

Thermal NDT Michael Kröning

NEW TECHNIQUES IN THERMAL NONDESTRUCTIVE TESTING

Introduction: Basics of Infrared

Technical diagnostics

CITEC Su Zhou

Active NDT of materials

Prof. Vladimir Vavilov

Tomsk Polytechnic University, Russia

vavilov@tpu.ru

Thermal NDT Michael Kröning

Basics of Infrared Thermography

The grand five in nondestructive testing:

ultrasonics, X rays, liquid penetrants, magnetic particles & eddy currents

Infrared Thermography

CITEC Su Zhou

May 29th, 2012

№ 6

What makes IR thermography so useful?

There are, at least, five things which make IR thermography so uniquely useful.

- •It is non-contact uses remote sensing
- •It is two-dimensional produces images
- •It is accomplished in real time
- •It senses heat losses which irreversibly accompany human activity
- •It is applicable to both metals and non-metals

Night Vision

Search & Rescue Surveillance Alarm systems

Technical Diagnostics

Predictive Maintenance Condition Monitoring

CITEC Su Zhou

3-5 μm (Middle Wave) and 7-13 μm (Long Wave) wavelength bands are typically used in IR thermography _M

Infrared Imagers

CITEC Su Zhou

CITEC Su Zhou

Night vision

CITEC Su Zhou

Night Vision (Police Operations)

IR Thermography Exotics: Counting Deer in an Open Field at Night (at 400 m distance)

Technical diagnostics

Applications: Technical Diagnostics in Industry

10,0°C 10,0°C 10,0°C 10,0°C 10,0°C 10,0°C 10,0°C 10,0°C 10,0°C

In Russia, IR Thermographic diagnostics of tanks with liquid ammonia is obligatory by law.

the evaluation of industrial chimneys have been developed.

CITEC Su Zhou

Technical Diagnostics in Industry

Defective rod insulator: $\Delta T=10^{\circ}C$

Defective rod insulator: $\Delta T = 4^{\circ}C$

CITEC Su Zhou

Porcelain and Polymer Insulators

A typical defect in bolt joints is the absence of washers when connecting copper wires with a flat outlet made of copper or aluminum. It is recommended to perform the IR thermographic inspection of bolt joints once a year because defects appear continuously depending on load, impact of chemical reagents, grade of tightening, etc.

Contact Joints (Bolt, Welded, Compressed)

CITEC Su Zhou

Steam Line Surveys

Manhole Cover

Leak Underground

CITEC Su Zhou

May 29th, 2012

Active NDT of Materials

Active Thermal NDT of Materials (Pulsed & Thermal Wave, or Lockin Techniques): Optical Heating

CITEC Su Zhou

Basic Inspection Procedure

Thermal NDT Heating Procedures

Advanced Data Treatment in Thermal NDT

Solving Inverse Problems and Defect Characterization in Thermal NDT

There are **three** defect parameters to be typically evaluated by surface temperature distributions:

•Defect lateral size *h* (visual analysis or the Full Width Half Maximum (FWHM) technique

• Defect depth I (by an inversion technique)

•Defect thickness d, or thermal resistance R_d (by an inversion technique)

Source image (CFRP)

Depthgram

0

0.0039 m²KW⁻¹

Applications: Detection of Hidden Corrosion in Metals

Aircraft aluminum panel (2 mm), front and rear surface

Corrosion 75%

7%

A developed algorithm allows both corrosion detection and quantitative evaluation of material loss

Steel thickness >10 mm

20% material loss – detection limit

Impact damage in graphite epoxy composite

CITEC Su Zhou

Ultrasonic IR Thermography

Delamination in graphite/epoxy

Optical stimulation

Ultrasonic stimulation

Ultrasonic IR Thermography

CITEC Su Zhou

Crack in Turbine Blade

Inspecting 4 mm-thick graphite epoxy composite

Defect map (cylinder evolution, 6 images)

In some cases, one-sided test can be substituted with a more sensitiveCITEC Su Zhoutwo-sided testMay 29th, 2012

Ultrasonic IR Thermography

Defects in aluminum car cylinder block

Eddy Current IR Thermography

for electrically conductive materials (compressor blades, toothed gear wheels etc.).

Eddy currents are excited by inductors with power up to few kW. The carrier frequency of few hundred kHz is modulated with a frequency of 0.01-1 Hz.

Penetration depth of 100 kHz eddy currents in:

- steel 0.07 mm
- aluminum honeycombs 5 mm
- graphite/epoxy composite 50 mm

Courtesy: Starmans Electronics, Czech Republic

Steel Bar Inspection in Automotive Industry

Eddy Current IR Thermography

Steel Casting Samples

CITEC Su Zhou

Eddy Current IR Thermography (Tomsk, 2012)

Section of a railway road car truck with a fatigue crack

Original image

After image processing

Eddy Current IR Thermography (Tomsk, 2012)

IR Thermography Stress Analysis (TSA)

The TSA technique is based on the equation of thermoelasticity that connects changes in mechanical stresses $\Delta \sigma$ that appear in materials under cyclic loading, with temperature changes ΔT . This phenomenon is relatively weak: 1MPa change in stress causes only 1 mK temperature signal in steel. Therefore, IR cameras with very high temperature sensitivity are necessary.

> When dealing with harmonic mechanical stimulation, peak values of stresses and temperatures are related by the Kelvin formula:

$$\Delta T = -\frac{\alpha}{\rho C_p} T \Delta \sigma$$

- ΔT temperature signal
- α coefficient of thermal expansion
- ρ material density
- C_p material heat capacity
- T absolute temperature
- $\Delta \sigma$ change in the sum of principal mechanical stresses

IR Thermographic Stress Analysis

Stress distribution in a turbine blade

717 Hz

+100 MPa

-100 MPa

+40 MPa

CITEC Su Zhou

IR Thermographic Stress Analysis

Crack propagation in aging structures

Thermoelastic stress analysis (TSA) provides the opportunity of crack depth and growth rate measurement

In laboratory environment, TSA research has been conducted for a few decades. Recently, it was implemented outdoors (Sakagami et al., Japan): Mechanical cyclic stimulation of welded bridge joints was ensured by regular traffic of heavy trucks.

Analyzing damage of human bones under linearly growing load (Tomsk, 2005)

Thermal NDT Trends

A definite trend is the further improvement of temperature and spatial resolution and increase of frame frequency of IR cameras. Such hardware will allow the inspection of high-conductive materials.

Development of novel stimulation techniques will be continued. In some special cases, ultrasonic stimulation of structural inhomogeneities seems to be very attractive. In the case of metals, inductive heating may be a solution. Perhaps, lasers which are rarely used in TNDT could experience revival as powerful and flexible heat sources.

Image processing will be, as before, forwarded to the better recognition of subsurface defects on the clutter background. The techniques of the Fourier transform, wavelet transform and the principal component analysis might be complemented with neural networks and data fusion.

Efficient defect characterization approaches will be developed. These algorithms should be essentially 3D to take into account a finite size of detected defects.

Thermal NDT will probably confirm its role as a screening technique, but, if the problems stated above, will be successfully solved, the thermal method may become unique in particular test cases.

THANK YOU