequence 1{ }n
i if �  doesn’t contain a zero vector, conse-

quently 0jf � , from where 0j� � . The same is right for any other element 

from 1{ }n
i if � , that is all 0i� � .  

If the sequence is { }if , it gives 

 
0,   ,

( , )
1,   i j ij

i j
f f

i j
�*

� 6 � + �,
 (4.19) 
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and is called orthonormalized. In this case norms of all vectors if  equal one. 
We are to signify such system of vectors as { }ie . 

Procedure, making possible to make up an orthonormalized set from the 
countable set of linear independent vectors, is called the process of orthogo-
nality of Grama–Schmidta and prescribes the following. Let in Hilbert space 
H the sequence of linear independent vectors 1{ }n

i ih �  be given. As far as 
a norm of orthonormalized vector equals one, to construct the first vector e1 

of orthonormalized sequence 1{ }n
i ie � , it is sufficient to equal it to 

 1
1

.he
h

�  

The next vector e2 must be orthoganalized e1. We are to make up the lin-
ear combination g2 being orthogonal to e1 from elements e1 and h2. Let 

2 2 21 1g h e� � � , where �21 is a number, then 

 2
1 2 1 2 21 1 1 2 21 1 1 2 21( , ) ( , ) ( , ) ( , ) 0.e g e h e e h e e h� �� � � � � � � �  

From this 21 1 2( , )e h� �  or 2 2 2 1 1( , )g h h e e� � . We chose vector e2 

equal to 2
2

2

ge
g

� . Identically we construct vector 3
3

3

ge
g

� , where 

3 3 32 2 31 1g h e e� �� �� , and coefficients �31 and �32 are found from the con-
dition of orthoganality g3 by vectors e1 and e2. It gives 
 3 1 3 1 32 2 1 31 1 1 3 1 31( , ) ( , ) ( , ) ( , ) ( , ) 0,g e h e e e e e h e� �� �� � �� �  
 3 2 3 2 32 2 2 31 1 2 3 2 32( , ) ( , ) ( , ) ( , ) ( , ) 0,g e h e e e e e h e� �� �� � �� �  
or 31 3 1 32 3 2( , ),   ( , )h e h e� � � � , and so on. All elements { }ie  are orthonor-
malized and linear independent. 

Having orthonormalized sequence 1{ }i ie 2
� , we can write another vector f 

from Hilbert space H as a series by ei: 

 
1

,i
i

i
f f e

2

�
��  (4.20) 

where if  are some numbers. The coefficients if  are easy to be found using 
{ }ie . Let’s multiply both parts of equality scalar (4.20) by some vector ej: 

 ( , ) , ( , )i i
j i j i jf e f e e f e e

# $
� �% &% &
' (
� �  

and take (4.19). We obtain that number jf  equals a projection f to a unit vector ej: 
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 ( , )j
jf f e� . (4.21) 

The series (4.20), coefficients of which can be found according to 
the formula (4.21), is called the series of Fourier for f, and coefficients if  are 
the coefficients of Fourier. Any segment of this series (its partial sum) has 
a particular feature of the best approximation, precisely: let us approximate some 
element f H  by function f

�
, which is a linear combination m of vectors ei: 

 
1

m

i i
i

f f e
�

" � ��
�

, (4.22) 

where 1
i� �  are numbers. 

The best approximation is the one for which 

 minf f� �
�

. 

The norm of difference f f�
�

 is a function , 1,...,i i m� �  and gets the 

minimum in case the coefficients �i are the coefficients of Fourier and are 
fond by formula (4.21). In other words, the linear combination (4.22) pre-
sents the segment of this series. Actually, 

 / 02 2
, .i i i if f f e f f e f� � � � � � � �� �

�
 

Calculating the scalar product we get 

 / 0 / 02 2– 2 , , , , , .i i i i i if f f f e e e� � � � � �� � �
�

 

The second member equals 2 ( , ) 2 i
i i if e f� � �� � , where if  are co-

efficients of Fourier calculated by (4.21), and the third in virtue of orthonor-
malization { }ie  equals 2

i�� . Further we have 

 
2 2 22 22 ( 2 ).i i

i i i if f f f f f� � � � � � � � � � �� � �
�

 

Let’s add and subtract the value 2( )if  from brackets. Then the second 
item may be taken as a square of difference 

 
22 2 2( ) ( )i i

if f f f f� � � � � �� �
�

. 

This expression is evidently minimal at i
ia f� , that has been to be 

proved. Thus, we get 

 
2 2 2min   ( )if f f f f f� � L � � ��

� �
. 
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So as 
2

0f f� -
 

, from the previous equality it goes 

22

1
( )

m
i

i
f f

�

� .

This inequality is right at any m and as 2f  are independent from m,

the series of 2

1
( )i

i
f

2

�
�  converge, and we have the inequality of Bessel: 

22

1
( )i

i
f f

2

�

� . (4.23) 

Geometrically it means that the sum of squares of projections of the vec-
tor f on orthogonal directions do not overcome the length square of the vector 
itself (non-finite dimensional analogue to Pythagorean theorem). If S is some 
subset of Hilbert space H that is S HG , the elements from H, orthogonal to 
all vectors from S, make up the set called the orthogonal addition to S (is sig-
nified as SK ); eventually S H KG . The simple evident example in 3�  is 
a line in perpendicular plane to it (Fig. 30): any vector on the line S is or-
thogonal to each vector lying on the perpendicular plane SK  and vice versa. 

