

DEMAND DRIVEN R&D OF NONDESTRUCTIVE METHODS FOR RELIABILITY ENGINEERING

DEMAND DRIVEN R&D OF NONDESTRUCTIVE METHODS FOR RELIABILITY ENGINEERING

R & D DRIVEN BY DEMAND Our Dream of Continuing Improvements

Knowledge Visions Creativity

Innovation

Competitiveness Profit Social Processes

Services – Technologies – Products

DEMAND DRIVEN R&D OF NONDESTRUCTIVE METHODS FOR RELIABILITY ENGINEERING

How to Manage Innovations?

KnowledgeMarketingCompetenceManagementCultureVisionsRealizationProfitTechnologyViabilityRessourcesMarket

or

The Modern Challenge of Science & Education

DEMAND DRIVEN R&D OF NONDESTRUCTIVE METHODS FOR RELIABILITY ENGINEERING

DEMAND DRIVEN R&D OF NONDESTRUCTIVE METHODS FOR RELIABILITY ENGINEERING

NONDESTRUCTIVE TESTING (NDT):

Concerned with all methods of detecting and evaluating material flaws. The essential feature of NDT is that the test process itself produces no deleterious effects on the material or structure under test **BINDT (The British Institute of Non-Destructive Testing, UK)**

NONDESTRUCTIVE EVALUATION (NDE):

Measurements that are more quantitative in nature. For example, a NDE method would not only locate a defect, but it would also be used to measure something about that defect such as its size, shape, and orientation.

NDE may be used to determine material properties

such as fracture toughness, formability, and other physical characteristics **CNDE (Center for NDE, Iowa State University, USA)**

STRUCTURAL HEALTH MONITORING (SHM):

Damage detection and characterization strategy for engineering structures . Changes to the material and/or geometric properties of a structural system, which adversely affect the system's performance are monitored. The SHM process involves the observation of a system over time using periodically sampled or continuously observed measurement data. The extraction of damage-sensitive features from these measurements, and their statistical analysis determine the current state of system health. SHM systems are usually an integral part of structures and thus a matter of automation. **DGzfP (Deutsche Gesellschaft für zfP, Germany)**

PROCESS MONITORING & CONTROL (PMC):

In-process sensors play a significant role in assisting manufacturing systems in producing quality products at a reasonable cost and are used to generate control signals to improve both the control and productivity of manufacturing systems. Advanced integrated process control systems are part of automated processes improving the manufacturing effectiveness. **David A. Dornfeld**

DEMAND DRIVEN R&D OF NONDESTRUCTIVE METHODS FOR RELIABILITY ENGINEERING

FEATURE BASED CONTROL OF AUTOMATED PROCESSES

DEMAND DRIVEN R&D OF NONDESTRUCTIVE METHODS FOR RELIABILITY ENGINEERING

INNOVATION DYNAMICS

HEALTH MONITORING

passive (acoustic emission)

active (ultrasound pulse echo)

DEMAND DRIVEN R&D OF NONDESTRUCTIVE METHODS FOR RELIABILITY ENGINEERING

Structure Integrated Sensor System

Plastics with embedded piezoelectric fibers

Fiber thickness < 100µm

Image courtesy of Fraunhofer-ISC, Würzburg

DEMAND DRIVEN R&D OF NONDESTRUCTIVE METHODS FOR RELIABILITY ENGINEERING

ULTRASONIC PIEZOFIBER SENSOR STRUCTURE

DEMAND DRIVEN R&D OF NONDESTRUCTIVE METHODS FOR RELIABILITY ENGINEERING

Tomsk, June 15th, 2012

TOLMI LECTURE Controlled Mass Production

HOWEVER, WHAT ABOUT QUALITY OF MASS PRODUCTION

DEMAND DRIVEN R&D OF NONDESTRUCTIVE METHODS FOR RELIABILITY ENGINEERING

Controlled Mass Production

QUALITY COSTS

reject

DEMAND DRIVEN R&D OF NONDESTRUCTIVE METHODS FOR RELIABILITY ENGINEERING

Controlled Mass Production

Injection molding of plastics with gas injection (GIT)

