

ULTRASONIC LECTURES Michael Kröning



## ULTRASONIC INSPECTION of DISSIMILAR WELDS



Standard PWR Steam Generator Nozzle DMW Configuration (1)

CITEC Su Zhou





#### State-of-the-Art Ultrasonic Material Inspection



Austenitic Weld



**Dissimilar Weld** 

#### Limitations

- Anisotropic Material
- Coarse Grain Material
- Dispersive Material
- Evaluation of Flaws
- Scanning Surface







Fracture Surface of Alloy 182 Weld Metal with Irregular Crack Front (2)





**Cracking Susceptibility of various Alloys (3)** 



# INSPECTION BY CAUSE



| Component Item                                                  | Date PWSCC<br>Initially Observed | Service Life₃<br>(Calendar Years) |
|-----------------------------------------------------------------|----------------------------------|-----------------------------------|
|                                                                 |                                  |                                   |
| Steam Generator Hot Leg Tubes and Plugs                         | ~1973                            | ~2                                |
| Pressurizer Instrument Nozzles                                  | 1986                             | 2                                 |
| Steam Generator Cold Leg Tubes                                  | 1986                             | 18                                |
| Pressurizer Heaters and Sleeves                                 | 1987                             | 5                                 |
| Steam Generator Channel Head Drain Pipes                        | 1988                             | 1                                 |
| Control Rod Drive Mechanism Nozzles                             | 1991                             | 12                                |
| Hot Leg Instrument Nozzles                                      | 1991                             | 5                                 |
| Power Operated Relief Valve Safe End                            | 1993                             | 22                                |
| Pressurizer Nozzle Welds                                        | 1994                             | 1                                 |
| Cold Leg Piping Instrument Nozzles                              | 1997                             | 13                                |
| Reactor Vessel Hot Leg Nozzle Buttering/Piping Welds            | 2000                             | 17                                |
| Control Rod Drive Mechanism Nozzle/RV Head Welds                | 2000                             | 27                                |
| Surge Line Nozzle Welds                                         | 2002                             | 21                                |
| Reactor Vessel Lower Head In-Core Instrumentation Nozzles/Welds | 2003                             | 14                                |
|                                                                 |                                  |                                   |

Alloy 600 PWSCC Experience in Commercial PWRs Crack Initiation Times



CITEC Su Zhou



INSPECTION BY CAUSE

Primary Water Stress Corrosion Cracking - PWSCC

The generic IGSCC of the nickel-based Alloy 600 ... in PWR has been studied extensively. Despite considerable experimental efforts, no consensus exists as to the nature of the cracking mechanism, and life modeling and remedial measures have had to rely on empirical, phenomenological correlations. By contrast, its counterpart in BWR, in terms of extent and cost of remedial measures, of IGSCC of sensitized, austenitic materials, benefits from a solid basis of fundamental understanding of the cracking mechanism for life modeling and repair remedies.

> 2000 F.N. Speller Award Lecture by P.M. Scott, Framatome.

**TOLM** 



#### Main Parameters

**Mitigation Potential** 

• hydrogen partial pressure (or corrosion potential)

• temperature

- zinc additions to the reactor coolant system (Reduction of general corrosion)
- temperature reduction (thermally-activated mechanism)



#### **Corrosion Rate at 3.5 Months for Various Alloys**



alloys in laboratory tests (after Esposito et al.)

CITEC Su Zhou







Temperature (ref. (David R. Forsyth, 2005))



heat treatment

stress relief heat treatment





## Effects of heat treatment on SCC susceptibility

of Alloy 182





INSPECTION BY CAUSE INSPECTION BY CAUSE INSPECTION BY CAUSE Primary Water Stress Corrosion Cracking - PWSC

#### **Mechanical Surface Enhancement (MSE):**

shot peening flapper wheel grinding electrical-discharge machining electro-polishing abrasive water jet conditioning mechanical stress improvement process



MATFRIAL

STATE

#### Main Parameters

## **Mitigation Potential**

- material and weld microstructure
- weld defects

(relatively large and sharp defects, lack of fusion areas, promote PWSCC by acting as stress concentrators )