Fig. 30. The example of the set and its orthogonal addition 

9. Basis of Hilbert space  
In n-dimensional vector space any totality n of linear independent elements 

is a basis. Each vector can be presented unambiguously as a linear combination 
of basic vectors. Identically in the case of non-finite dimensional space V, we 
are to call the sequence of linear independent vectors 1{ }i ie 2

� , ie V  as basis, 
if any element f from V may be given unambiguously as convergent series 
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1

i
i

i
f f e

2

�
�� . 

The requirement of unambiguity states that the components of division 
if  of zero vector equal zero. 

The simple example of non-finite dimensional space is the analogue 
of space n�  – the space � , the elements of which are non-finite sequences 
of numbers 1 2( , ,..., ,...)nx x x x� . If we are to provide this space with Carte-
sian norm (to view the Banach space 2� ), the elements 1 (1,0,0,...)e � , 

2 (0,1,0,...)e �  make basis. Any vector 2x�  can be written unambiguously 

as 
1

i
i

i
x e

2

�
� , converging to x by the norm 

1 2

lim 0.
n

i
i

n i
x x e

)2 �
� ��  

As for the space 2�  everything is quite simple, as each vector 2x�  is 
characterized by countable unit of number. In general case the separation prop-
erty is very important. Let’s take the set of real numbers or the space 1�  we can 
point out the sub-set of whole numbers of �  and the sub-set of rational numbers 
� . Other numbers are irrational. Let’s calculate an approximate value ��  of 
some number 1�  . Approximation will be good, if the error (difference 

module) doesn’t overcome some value 3 given in advance. If 1
2

3 - , it is evident 

that � may be approximated by numbers both from �  and � . However, while 3 
may be an arbitrary small, the set � , probably, is not sufficient. The set �  suits 
still very well. It happens because the whole numbers are situated on the nu-
merical axis very rarely. It is said that �  is non-dense in 1� . Is there the value 
of 3 for � , for which rational numbers have ceased to approximate arbitrary 
sustention number? Actually there is not. Between any ration numbers situated 
at any closed distance there is always another rational number. We can make up 
such sequence of rational numbers, which will get to any substantion number 
(both rational and irrational). So the set �  is different from 1� , because it 
doesn’t contain all its limit points. In other words, 1�  is a closing of � . In this 
case the set �  is said to be dense in the set 1� . The definition of dense set is as 
follows. Let 1 2 ,S S BG G  where B is Banach space. The set S1 is called dense in 
S2 if closing 1S  in 2S  coincide with 2S . The presence of dense countable set �  
in the set 1�  allows to approximate any number from 1� , using only numbers 
from � . Banach’s space B, containing countable dense set is called separation 
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space. In other words, if B is separable, we have the set S BG , 1{ }n nS f 2
�� , 

which for any f B  and 03 4  gives nf S  satisfying the inequality 

nf f� � 3 . There are some examples: 

1. Generalizing the case 1� , in which the set of ration numbers �  is 
dense, we view vector space n� . It also contains a countable dense set. 
It is evident, it will be the set of elements with rational coordinates. 

2. The space 0([ , ])C a b  of the continuous functions defined on the segment 
[ , ]a b  with uniform norm is also separable, as the set of polynomials 
with the ration coefficients is dense in it. 
If B is non-countable but separable and contains the dense sub-set S, any 

element B can be precisely approximated by the element of the countable set 
S as much as possible. This feature allows choosing a convenient basis in 
non-finite dimensional basis. The sequence of the vectors 1{ }i ie 2

�  from the 
vector space V makes up basis of this space, if any element f V  can be pre-

sented in a single way as convergent by the serious norm i
i

i
f f e�� . 

On the other hand, if we have the sequence of the non-zero linear inde-
pendent vectors { },   i ig g V , all possible finite linear combinations (con-
taining the finite number of members) of the vector form S VM . If S V� , 
the elements { }ig  arrange the basis V. There are two questions: 
1. In which case S = V ?  
2. How to choose the elements so that they could be linear independent?  

In order to fulfill the equality S = V, the sequence of the vectors { }ig  
must be complete. It means completeness of vector system is mentioned, not of 
the vector space. In both cases the notion of completeness is that there must be 
a sufficient number of elements to fulfill some conditions. For the vector space 
there must be as many elements so that the limit of any elements sequence 
could be the element of this space (in our case the sequence must contain as 
many elements as to have S = V). We are going to view the feature of compe-
tence in detail a bit later. If 1{ }i ig 2

�  generates the space S (S = V), V has count-
able dimension. It means that it is the space of �  type, elements of which are 
non-finite unites of numbers. If the dimension V is non-countable, S V�  and S 
can be dense in V. Then any vector f V  may be written as endless series: 

 i
i

i
f f g�� . 
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The answer to this question is connected with a feature of minimality of 
sequence. It is evident that, if { }ig  is complete, the addition of new elements 
doesn’t deprive it of this feature. Vectors become linear independent and 
cannot be basis. Minimal set of vector { }ig , remaining the feature of compe-
tence, and will be linear independent and candidate for basis space V. 