DEMAND DRIVEN R&D OF NONDESTRUCTIVE METHODS FOR RELIABILITY ENGINEERING

Controlled Mass Production

Monolithically Integrated 94 GHz FMCW Radar Chip

VCO – Voltage Controlled Oscillator MPA – Medium Power Amplifier LNA – Low Noise Amplifier IF – Intermediate Frequency

94 GHz radar module, frequency-modulated, (developed by Fraunhofer IAF)

DEMAND DRIVEN R&D OF NONDESTRUCTIVE METHODS FOR RELIABILITY ENGINEERING

Controlled Mass Production

Layout of GIT process monitoring with radar sensor

Process steps identified by characteristic signal changes

DEMAND DRIVEN R&D OF NONDESTRUCTIVE METHODS FOR RELIABILITY ENGINEERING

HOW TO MANAGE ALL THIS?

WE NEED A MISSION!

DEMAND DRIVEN R&D OF NONDESTRUCTIVE METHODS FOR RELIABILITY ENGINEERING

DEMAND DRIVEN R&D OF NONDESTRUCTIVE METHODS FOR RELIABILITY ENGINEERING

PARADIGM CHANGE by AUTOMATION (Robotics) MICROELECTRONICS (Instruments) COMPUTING (Real-time advanced signal processing) IT(Asset management; distributed systems;

NDT – DRIVEN BY QUALITY MANAGEMENT

DEMAND DRIVEN R&D OF NONDESTRUCTIVE METHODS FOR RELIABILITY ENGINEERING

TOLMI MISSION

EXCELLENT & RELEVANT APPLIED SCIENCE THROUGH NATIONAL & INTERNATIONAL

FOR

KNOWLEDGE AND TECHNOLOGY MANAGEMENT MARKET AND PRODUCT DRIVEN R&D PROJECTS FUNDAMENTAL & PROFESSIONAL STUDENT EDUCATION

INNOVATIVE PRODUCTS:

INSTRUMENTS, SYSTEMS, SERVICES

APPLIED IN INDUSTRY

SAFE TECHNICAL STRUCTURES – CERTIFIED QUALITY PRODUCTION

DEMAND DRIVEN R&D OF NONDESTRUCTIVE METHODS FOR RELIABILITY ENGINEERING

STRATEGIC NETWORKS FOR PROFESSIONAL and COMPETENT DEMAND DRIVEN DEVELOPMENT

DEMAND DRIVEN R&D OF NONDESTRUCTIVE METHODS FOR RELIABILITY ENGINEERING

IzfP, SAARBRÜCKEN FRAUNHOFER GESELLSCHAFT INSTITUTE NONDESTRUCTIVE TESTING **GERMANY**

CNDE

IIT, MADRAS INDIAN INSTITUTE of TECHNOLOGY CENTER for NONDESTRUCTIVE EVALUATION INDIA

ISU, AMES IA IOWA STATE UNIVERSITY CENTER for NONDESTRUCTIVE EVALUATION UNITED STATES

DEMAND DRIVEN R&D OF NONDESTRUCTIVE METHODS FOR RELIABILITY ENGINEERING

Advanced UT Systems

DEMAND DRIVEN R&D OF NONDESTRUCTIVE METHODS FOR RELIABILITY ENGINEERING

Tomsk, June 15th, 2012

(Quantitative) ULTRASONIC TESTING

Advanced UT Systems

DEMAND DRIVEN R&D OF NONDESTRUCTIVE METHODS FOR RELIABILITY ENGINEERING

DEMAND DRIVEN R&D OF NONDESTRUCTIVE METHODS FOR RELIABILITY ENGINEERING

TOLMI LECTURE QUT - QUANTITATIVE ULTRASONIC TESTING -A Preventive Action for the Integrity of Structures under Load

