High Energy Radiography
Lecture

Betatrons & Applications
Michael Kröning

ACCELERATOR PRINCIPLE
INSTRUMENTS
RADIOGRAPHIC PARAMETERS
APPLICATIONS
EXAMPLES
Radial Stability Criterion: \(F_c = F_L \)

Centrifugal Force: \(F_c = m_e v^2/r \)

Lorentz Force: \(F_L = evB(r) \)
as reactive centrifugal force

- 2.5 MeV \(r \sim 25 \text{ mm} \)
- 300 MeV \(r \sim 1 \text{ m} \)

A: Anode
K: Cathode
M: Magnetic Field
R: Vacuum Torus

Betatron Electron Accelerator

CITEC Su Zhou

May 29th, 2012
High Energy Radiography Lecture

Betatron Torus
High Energy Radiography Lecture

Accelerator Chambers
RADIOGRAPHIC PARAMETERS
Specific Contrast Diagram for Steel High Energy Radiography

μ: absorption coefficient
K: scatter ratio
(quotient of the intensities scattered radiation divided by primary radiation).

\[C_{sp} = \frac{\mu}{1 + k} \]
High Energy Radiography Lecture

INSTRUMENTS

INSTRUMENTS
High Energy Radiography
Lecture

2.5 MeV Betatron Equipment
High Energy Radiography Lecture

7.5 MeV Betatron Equipment
High Energy Radiography Lecture

Power supply unit

Radiator

Control Panel

Remote Dosimeter

7.5 MeV Betatron Equipment

CITEC Su Zhou

May 29th, 2012
High Energy Radiography Lecture

Technische Parameter

<table>
<thead>
<tr>
<th></th>
<th>Betatron 2,5 MeV</th>
<th>Betatron 7,5 MeV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy</td>
<td>1,0 and 2,5 MeV</td>
<td>2,0 and 7,5 MeV</td>
</tr>
<tr>
<td>Exposure Dose Rate</td>
<td>0,7 R/min @ 1 m</td>
<td>5 R/min @ 1 m (measured: 6 R/min)</td>
</tr>
<tr>
<td>Focal Spot size</td>
<td>0,2 x 2 mm</td>
<td>0,3 x 3 mm</td>
</tr>
<tr>
<td>Duty cycle</td>
<td>45 min. operation 15 min. break</td>
<td>40 min. operation 20 min. break</td>
</tr>
<tr>
<td>Power consumption AC (1-phase)</td>
<td>1 kW</td>
<td>2 kW</td>
</tr>
<tr>
<td>Weight of the radiator</td>
<td>31 kg</td>
<td>105 kg</td>
</tr>
<tr>
<td>Parameter</td>
<td>MIB-2.5</td>
<td>MIB-3</td>
</tr>
<tr>
<td>---</td>
<td>---------</td>
<td>-------</td>
</tr>
<tr>
<td>Peak energy of bremsstrahlung radiation, MeV</td>
<td>2.5</td>
<td>3</td>
</tr>
<tr>
<td>Peak dose rate at 1m from the target, cGy/min</td>
<td>0.1</td>
<td>2</td>
</tr>
<tr>
<td>Pulse repetition rate, Hz</td>
<td>50</td>
<td>400</td>
</tr>
<tr>
<td>Power consumption, kVA</td>
<td>0.7</td>
<td>2.5</td>
</tr>
<tr>
<td>Radiator weight, kg</td>
<td>27</td>
<td>50</td>
</tr>
<tr>
<td>Total weight of units, kg</td>
<td>45</td>
<td>120</td>
</tr>
<tr>
<td>Size of focal spot, mm</td>
<td>0.2x3</td>
<td>0.2x3</td>
</tr>
<tr>
<td>Maximal controlled thickness (of steel), mm</td>
<td>70</td>
<td>130</td>
</tr>
</tbody>
</table>
APPLICATIONS
High Energy Radiography Lecture

7.5 MeV Betatron Inspection Station in Volgogradneftemash production plant, Russia

May 29th, 2012
High Energy Radiography Lecture

Inspection of Casting Process
High Energy Radiography Lecture

Engine Block (Defect Inspection)
Valve Housing (Functional Control)
High Energy Radiography Lecture

BRIDGE INSPECTION
High Energy Radiography Lecture

BRIDGE INSPECTION

CITEC Su Zhou

May 29th, 2012
Lorry Control by Betatron Radiograph
High Energy Radiography
Lecture

X-ray betatron sources for cargo inspection systems

Dual energy Betatron

Different energies are selectable by changing the acceleration cycle time.
High Energy Radiography Lecture
High Energy Radiography Lecture
THANK YOU