Features of minimality and completeness are established easily for or-
thogonal vectors. We have already proved above that the orthogonal vectors 
are linear independent, consequently, the orthogonal system is minimal. As 
for the terms for the orthogonal vectors, the completeness is defined in the 
following way. Let H be Hilbert space and ie H .The sequence is com-
plete, if orthogonal addition to it equals 0 (it is the set with the only zero 
element). In other words, if { }ie  is a complete system of vectors, there is no 
vectors from H different from zero, orthogonal to it, as far as from 
( , ) 0jf e �  for all { }j ie e . There is 0f � . 

Let H =  and a vector 1e H . It doesn’t form a complete system of vec-
tors. The subset, given by it, is  � H. As the orthogonal addition is non-zero 
and mean a plane, going through zero perpendicular to e1. (Fig. 31, a). Let’s 
choose in this plane the element e2 and arrange a sequence 1 2{ , }e e . It is incom-
plete and arranged space , the plane; the orthogonal addition is not 0 but a 
line perpendicular to this plane. (Fig. 31, b). Finally, when we choose the vector 
e3 on this line, the sequence 1 2 3{ , , }e e e  becomes complete and bare the space 

 = H; the orthogonal addition to it becomes 0 (Fig. 31, c). 
The complete orthonormalized sequence of the vectors 1{ }i ie 2

�  will be 
the basis of the space, if any element f H  is written as convergent to f of 

Fourier series 
1

.i
i

i
f f e

2

�
��  

As the coefficients if  are defined by the equality ( , )i
if f e�  unambi-

guously, we must prove that, if { }ie  is a complete orthoganalized sequence, 
the series ( , )i if e e�  converges to f H . Actually, as H is Hilbert space, 

it is completed by ( , )f f  norm (i. e. the limit of any Cauchy sequence 
of elements from H is itself an element from H). In other words, for any 

1 2, ,..., m� � �  and any m there is an element f H , such that 

 
1

m

i i m
i

f e f s
�

� � � � � 3� , 
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where 3 is any given positive number (the sequence of elements getting to f is 

arranged not by the elements i ie�  but by the partial sums 
1

m

m i i
i

s e
�

� �� ,

which are the elements from H). According to the best approximation of Fou-
rier series, we have 

1 1
( , )

m m

i i i i
i i

f e f f e e
� �

3 4 � � - �� � .

Fig. 31. Construction of complete system of orthogonal vectors in 

Taking the limit by m )2 , at arbitrary 3 we get 

1
( , )i i

i
f f e e

2

�
�� .

So Fourier series don’t converge to the element f H , therefore 
the sequence { }ie  is the basis. As the sequence { }ie  is orthonormalized, the ba-
sis arranged by it is called orthonormalized. Finally, it is possible to show that 
separable Hilbert space H has orthonormalized basis. Indeed, if H is separable, 
it contains a countable dense set { }nf . Let’s orthoganalize { }nf  with the help 
of Gram–Schmidt process, dropping nf , linear dependent on arranged or-
thonormalized vectors ie . The found orthornormalized set { }ie  can be finite, 
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then H is also finite-dimensional. It is complete in any case, as linear span ar-
ranged by vectors { }nf  coincides with linear span arranged by the vectors { }ne  
(we dropped only linear dependent vectors); { }nf  is dense in H. The vector or-
thogonal to all vectors from { }ne  is a zero vector. Thus, the orthonormalized set 
{ }ne  is complete that arranges orthonormalized basis of separable Hilbert space H. 
Existence of the basis makes Hilbert space similar (that is isomorphic) 
to Euclidean space n�  (if H is finite-dimensional) or to the space 2 of finite se-
quences of numbers with Euclidean norm (if H is non-finite dimensional).  

10. Linear operations 
Let’s consider the equation 

 Af g� , (4.24) 
where f and g are the elements of the linear spaces V and W accordingly; 
A is the transformation of space V into space W. If V and W are the spaces 
of functions, the transformation A is called the operator. We are to fulfill the 
following: having g W  and the operator A, we define f V  if it is possible.  

Let’s specify the terms and definitions. Let V and W be linear spaces, 
A is an operator defined as (A)D VG  with values in (A)R WG . The opera-
tor A is one-for-one (injective or enclosure), it provides that there is only one 
relevant element (A)f D  for any (A)g R . If (A)R W�  (the area of val-
ues is presented by the whole W-spa�e), the operator A is surjective, or it is 
called superposition. If it is also one-for-one, it is bijective. 

Let’s view some examples of transformation 1 2A : )� � : 
1. Ay x x� . . It is clear that 1(A)R � � , and A is injective, consequently, 

A is a bijection.  
2. 2Ay x x� . . The area of values (A) { : 0}R y y� - , consequently, A is not 

surjective. It is also not injective, as it transforms the points x1  into point 2x .  
3. 2A ( 1)y x x x� . � . The operator is surjective: 1(A)R � �  but not injective, 

it is not bijective as well, because points 0, 11  are transformed into point 0.  
4. A exp( )y x x� . . (A) { : 0}R y y� -  – the operator is not surjective but 

it is one-for-one (injective). 
Many operators are continuous. The operator is continuous at point 0f , 

if it transforms any sequence { }nf , convergent to 0f , it is transformed into 
the sequence {A }nf , convergent to 0Af , that is: 

 Alim limA .n nf f�  
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If the operator is continuous at each point (A)f D , it is called con-
tinuous one. The simplest function to start their studies is a linear function. 
Identically the simplest operator is a linear operator (let’s signify it as L), the 
very operator that makes the linear combination of elements  
 1,    , ,    , , (L)h f g f g h D� � �� � � �  
be transformed into linear combination  
 L L( ) L L ,    L ,  L ,  L (L)h f g f g f g h R� � �� � � ��  . 

