

R&D Laboratory on Industrial Demand

UT, µ-NDT, NDT Systems Michael Kröning

PA SECTOR-SCAN

DEFINITIONS

APPLICATIONS

BASICS

CASE STUDIES

ADVANCED REAL-TIME IMAGING

SEMINAR

R&D Laboratory on Industrial Demand

Method	Main Application	Relevance	Remarks
Pulse-Echo	Flaw Detection Geometry Measurement	****	Standard
Guided Waves	Long Range Inspection	**	Pipe Systems
Continuous Waves	Elastic Properties; Distance Measurement	★ (Research)	Specific Use (Time Reversal)
Velocity	Stress State Material Characterization	★ (Research)	Specific Use
Frequency Response	Adhesive Strength Material Degradation	★ (Research)	Specific Use (Aerospace Materials)
Ultrasonic Microscopy	Microscopy; SAW Micro Structure Characterization	★ (Laboratory)	Specific Use (Electronic Structures)

ULTRASONIC TESTING

FOCUS ON ULTRASONIC INSPECTION UT

R&D Laboratory on Industrial Demand

BASICS of UT

FOREIGN CODES: ASME Section 5, EN 583 and others

STRUCTURE OF ULTRASONIC SYSTEMS

R&D Laboratory on Industrial Demand

BASICS of UT

SYSTEM ENGINEERING

with

Advanced Modular Architecture

• INSPECTION PROBLEM

(Specification, Procedures, Constraints)

- **MEASUREMENT PHYSICS** (Nondestructive Methods, Sensor Physics)
- ELECTRONICS

(Instruments, Computer Hardware)

• INFORMATION TECHNOLOGIES

(System Programming, Signal Processing, System Control & Reporting, Asset Management)

HANDLING TECHNOLOGIES

(Robots, Automation Technologies)

R&D Laboratory on Industrial Demand

BASICS of UT

TRANSDUCER TECHNOLOGIES

MECHANICAL
IMPACTPIEZO
EFFECTRELECTRO
MAGNETICLASER
IMPACT

Harmonic Sound Field with Near-field, Natural Focus, and Far-field

R&D Laboratory on Industrial Demand

BASICS of UT

Typical Design of an Angular Beam Transducer (Olympus, 2011)

PIEZO TRANSDUCER

R&D Laboratory on Industrial Demand

BASICS of UT

R&D Laboratory on Industrial Demand

BASICS of UT

Near field distance: $N = (A^2 - \lambda^2)/4\lambda$ Transducer aperture: A Wave length: λ Focus diameter : $\vartheta \sim .26$ A Focal length: Λ

TECHNICAL ESTIMATES oF TRANSDUCER PARAMETERS

PIEZO TRANSDUCER

PIEZO TRANSDUCER

GRINM

R&D Laboratory on Industrial Demand

SEMINAR

Case Studies: Surfaces

Simulation by Dr. Schubert Fraunhofer IZFP-D

Transducer:	normal probe f = 4 MHz
Aperture:	A = 10 mm
Surface:	flat

TOLMI

COUPLING

UT, μ-NDT, NDT Systems

GRINM

General Research Institute for Nonferrous Metals

Water gap depth (lense shaped): 0.74 mm (λ /2 in steel, 2 λ in water)

COUPLING

UT, μ-NDT, NDT Systems

R&D Laboratory on Industrial Demand

Water gap depth (lense shaped): 0.18 mm (λ /8 in steel, λ /2 in water)

Information Flow in NDT Systems

The complexity of data processing in modern NDT requires...

- Fast data links of several Gbit / sec (data transfer towards computational unit)
- Computational unit performance of hundreds of GFlop / sec (reconstruction process)

SEMINAR

R&D Laboratory on Industrial Demand

R&D Laboratory on Industrial Demand

16-Channel µ-USE UT Front End

Multi-DSP Computation Module

Parallel architecture of A-scan recording and processing

R&D Laboratory on Industrial Demand

SEMINAR

R&D Laboratory on Industrial Demand

SAPHIR^{quantum} System-Architecture

• Flexible architecture...starting from a portable equipment with 32 channels up to a complex configuration with 256 channels (1..8 UT-Boxes)

 Parallel structure with full 256/256 channels means no limits for the user...Phased-Array probes with up to 256 active elements, or a mix of a number of Phased-array and conventional probes

 High productivity by up to 8 parallel firing probes in conjunction with the possibilities of the different on-board data-reduction methods & the GBit-Data-Interface

GRINM

R&D Laboratory on Industrial Demand

SAPHIR^{quantum} System-Architecture

R&D Laboratory on Industrial Demand

General Research Institute for Nonferrous Metals

AUTOMATION FOR

REDUCTION OF HUMAN ERROR

ACCESS TO COMPONENT

SHORTER INSPECTION TIMES

LESS RADIATION EXPOSURE

R&D Laboratory on Industrial Demand

SEMINAR

Architecture of Robotic NDT Systems

SEMINAR

R&D Laboratory on Industrial Demand

R&D Laboratory on Industrial Demand

SEMINAR

Case Studies: Ultrasonic Imaging

General Research Institute for Nonferrous Metals

R&D Laboratory on Industrial Demand

Case Studies: Ultrasonic Imaging

R&D Laboratory on Industrial Demand

SEMINAR

COFFEE BREAK

SEMINAR

R&D Laboratory on Industrial Demand

<u>Day 2:</u>	Organization and Networks	Speaker
9.00	Welcome Address with Minutes of Last Day	NN
9.30	Recommended Laboratory Structure of Activities	Kröning
10.00	Human Resources – Ethics, Responsibilities, Education,	Klimenov
	Training and Certification	
10.30	Coffee Break	
11.00	Methods I - ET, MT, PT, TT, VT	Vavilov
11.30	X-ray, Betatron	Klimenov
12.00	UT, μ-NDT, NDT Systems	Kröning
12.30	Open Round Discussion (Questions)	all
13.00	Lunch Break	
14.00	Anglied Technologies and Conchility Networks	Kulinin a
14.00	Applied lechnologies and Capability Networks	Kroning
14.30	Knowledge Strategies and Education	Klimenov
15.00	Coffee Break	
13.00	Collee Dieak	
15.30	Added Value Chain in Applied Science	Vavilov
16.00	R&D Driven by Demand – a Project Analysis	Kröning
16.30	Concluding Minutes	to be appointed
17.00	End of Second Day	
	•	

SEMINAR

R&D Laboratory on Industrial Demand

<u>Day 3:</u>	CASE STUDIES & NEXT STEPS	Speaker
9.00 9.30	Welcome Address with Minutes of Last Day Case Studies: Betatron for NDT	NN Klimenov
10.00	Advanced UT and New Instruments	Kröning
11.00	Thermography for Surface Characterization	Vavilov
11.30 12.00	NDT System for In-line NDT International Cooperation Practice	Kröning Klimenov
12.30	Open Round Discussion (Questions)	all NN
13.00	Lunch Break	
14.00	Next Steps and Seminar Evaluation	
16.00	End of Third Day	