DEMAND DRIVEN R&D OF NONDESTRUCTIVE METHODS FOR RELIABILITY ENGINEERING

DEMAND DRIVEN R&D OF NONDESTRUCTIVE METHODS FOR RELIABILITY ENGINEERING

DEMAND DRIVEN R&D OF NONDESTRUCTIVE METHODS FOR RELIABILITY ENGINEERING

Applicable Principles of Measurement Physics

DEMAND DRIVEN R&D OF NONDESTRUCTIVE METHODS FOR RELIABILITY ENGINEERING

PROBABILITY OF DETECTION

PoD (planar flaws) = f(Performance) X f(Contrast)

Advanced UT Systems

DEMAND DRIVEN R&D OF NONDESTRUCTIVE METHODS FOR RELIABILITY ENGINEERING

TOLMI LECTURE FLAW EVALUATION

There are many experts and procedures We rely on ultrasonic high resolution imaging

Advanced UT Systems

DEMAND DRIVEN R&D OF NONDESTRUCTIVE METHODS FOR RELIABILITY ENGINEERING

CHALLENGE

Contradicting Requirements

High Contrast Sensitivity High Resolution Sensitivity

Space Coverage of Intromission Angles

Resolution in Space 3-D Imaging

Large Beam Spread

DEFECT STATE

3-D Focussing

(Quantitative) ULTRASONIC TESTING

Advanced UT Systems

DEMAND DRIVEN R&D OF NONDESTRUCTIVE METHODS FOR RELIABILITY ENGINEERING

DEMAND DRIVEN R&D OF NONDESTRUCTIVE METHODS FOR RELIABILITY ENGINEERING

A-SCAN: $A_{\alpha}(t)$

 α – Beam Angle

Signal Generation Using Conventional PA

Advanced UT Systems

DEMAND DRIVEN R&D OF NONDESTRUCTIVE METHODS FOR RELIABILITY ENGINEERING

$\phi_{ij}[k]$ – corresponding phase delay for beam angle α

Information Matrix A_{ii}

- i transmitter number
- receiver number

A ₁₁	A ₁₂	А ₁₃	A ₁₄
A ₂₁	A ₂₂	A ₂₃	A ₂₄
A ₃₁	A ₃₂	A ₃₃	A ₃₄
A ₄₁	A ₄₂	A ₄₃	A ₄₄

Notation: $\mathbf{m} \times \mathbf{n}$ m – number of active transmitters n – number of active receivers

Sampling PA Signal Generation

Advanced UT Systems

DEMAND DRIVEN R&D OF NONDESTRUCTIVE METHODS FOR RELIABILITY ENGINEERING

A Virtual SAFT Experiment

DEMAND DRIVEN R&D OF NONDESTRUCTIVE METHODS FOR RELIABILITY ENGINEERING

TOLMI LECTURE Synthetic Aperture - SAFT

SAFT Reconstruction

A ₁₁	A ₁₂	A ₁₃	A ₁₄
A ₂₁	A ₂₂	A ₂₃	A ₂₄
A ₃₁	A ₃₂	A ₃₃	A ₃₄
A ₄₁	A ₄₂	A ₄₃	А ₄₄

Advanced UT Systems

DEMAND DRIVEN R&D OF NONDESTRUCTIVE METHODS FOR RELIABILITY ENGINEERING

SAFT

Advanced UT Systems

DEMAND DRIVEN R&D OF NONDESTRUCTIVE METHODS FOR RELIABILITY ENGINEERING

TOLMI LECTURE Phased Array Principle Phase Controlled Measurement

Sweeping

Focusing

Advanced UT Systems

DEMAND DRIVEN R&D OF NONDESTRUCTIVE METHODS FOR RELIABILITY ENGINEERING

TOLMI LECTURE Sector Scans

Ray ImageProcessed ImageSector Scan composed by 71 A-Scans (sweep: -70° to +70° in steps of 2°)
No focussing

Advanced UT Systems

DEMAND DRIVEN R&D OF NONDESTRUCTIVE METHODS FOR RELIABILITY ENGINEERING

TOLMI LECTURE PHASED ARRAY Some (well-known) Statements

- Phase controlled measurement
- Array aperture determines nearfield with focussing capacity
- Resolution depends on array aperture
- Long measurement times for complete angle sweep and focussing

However: Excellent Contrast Sensitivity (until today for 2 – D Imaging)

Migration Arrays {SAFT , PHASED ARRAY}

Name

We measure position controlled the acoustic field by elements of an array and migrate the field from the surface through the volume of interest and find the acoustic sources (reflectors). This is called inverse migration.