Clearly, (L)R  and (L)D  must be linear spaces to make the sense for 
definition itself. Let’s view some examples of linear operators.  

1. The particular problem is solving the system of linear algebraic equations  

 
1

n

ij j i
j

a x b
�

�� . 

Comes to Lf g� , if we mark with L a matrix which elements are coeffi-
cients ija , with f element 1 2( , ,..., )nx x x , and with g element 1 2( , ,..., )nb b b . In 

that case L is an operator which reflects n�  to n� . It is linear and uninterrupted.  
2. Consider Fredwholm’s equation as an example of an integral operator.  

 ( ) ( , ) ( ) ( ),
b

a
f x k x y f y dy g x� �5  

where 0 0, ([ , ]);    ([ , ] [ , ])f g C a b k C a b a b  	 , k and g are given functions. If 
we define the operator L by the equation 

 L ( , ) ( ) ,
b

a
f k x y f y dy� 5  

then L is a linear operator 0 1L : ([ , ]) ([ , ])C a b k C a b)   and input equation 
will look like  
 L .f f g� �  

Let’s illustrate that the operator is uninterrupted in the area of continu-
ous functions with uniform norm. Let 1{ }n nf 2

�  is so that 0([ , ])nf f C a b)  . 
Consider the norm of difference  

L L ( , )( ( ) ( )) max ( , )( ( ) ( ))

max ( , ) ( ( ) ( )) .

b b

n n n
xa a

b

n
x a

f f k x y f y f y dy k x y f y f y dy

k x y f y f y dy

� � � � � 



 � �

5 5

5
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It is clear that the integral at the last expression tends to zero when nf f) .  
3. Among different differentiation operators, consider the operator of 

differentiation first.  
 L .f f �.  

It is clear that the operator is defined only on the set of functions which 
have a derivative. It is linear but not uninterrupted and it is very to prove that. 
And to prove that we need to find one element for which continuity does not 

exist. Lets take the consecution 1{ }n nf 2
� , where 1 sin( )nf nx

n
� . In the area of 

continuous functions, defined on the [ , ]a b  with uniform norm, this consecu-
tion tends to zero. The consecution L cos( )n nf f nx�. �  does not agrees, 

i. e. the continuity of the operator of differentiation at point 1 sin( )nx
n

 breaks.  

4. Consider the differential equation  
 0 1 2( ) ( ) ( ) ( ),f x f x f x g x�� �� � � � � �  

where 1
1 2 3[ , ],   , ,x a b � � � � . Let 0([ , ])g C a b , then f must belong to 

a set of functions, which have a second derivative, i. e. 2([ , ])C a b . Now we 

can consider a linear differentiation operator 2 0L : ([ , ]) ([ , ])C a b C a b) , 
where 0 1 2Lf f f f�� �. � � � � � . With all this going on the equation takes the 
form of Lf g� .  

5. Consider, at last, two special operators. Let f V , V is vector space. 
The operator I is so that If f� , f VN   is called a unit (identity) operator 
( I :V V) , f f� ). Let W be one more vector space (probably concurrent 
with V). The operator O which reflects arbitrary elements f V  to zero ele-
ment of the area W, i. e. O 0f � , is called a zero operator 
O : ,   0V W f) � ).  

Suppose, an operator equation is given 
L ,    (L) ,    (L) ,f g f D V g R W�  G  G  

where V and W are vector spaces. Formally, to solve the equation we need to 
find the operator 1L�  (if is really possible) so that  

1 1L (L ) I   or  L L If f f� �� � � � . 
If such an operator does really exist, then it is called inverse operator. 

Which properties the operator L should have to make it possible to build 
a reverse operator 1L� ? 
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Consider the following variants.  
1. The operator L is injective or one-for-one. In that case 1L�  does exist, it 

is a linear operator out of (L)R  to (L)D . The equation Lf g�  admits 
a solution for (L)g R  and does not admit a solution for (L)g RC .  

2. The operator L is one-to-one. It is clear that 1L�  exists for any g W  
and there is only one solution for any g W .  

3. The operator L is not injective, i. e. it is not one-for-one. In that case it is 
not possible to build an operator 1L�  because there is at least one ele-
ment (L)g R  for which there is more than one solution.  

11. Linear operator matrix  
If a linear operator is defined in the area with a basis then it is possible 

to record it as a matrix (finite matrix or infinite matrix, depending on the rank 
of space which it influences). In fact, let H be a separable Hilbert space, { }ie  
is orthonormal basis in it, and L is linear operator, L : H H) . The vector 
f H  is transformed by the operator L into some vector g H . In a similar 

manner the measuring vectors ie H  are transformed into some vectors 
i H� . As { }ie  is a basis, the images i�  of the measuring vectors ie  could 

be written through the own components in that basis: 

 1L ,    ,j j
i i ji ie e� � �� � � �  (4.25) 

where numbers j
i�  are vector i�  components in the basis { }je , 

i. e. 1 2( , ,..., ,...)j
i i i i�� � � � . If we put numbers in the form of a table, where i is 

a number of a line, and j is a number of a column then we have a squarte ma-
trix A  which is called operator matrix L in the basis { }ie . The vectors f and g 
in the basis look like  

 1,    g ,    , ,i i i i
i if f e g e f g� � � � �  (4.26) 

where ,i if g  are components of the vectors f and g in the basis { }ie . Using 
a linearity of the operator and the equations (4.25), (4.26) we can write down 
the equation Lf g�  in a so-called component form.  