- *metals with 30% chromium (threshold for PWSCC resistance: between 22 and 30% chromium)*
- quality assessment (no repair, weld bead size, heat treatment, weld design)



**TOLMI** Primarv Water Stress Corrosion Cracking - PWSC

Assessment of Dissimilar Welds: "Risk for PWSCC" Monitored Subject: "Nickel-Base Weld Metal"

INSPECTION BY CAUSE

(1 = no risk up to 4 = higher risk)

| Design Layout                              | 1    | 2       | 3   | 4      |
|--------------------------------------------|------|---------|-----|--------|
| - Nickel-baseroot                          | no   | yes     | yes | yes    |
| <ul> <li>One sided welding</li> </ul>      | yes  | yes     | yes | no     |
| - ID repair                                | no   | no      | no  | yes    |
| - OD repair                                | no   | yes     | yes | yes    |
| - Shop weld                                | n.r. | n.r.    | ?   | no     |
| <ul> <li>E manual/mechanized</li> </ul>    | n.r. | n.r.    | ?   | manual |
| - Alloy 182/82                             | n.r. | n.r.    | ?   | 182    |
| - with/without buffer                      | n.r. | without | ?   | with   |
| <ul> <li>with/without annealing</li> </ul> | n.r. | n.r.    | ?   | with   |
| - ISI yes/no                               | n.r. | n.r.    | ?   | ?      |
| Suspect for PWSCC                          | no   | no      | ?   | Yes    |
| NDT recommended                            | no   | no      | yes | yes    |

n.r. = nonrelevant ? = unknown

Assessment of Dissimilar Welds: "Risk for PWSCC"



INSPECTION BY CAUSE

Primary Water Stress Corrosion Cracking - PWSCC

The risk for PWSCC in alloy 600 components and its weld metal alloy 128/28 is low when best craftsmanship, optimized design, manufacturing and fabrication can be certified by documentation. Under these conditions, both the stress resp. strain state and the material's microstructure state of the critical component area are on a level to ascertain a low susceptibility to PWSCC.





NDT SUPPORTED MITIGATION CONCEPT





# PAUSE







#### PHOTOMICROGRAPHS of WELD SECTIONS



















270













## Model of the transverse isotropic structure of stainless steel weld joints

 $V_{ph}$  = Phase Velocity; Cij = Elastic Constant;  $\rho$  - Density,  $\Phi$  - Fiber Orientation

CITEC Su Zhou





## **Rules for Practitioners**

## LONGITUDINAL MODE ~ 8 times less than shear mode

## **SCATTERING:**

FOCUSSING (T/R Transducers) limits the contribution of scattering

FILTERING and BEAM FORMING reduction of scattering contribution (TOPIC of R&D)







S. PUDOVIKOV, A. BULAVINOV, R. PINCHUK, R. SRIDARAN VENKAT Quantitative Ultraschallprüfungen an anisotropen Materialien mittels Sampling Phased Array Technik, DGZfP-Jahrestagung 2010