Meaning

Used for reflector reconstruction (geophysics).

Advanced UT Systems

DEMAND DRIVEN R&D OF NONDESTRUCTIVE METHODS FOR RELIABILITY ENGINEERING

TOLMI LECTURE MIGRATION ARRAY

Some (new) Statements

- **Position Controlled Measurement**
- Array aperture determines nearfield with synthetic focussing
- **Resolution depends on Element Aperture**
- **One set of A-Scan data of array elements received in parallel**
 - allows full and complete image reconstruction with:

Excellent Contrast Sensitivity (all space angle of incidence) Highest possible Resolution Contrast through synthetic focussing

Advanced UT Systems

DEMAND DRIVEN R&D OF NONDESTRUCTIVE METHODS FOR RELIABILITY ENGINEERING

TOLMI LECTURE ACOUSTIC MIGRATION

Kirchhoff Ansatz:

$$C(t) = G \sum_{i} w_i A_i (t - t_i)$$

- x_i : element position z_j : depth positionC(t): computedRF echo return $A_i(t)$: returned signal w_i : weight assignedto $A_i(t)$
- t_i : time delay for element i.

G: goodness of fit enforcement (SynFoc[©] by LucidSoft)

Advanced UT Systems

DEMAND DRIVEN R&D OF NONDESTRUCTIVE METHODS FOR RELIABILITY ENGINEERING

THAT'S WHAT WE WANT! Resolution Sensitivity:

depends on the element aperture in the near field of the array aperture (synthetic focusing)
 is close to the Rayleigh limit for λ/2 element apertures

> can be increased by super resolution techniques

Contrast Sensitivity:

🗯 Matrix arrays:

sensitive to all space directions within the chosen cone angle Linear Arrays:

covers all angle of incidence of the chosen sector scan angel including angles beyond the first critical angle (shear mode)

ACOUSTIC MIGRATION (As Realized for NDT Applications)

Advanced UT Systems

DEMAND DRIVEN R&D OF NONDESTRUCTIVE METHODS FOR RELIABILITY ENGINEERING

Advanced UT Systems

DEMAND DRIVEN R&D OF NONDESTRUCTIVE METHODS FOR RELIABILITY ENGINEERING

Zoomed Crack Tip Signals

Phased Array Mode

Migration Mode

Advanced UT Systems

DEMAND DRIVEN R&D OF NONDESTRUCTIVE METHODS FOR RELIABILITY ENGINEERING

REAL-TIME MIGRATION

All 16 elements used as transmitter in sampling mode by multiplexing

Only 1 element used as transmitter in 1 transducer position

All 16 elements used as receiver simultaneously in parallel mode

Transducer: 5 MHz Linear Array 64 elements with 16 used

POINT REFLECTOR SIGNALS (Reconstructed A-Scans 45° long)

Advanced UT Systems

DEMAND DRIVEN R&D OF NONDESTRUCTIVE METHODS FOR RELIABILITY ENGINEERING

Just a Simple Consideration

- Frequency f: 3 MHz
- Wavelength λ : 2 mm

Array Apertures 8 by 8 A: 8mm by 8mm 64 by 64 A: 64mm by 64mm

The Sampling Theorem does not allow the design of reasonable matrix transducers

DEMAND DRIVEN R&D OF NONDESTRUCTIVE METHODS FOR RELIABILITY ENGINEERING

MIGRATION ARRAY

DEMAND DRIVEN R&D OF NONDESTRUCTIVE METHODS FOR RELIABILITY ENGINEERING

Sparse Migration Array Experiment

8 Elements with skips of 4 wavelengths

DEMAND DRIVEN R&D OF NONDESTRUCTIVE METHODS FOR RELIABILITY ENGINEERING

The Sampling Theorem

DEMAND DRIVEN R&D OF NONDESTRUCTIVE METHODS FOR RELIABILITY ENGINEERING

TRANSDUCER: 64 element linear array 16 elements used f = 5 MHz Distribution Factor: 4 (Element Skip: 2λ)

BEAM PROFILE Phased Array mode Phase control: 0°

SPARSE ARRAY SECTOR SCANS

DEMAND DRIVEN R&D OF NONDESTRUCTIVE METHODS FOR RELIABILITY ENGINEERING

Definition of Migration Array Transducer

Linear or Matrix Array Transducer with sparse element arrangement, not in compliance with the sampling theorem.