 L L L .j ji i i i k
i i j j ki i

i i i j j i k
f f e f e f e f e g e

# $ # $
� � � � �% & % &% & ' (' (
� � � � � � �� �  
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In order to find the expression of the nth components of vector g 
through the components of vector f and matrix A of operator L, it is sufficient 
to multiply both parts of the last sequent equality scalar by ne . As far as basis 
is orthonormalized, we have  

 .j i k n i n
jn kn ii

j i k i
f g f g

# $
6 � 6 L �% &% &

' (
� � � �� �  

Identically we can arrange the equations for some other components of 
vector g. As a result we have the system of algebraic linear equations  

 

1 1 1 2 1 3 1
1 2 3
2 1 2 2 2 3 2
1 2 3

... ,

... ,
     .    .    .    .    .    .

f f f g

f f f g

* � � � �
  � � � �+
 
 ,

� � �

� � �  

Introducing not incline symbols for vectors (in notions of linear algebra) 
1 2 1 2f ( , ,...) ,   g ( , ,...)T Tf f g g� � , where the upper index T signifies transpo-

sition. Finally we have a component form 
 f g.A �  

So, the initial problem was converged to the problem of linear algebra. 
Let’s take 2L ( ),   ([ , ])f f x f��.  �� �� . As basis one we choose vectors 

1{ }inx
ne 2
�  (here i is an imaginary unit, 2 1i � � ). Let’s write the matrix of op-

erator L. For this we are to find the element Ln ne�� . 

 2L ( ) .inx inx
n ne e n e��� � � ��  

As j
n n j

j
e��� � , it is clear, that  

 
2,   ,

  0 ,   .
j
n

n n j
n j

*� � � +
� ,

�  

So, the matrix of operator is a diagonal one. 

12. �onvergence method 
A vigorous means of solving Lf g�  equation is the method, based on 

development of 1Ln
�  operators’ sequence, which approach 1L�  operator. This 

method is named the convergence method. Actually, 1L�  operator is inter-
preted as a limit of certain sequence of operators. The sequence develops 
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while solving the exercise. Let read into these intuitive considerations; it re-
quires defining of notion of operators’ convergence and their proximity de-
gree. One of the approaches is based on building of structure of Banach space 
operators and using of this banach space characteristics. Let V and W be vec-
tor spaces, 1L,  L  and 2L  be linear operators, 1 2,  ,  :  L L L V W) . Now de-
fine 1 2(L L )�  operator named sum of operators 1L  and 2L , such as  

1 2 1 2(L L ) L L ,    f f f f V� � � N 

and 1( L),   � ��  operator, named product of operator by number, such as 
1( L) (L ),    ,    .f f f V� � � N  N��

Denote zero operator as O, and received vector space of linear operators 
via � ( , )V W .

Provided that operators map V into V, then vector space of these operators 
may be denoted via � ( )V . The fact that L operator from � ( , )V W  has a back-

ward operator, may be recorded as existence of 1L� � ( , )V W  operator (pay 
attention to the sequence order of V and W spaces). Now, when we have built 
the vector space of linear operators (which means that we can consider linear 
operator as a vector or a point of this space), it is naturally to try to introduce 
a norm to have an opportunity to estimate the proximity of points to one an-
other. Now try to determine the norm of the operator, integrating the notion 
of the vector uniform norm (function). Consider : (L) (L)L D R)  operator, 
let (L)D BG , (L)R CG , where B and C are banach spaces (we take banach 
spaces here since it is necessary for the vectors of (L)D  and (L)R  to posess 
the norm). L operator maps f point from (L)D  into Lf point from (L)R . Name 
this operator a bound one, provided that m � 2  number exists that  

L ,    (L)C Bf m f f D
 N   (4.27) 

(the first norm is in C vector space, the second norm is in B vector space). 
Provided that L operator is not limited in (L)D , then it is named unlimited.
It is obviously that for each (L)f D  point a certain m minimum value ex-
ists; (4.27) inequality is correct for this value (it is clear that if L operator 
is limited). The peak value of such m, when (4.27) inequality is correct in all 

(L)f D  points, we name L norm of operator and denote as L .  
In case of the linear operators the problem of their limitation is solved 

by the following theorem.
Theorem. Linear operator L from B into C is limited in (L)D  if and 

only if it is continuous.
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Then by � ( , )B C  we imply the vector space of limited linear operators.  