False Call by Interface Reflection

CITEC Su Zhou





## **Rules for Practitioners**

LONGITUDINAL & SHEAR MODE opposite behavior

FOCUSSING of LONG. MODE at intersecting angles of 0° and 90°

DEFOCUSSING of LONG. MODE at intersecting angles of +/- 45°

TENDENCY of BENDING into the columnar grain orientation

**BENDING:** 





US trans ducer



#### CARBON FIBER MODEL COMPOSITE

#### SOUND FIELD BENDING

CITEC Su Zhou







## **BENDING INTO THE FIBER/GRAIN ORIENTATION**

#### Modeling of sound propagation in transverse isotropic media\*

\*Simulation by: Dr. Schubert, Dr. Spies, Fraunhofer IZFP

CITEC Su Zhou







#### FOKUSSING & DEFOKUSSING OF SOUND FIELDS IN TRANSVERSE ISOTRPIC MATERIALS

CITEC Su Zhou





#### Inspection of carbon-fiber structures



Angle beam (12°) insonification of side drilled  $hole \ \emptyset 3 mm$ 



#### R&D Reverse Phase Matching







Transverse and Longitudinal Sections with Homogeneous Anisotropic Structure

#### Structure of columnar grains

CITEC Su Zhou











pipe vertical





Vertical weld, pipe horizontal

#### Structure of columnar grains



## ACOUSTIC TRANSVERSAL ISOTROPIC DOMAINS TID SECTIONS WITH HOMOGENEOUS ACOUSTIC PROPERTIES

TRANSVERSAL ISOTROPIC DOMAINS

CITEC Su Zhou

TID







#### REFLECTOR POSITIONING BY MODEL SUPPORTED PHASE MATCHING

CITEC Su Zhou





# PAUSE

CITEC Su Zhou











**Case Studies: Surfaces** 

Simulation by Dr. Schubert

Fraunhofer IZFP-D

| Transducer: | normal probe<br>f = 4 MHz |
|-------------|---------------------------|
| Aperture:   | A = 10 mm                 |
| Surface:    | flat                      |







Water gap depth (lense shaped):

**0.74 mm (** $\lambda$ /2 in steel, 2 $\lambda$  in water)

CITEC Su Zhou







Water gap depth (lense shaped): 0.18 mm ( $\lambda$ /8 in steel,  $\lambda$ /2 in water)

CITEC Su Zhou

NET CONSULTING





Surface Contour of Pipe to Elbow Weld

**CONTOUR ANALYSIS** 

NET

CONSULTING







#### LOCALIZATION OF REFLECTOR INDICATIONS

CITEC Su Zhou





### Coupling; Bending; Attenuation; Shaped Inspection Geometry Affect with Systematic Errors:

#### REGISTRATION: AMPLITUDE CRITERIA IN REFERENCE TO CALIBRATION REFLECTORS

EVALUATION: LOCALIZATION, CONTRAST & RESOLUTION SENSITIVITY



## **IMAGING OF SYSTEMATIC INDICATIONS**





# PAUSE

CITEC Su Zhou



INSPECTION PROBLEM OPTIMIZATION



#### **INSPECTION BY CAUSE**



#### **DEFECT MODELING**

#### MICROSTRUCTURE



**TI DOMAINS** 



#### ASSESSMENT OF SOUND PROPAGATION

#### **SELECTION OF TRANSDUCERS**

CITEC Su Zhou



#### INSPECTION PROBLEM »Inspection by Highly Qualified ScielOPSTIMIZATION



#### List of Possible Transducers

≻45°, 60°, 70° Shear Wave

≻45°, 60°, 70° Longitudinal Wave

Double Element Transducers ADEPT

>LLT Transducers

Mode Conversion Transducers

'Creeping wave' Transducers

(2) Choice of appropriate transducers

#### (1) Simulation of US wave propagation



(3) Qualification of inspection technique & testing personnel



#### Example of inspection planning



## **INSPECTION PROBLEM OPTIMIZATION**



45-80° L 35- 80° T



#### **REPLACEMENT OF TRANSDUCERS**

CITEC Su Zhou



#### INSPECTION PROBLEM OPTIMIZATION





The ZETEC Advanced Phased Array Calculator is Useful for Generating Focal Laws (left) and Simulating the Sound Field for the Focal Law (right) to Determine Beam Characteristics





# PAUSE

CITEC Su Zhou





 $\sum A_{ij} \left( t + \Delta \varphi_{ij} \right)$ 

Calculation of time of flight in consideration of acoustic anisotropy



Phase corrected summation

#### **RESEARCH & DEVELOPMENT REVERSE PHASE MATCHING**







Phased array transducer and test specimen

**C**onventional Phased Array

Sampling Array with Reverse Phase Matching

Ultrasonics







Inspection of austenitic narrow gap weld with root crack







Inspection of austenitic narrow gap weld with root crack

#### **3D VISUALIZATION**







## **LET'S GO FOR INSPECTION**

CITEC Su Zhou