This type of transducers cannot be used with Phased Array Instruments

DEMAND DRIVEN R&D OF NONDESTRUCTIVE METHODS FOR RELIABILITY ENGINEERING

Challenge: Optimized Element Arrangement

Definition: Distribution Factor D D = 2S/λ S: Skip; λ: Wavelength

(Distribution Factor for Phased Array Transducers, $\mathbb{D} = 1$)

DEMAND DRIVEN R&D OF NONDESTRUCTIVE METHODS FOR RELIABILITY ENGINEERING

SPARSING LIMITS

DEMAND DRIVEN R&D OF NONDESTRUCTIVE METHODS FOR RELIABILITY ENGINEERING

Arrangement Rule № 1

D≤4

uniform element distribution, advanced migration code

No artifacts and reasonable low noise levels

DEMAND DRIVEN R&D OF NONDESTRUCTIVE METHODS FOR RELIABILITY ENGINEERING

Arrangement Rule № 2

▶>4

Non-uniform element distribution, advanced migration code

No artifacts and reasonable noise levels

Limits have to be investigated

DEMAND DRIVEN R&D OF NONDESTRUCTIVE METHODS FOR RELIABILITY ENGINEERING

DEMAND DRIVEN R&D OF NONDESTRUCTIVE METHODS FOR RELIABILITY ENGINEERING

Tomsk, June 15th, 2012

DEMAND DRIVEN R&D OF NONDESTRUCTIVE METHODS FOR RELIABILITY ENGINEERING

DEMAND DRIVEN R&D OF NONDESTRUCTIVE METHODS FOR RELIABILITY ENGINEERING

0 0 2 Project Settings Wews Actions Parameters Report Save Data Window Help 🔁 💕 🔐 🕨 🤉 🕕 🔛 🔛 👹 📲 🗁 PW Lib 🎉 Data Viewer 🖾 Views 🖉 Report Livel Central 2 a 0 11 K Scan View Sector Scan Snap Photos Record Videos Scen[mm] -40 -20 20 60 -5, 1 10 2 2 Depth [mm] 뮻 8 d\$ You Tobd 10 photobudiét Scan [mm] 39.12 Depth [mm] 55.95 171.6 theta 33.1 Angle -1900,8 Length 60.0 Capture Mo integrated Webcam CamStudio - Custom Build Shot rate 25 Hz **_____** 21 0 a - 💽 🕘 🚯 11:58 FM/ X 2 503 0 6

DEMAND DRIVEN R&D OF NONDESTRUCTIVE METHODS FOR RELIABILITY ENGINEERING

Sector scan reconstruction of Alu block with side drilled hole

B-Scan reconstruction of Aluminium block

DEMAND DRIVEN R&D OF NONDESTRUCTIVE METHODS FOR RELIABILITY ENGINEERING

DEMAND DRIVEN R&D OF NONDESTRUCTIVE METHODS FOR RELIABILITY ENGINEERING

DEMAND DRIVEN R&D OF NONDESTRUCTIVE METHODS FOR RELIABILITY ENGINEERING

DEMAND DRIVEN R&D OF NONDESTRUCTIVE METHODS FOR RELIABILITY ENGINEERING

DEMAND DRIVEN R&D OF NONDESTRUCTIVE METHODS FOR RELIABILITY ENGINEERING

DEMAND DRIVEN R&D OF NONDESTRUCTIVE METHODS FOR RELIABILITY ENGINEERING

Tomsk, June 15th, 2012