Consider an example. Let L : n n)� �  is n-dimensional linear operator, 
which, as we already know, in { }je  basis may be specified as a matrix  

 L .j i
ji

j i
f f e����  

Suppose that n�  possesses a certain norm  2� , then  

 
1

L max max

max (max ) ,

n
j ji i
i ij ji i

j i
ij i i

f f f

f m f

2
�

2

� 
 � 


# $
�% &% &

' (

� �

�

� �

�
 

where max j
ij i

m � � � . Hence L m
 . Disclose that L m� . Try to work 

out such f, for which Lf m f2 2� . As evident from m definition, there ex-

ist a certain k integer, when k
i

i
m �� � . As f take a vector with a norm equal 

to one and with such coordinates k k
i i� � . Then inequality chain turns into 

chain of equations  

 L max j ji i k
ii ij i i i

f l f l f l m f2 2� � � �� � � , 

and we have a required result.  
The norm of operator introduced beyond specifies in � ( , )B C  a Banach 

space structure. Now disclose that � ( , )B C  space is complete by operator 
norm. Take Cauchy operators consequence nL � ( , )B C  and disclose that 
the limit of this consequence is also situated in � ( , )B C . 
1. As Ln  is Cauchy consequence, then L L 0n m� )  at ,n m )2 , hence 

the consequence {L }n f , where f B  and Ln f C , also forms Cauchy 
consequence since  

 L L L L .n m n mf f f� 
 � �  

But if C is complete, then Ln f g C)  .  
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2. Let L lim Ln
n

f f g
)2

� � . It is obviously that L is a linear operator. Make 

certain that it is limited. Indeed,  
 L lim L lim L .n n

n n
f f f

)2 )2
� 
 �  

But since  

 L L L L   and  L L 0,n m n m n m� - � � )  

then Ln  also forms Cauchy consequence in 1� . Denote lim Ln
n

� � , then 

 L .f f
 �  

3. Disclose that L Ln ) , i. e. that  

 L L 0.n � )  

As {L }n  is Cauchy consequence, then for any 03 4  N number may be 
found, such number that if ,m n N4 , then L Ln m� � 3 . Then for ,m n N4  
we have L Ln mf f f� 
 3  and  

 L L lim L L ,n n m
m

f f f f f
)2

� � � 
 3  

which is correct for any f B . Hence L Ln � 
 3 , and because 3 is an arbi-
trary value, then  
 lim L L 0.n

n)2
� �  

Let’s turn to backward operator construction with the help of the conver-
gence method. The idea of the method is quite simple. Introduce L operator as  
 L I M� � , 
where I is an identity operator, and M is a certain linear operator, then  
 L (I M) ,f f g. � �  
or  
 M .f g f� �  (4.28) 

To determine f let’s do the following integration. As f zero approxima-
tion let’s take g point, i. �.  

0 .f g�  
Then, substituting zero approximation in the (4.28) right-hand member, 

we have the first approximation  
 1 0M .f g f� �  
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Continuing this operation we have an opportunity to get any n approxi-
mation in the following recurrence formula  
 1 0M ,   ,   1.n nf g f f g n�� � � -  (4.29) 

Resolve the formula (4.29) by substituting the previous approximation:  
1 2M M( M )n n nf g f g g f� �� � � � � �  

 2(I M) M(M ).ng f �� � �  (4.30) 
We get some new operator in the last expression that we will denote as 

the grade of operator. This is the particular case of the product of operators. 
If L : ,   N :V U U W) )  are the linear operators and ,  ,  V U W are vector 
spaces then the product of operators NL is presented by the operator 
P :V W) , making the element Vv  relevant to the element  

N(L, ) W� w v . 
The applicable domain of ( )D P  is the set of elements of (L)Dv  such 

as L (N)Dv .  
If L and N are bounded operators and ,  ,  V U W  are normalized spaces, 

then operator P NL�  is also limited and 
 P N L
 � . (4.31) 

In fact, for any (L)Dv , and thus (P)Dv  by definition of the opera-
tor norm we have  
 P P ,   L L
 � 
 �v v v v . 

In a similar manner, for any (N)u D  
 N Nu u
 � . 

Since L (N)Dv , then we obviously get 

 P N(L ) N L ( N L ) .� 
 � 
 �v v v v  
Hence, the inequation (4.31) follows according to the definition of the 

operator norm. If N L� , then the product NN we will identify as the grade 
of operator and denote 2N . We can identify just as any operator integral 
power. It is reasonable to consider 0N I� . Thus, the expression (4.30) for nf  
we can write through the grade of the operator M: 

2 2
2 3

1
2 3

3 0
1

(I M) M (I M) M ( M )

(I M M ) M ... I M M ,

n n n
n

i n
n

i

f g f g g f

g f g f

� �
�

�
�

� � � � � � � �

# $
� � � � � � � �% &% &

' (
�
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or taking in to the account that 0f g� , and 0M I� ,  
1

1
M .

n

n
i

if g
�

�
� �  

We await that lim n
n

f f
)2

�  and  

 
0

M .i

i
f g

2

�
� �  (4.32) 

If to the operator L the backward operator 1L�  exists then 1Lf g��  and 
this means  

 1 1

0
L (I M) Mi

i

2
� �

�
� � � � . (4.33) 

All these, however, are the formal constructions as we have no confi-
dence in that the series (4.32) converges. Let’s see, on what conditions this 
happens that is in what case the convergence method works. Let B is the ba-
nach space and L� ( )B , and this means that M� ( )B . There is a need to 

clarify when 1 1L (I M)� �� �  exists or in other words 1(I M)�� � ( )B . The 
latter denotes that the operator L has the bounded backward operator that is 

1L� � 2 . From the formula (4.33) we have  

1 1L (I M) M M M .nn n

n n n

� �� � � 
 
 � 2� � �  

The series M n

n
�  is already numerical (that is to say, the geometric se-

ries), relatively to which it is known that it comes together if M 1� . This is 
the condition for convergence of the series (4.32). It is easy to establish, that 
at M 1�  the consequence { }nf  has the bound f. From the equation  

1M   and  Mn nf g f � g f �� � � �  
it follows that  
 1M Mn nf f f f�� � � 
     

 1 0M ... M .n
nf f f f�
 � � 
 
 � �   (4.34) 

Whence for M 1�  it follows that 
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lim 0   ���  lim .n n
n n

f f f f
)2 )2

� � �  

The inequality (4.34) characterizes the iterative procedure convergence 
rate of the convergence method. But this assessment should be reformulate 
since f is unknown. From the equation  

(I M) f g� �  
it runs out that 

0 0 0 0 0M M M Mf f f g f f g f f f� � � � � � � � � 
  

0 0 0 0 0M M L M .f g f f f f g f f� � � � � � � � � �  
Whence  

0 0
1 L .

1 M
f f f g� 
 �

�
 

Substituting this result in (4.34) we finally get  

 0
M

L .
1 M

n

nf f f g� 
 �
�

 (4.35) 

The value 0Lf g�  in the inequality (4.35) is the norm of zero ap-
proximation residual and it is easy to calculate it. That is why if you know 
M  this is worth nothing to calculate the number of iterations that is neces-

sary to achieve the given precision. 
It would be interesting to examine the action of the operator M and the 

condition M 1�  from the point of geometry. Let L, and consequently M re-
flect banach space inside: B B)  (otherwise we cannot put in the operator 
grade). Then 0 1, ,..., ,...nf f f B  are the points of one and the same space B. 
The distance between two neighboring points of the consequence { }nf  is de-
termined by their norm of difference 1n nf f �� . Let’s see how is this dis-
tance changing with n rising or what is the same under the influence of the 
operator M. Express the distance between the points 1nf �  and nf  through the 
distance between the points nf  and 1nf � . As  

1M ,n nf g f �� �  1 M ,n nf g f� � �  
we get  

1 1 1M M M .n n n n n nf f f f f f� � �� � � 
 � �  

If 1M � , then it is obvious that the distance between two consequent 
points contracting with n rising, so the points are approaching. At 1M -  the 
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distances between the neighboring points can rise. If 1M � , then the opera-
tor M is denoted as the contraction operator. The precise definition is as fol-
lows. It is said that the operator A satisfies the Lipshic’s conditions on (A)D  
with the Lipshic’s constant q, if it exists such q � 2 , that  

A Af g q f g� 
 � , , (A)f g DN  . 

If 1q � , then the operator A is denoted as the contraction operator. This 
term is very evident, what is confirmed by geometry illustration of M opera-
tor action. In conclusion, we consider the application of method of sequence 
approximations to solving the system of algebraic linear equations and limits, 
coming from 1M � . Let the following equation be solved 

 Af g� , (4.36) 

where the operator A : n n)� � , usually written as square matrix n n	 , 
and f ,  g n�  are vectors of unknown values and right parts. Let’s take A 
as (I–M), where I is a unit matrix, and M is some new matrix (operator). Let 

ija  are elements of matrix A, then numbers ( )ij ija6 �  are elements of matrix 
M ( ij6 is Chroneker’s symbol). The equation (4.36) is  

(I M)f g� � . 

If 1M � , we can arrange the international procedure  

1f g Mfn n� � �  

and calculate f lim fn
n)2

� . This is well known method to solve the system of 

linear equations. It is Jacoby’s method. We are to find out what the limits for 
elements of matrix A are to be implied to by requirement 1M � . We are go-
ing to work with norm   2� , then 

1
M max

n

ij ij
j i

a
�

� 6 �� . 

As far as 1M � , 
1

1
n

ij ij
i

a
�

6 � ��  for any j is  

1
1 1.

n

ij ij ij jj
i i j

a a a
� �

6 � � � � �� �  

We have 
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1 1 ,ij jj ij
i j

a a a
�

� � � ��  

or each diagonal element by module must be more than the sum of other ele-
ments in given column. This is a well known condition of Jacob’s method 
convergence condition of diagonal dominance of matrix A. 

13. Spectral radius of operator 
Method of sequent approximations works in case when 1M �  or the 

operator M is an operator of contraction. If 1M 4 , is this method applicable 
or not? It is not necessary. If the choice was not successful and there could be 
another more appropriate norm to make our operator the operator of contrac-
tion. The norm should be searched for among the sets of equivalent norms. 
Referring to the equivalent norms, the convergent sequences remain conver-
gent, as for closed set will be closed, open will be open and so on. If operator 
M in norm   �  satisfied Lipshits condition, then in the equivalent norm 

*  �  it will satisfy it. 
The final decision about convergence of the method of successive ap-

proximations can be made only if the equivalent norm is found, where operator 
M is contraction operator, or if minimum possible equivalent norm is made, 
and M is still not a contraction operator. Minimum norm is closely connected 
with so-called spectral radius of the operator. The procedure of the operator 

1L�  existence criterion establishment was the following: we wrote down the 
series of intensifying each other inequalities until we got geometric progres-
sion. Here everything became obvious and, unfortunately, very rough. It is 
possible to obtain more precise results if not going beyond this: 

 1 1L (I M) M Mn n

n n

� �� � � 
� � . (4.37) 

Let us implement the root test to the last series and calculate the limit 

lim Mnn
n

r
)2

� . 

r is called the spectral radius of operator M. 
Since M M nn 
 , it is obvious that Mr 
 . If 1r � , then series (4.37) 

converge, so operator 1L�  exists; 1r 4 , then series (4.37) diverge and opera-
tor L do not have backward operator. If 1r �  we can’t say anything about se-
ries convergence. 
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Knowing the spectral radius r we can make the equivalent norm in space B 
at which the norm of the linear operator M is arbitrary close to its spectral radius. 
Now it is easy to formulate the convergence criterion of the method of successive 
approximations in the terms of the operator M spectral radius, namely: if spectral 
radius (M) 1r � , then successive approximations converge to the equation solu-
tion. Since we can make the equivalent norm *M , in such a way that 

 *M ,    0r
 � 3 N3 4 , 

then we can rewrite the obtained estimation of the rate of convergence (4.35) 
in the following way 

 0
( (M) ) L

1 ( (M) )

n

n
rf f f g

r
� 3

� 
 �
� � 3

. 

If for the successive approximations the following inequation is fair 

 ,    n
nf f cq c const� 
 � , 

then they say that approximations nf  converge to f at rate of geometric pro-
gression with q ratio. Thus, for the linear equation  
 L (I M)f f g. � �  

successive approximations converge to the equation solution at rate of geo-
metric progression, which ratio is arbitrary close to the spectral radius (M)r . 
All formulated criteria and estimations presuppose the fact that we know how 
to calculate the operator norm or its spectral radius. However we have yet 
only such a non-constructive definition of the norm as maximum value of the 
constant m, at which for any f B  

 Mf m f
 , 

or in other words 

 
M

M max
f B

f
f

� . 

Let’s consider the equation 
 Mf f� F , (4.38) 

where � is some number (actually complex number). If we take the norm 
from the right and the left part we will get: 

 M Mf f f� F � 
 � . 
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Hence, M  is no less the maximum F , which satisfy the equation (4.38). 
Thus, the task of the operator norm estimation is to find � values, at which 
the equation (4.38) or the following equation 
 ( M) 0I fF � �  (4.39) 
has nontrivial, i. e. non-zero, solution. The later means that at these � operator 
( M)IF �  cease to be injective and, consequently, there is no backward operator 

1( )I M �F � . Indeed, if 0f �  is a solution for (4.39), then �f is also a solution 
for (4.39) for any real or complex �. As a result one-oneness is disturbed. The 
theory turns to be simpler in complex case, so we will consider F� . Those � 
values, at which 1( M)I �F � �( )B , i. e. 1( M)I �F �  is linear bounded opera-
tor, are called regular and form so-called resolvent set �(M) of M operator, and 
the operator 1R ( I M)�F � F �  itself for (M)FI  is called resolvent of M op-
erator. All other � which do not enter the resolvent set are called operator M 
spectrum and are marked in the following way: (M). Thus, complex plane is 
divided into two parts: resolvent set �(M) and spectrum (M). � values, at which 
the equation (4.38) have a solution, are called proper values of linear operator 
M. Vectors f being a solution for (4.38) (accurate to constant factor) at some 
proper � value are called proper vectors of operator M, responding to the given 
�. If B is function space, then proper values are often called proper functions. It 
is not difficult to show that set of proper vectors for some � forms vector space. 
At the same time vector space is a subset of space B. Thus, proper vectors re-
sponding to some proper � value form vector subset in B, which is called proper 
subset responding to �. Set p(M) of all proper values of operator M is called its 
point (or discrete) spectrum. For finite-dimensional operators spectrum coin-
cides with point spectrum. If M is an infinite-dimensional operator, then at some 

(M)F7  operator 1( M)I �F �  can exist but it will be unbounded. If with all 
this domain of operator 1( M)I �F �  is dense in B (and this is carried out, 
as a rule), then such � form so-called continuous spectrum (M)c7  of operator M. 
Above defined resolvent can be considered as a reflection )� �( )B  of com-
plex plane on vector space �( )B , i. e. operator-valued function of complex ar-
gument. Then spectrum (M) is scar set of function RF . The task (4.39) to find 
proper values of operator M is called proper value problem or spectral problem. 

Examples: 
1. Let operator 0 0M : ([ , ]) ([ , ])C a b C a b)  is defined by the formula 

 M ( ) ( ) ( )f x x f x� � , 
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where ( )x�  is some given continuous function. Then 

 ( I M) ( ) ( ( )) ( )f x x f xF � � F �� , 
or 

 1 1( I M) ( )
( )

x
x

�F � �
F � �

. 

All � turn to be the spectrum of operator M, for which ( ) 0xF �� �  at some 
[ , ]x a b , i. e. all values of function ( )x� . Since 0( )x C�  , then spectrum is 

continuous. There is no point spectrum because there are no proper values. 
2. Let M : n n)� �  represents by n n	  matrix. Then its spectrum is pure 

point consisting of finite number of proper values. There is no continu-
ous spectrum, because if 1( M)I �F �  exists, it is bounded. 
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