

Michael Kröning

Michael Kröning

Michael Kröning

Michael Kröning

Michael Kröning

NDT&E: Value & Role

5.	NDT&E: Evolution of Reliability and Responsibility			
5.1.	NDT: its value and role for the evolution in industry			
5.2.	Applications and Principles of Nondestructive Testing			
5.3.	Codes and Standards			
5.4.	Methods of NDT&E – an Overview			
5.5.	The Human Impact			
5.6.	Case Studies by Movies			

From Wikipedia

Nondestructive Testing (NDT) is a wide group of analysis techniques used in science and industry to evaluate the properties of a material, component or system without causing damage.

The terms Nondestructive examination (NDE), Nondestructive inspection (NDI), and Nondestructive Evaluation (NDE) are also commonly used to describe this technology.

Because NDT does not alter the article being inspected, it is a highly valuable technique that can save both money and time in product evaluation, troubleshooting, and research.

Michael Kröning

Michael Kröning

Nondestructive Testing & Evaluation TPU Lecture Course 2015/16

Michael Kröning

Think about Quality

Quality in business, engineering and manufacturing has a pragmatic interpretation as the non-inferiority or superiority of something;

QUALITY PRODUCTS MEET CUSTOMER EXPECTATIONS

it is also defined as fitness for purpose. *Quality* is a perceptual, conditional, and somewhat subjective attribute and may be understood differently by different people

Nondestructive Testing & Evaluation TPU Lecture Course 2015/16

Michael Kröning

Two simultaneous challenges

Michael Kröning

RELIABILITY ENGINEERING: emphasizes

dependability

in the lifecycle management of a product

or

ability of a system or component to function under stated conditions for a specified period of time

RELIABILITY :

Theoretically defined as the probability of failure (the frequency of failures)

or in terms of availability: a probability derived from reliability and maintainability.

Reliability plays a key role in cost-effectiveness of systems.

Nondestructive Testing & Evaluation TPU Lecture Course 2015/16

Michael Kröning

RELIABILITY ENGINEERING

SAFETY ENGINEERING

focuses on costs of failure caused by system downtime, cost of spares, repairs, personnel and cost of warranty claims. focuses normally not on cost, but on preserving life and nature; deals with particular dangerous system failure modes

ECONOMY

SAFETY

common methods for analysis require input from each other

Michael Kröning

DEPENDABILITY:

a measure of a system's availability, reliability, maintainability

Attributes

A way to assess the dependability of a system

Threats An understanding what can affect the dependability of a system

Nondestructive Testing & Evaluation TPU Lecture Course 2015/16

Means Ways to increase a system's dependability

ATTRIBUTES

System Qualities

Availability

Readiness for correct service

Absence of catastrophic consequences

Maintainability

Ability for undergoing modifications and repairs

Hntegrity

Absence of improper system alteration

Reliability

Continuity of correct services

Absence of externally originated errors

Michael Kröning

Nondestructive Testing & Evaluation

TPU Lecture Course 2015/16

Assessment of Attributes

Quantitative

- Availability
- Reliability

Qualitative

- Integrity
- Safety
- Maintainability
- Security

*Basic Safety Design Leak before Break

State of Engineering Quality Assurance Design*

The 5 Traditional Human Senses

Lairesse's Allegory of the Five Senses (1668) Michael Kröning TPU Lecture Course 2015/16

The 5 Traditional Human Senses

Physical Senses

- Sight (Vision)
- Hearing (Audition)

Chemical Senses

- Taste (Gustation)
- Smell (Olfaction)

Touch (Tactition)

Nondestructive Methods measure physical properties

Michael Kröning

The very early beginning of NDT&E "THE HUMAN SENSES"

1988 recognized as an "official" NDT method when it was finally incorporated into SNT-TC-1A, the document for the qualification and certification of NDT personnel published by the American Society for Nondestructive Testing (ASNT).

Book of Genesis:

In describing the process of creation, chapter 1 repeats 6 times the expression:

"AND GOD SAW IT WAS GOOD"

Tap Testing

(concrete & adhesively bonded composite parts) Surface stiffness, compressive strength, disbonding "Sound, Contact Time, Rebound"

"listening" to metal being shaped by a blacksmith, the tone of a bell after it was cast, or the tonal sound of pottery In the 1950, J. Kaiser introduced acoustic emission (AE) as an NDT method.

Michael Kröning

TAP TESTING

Surface stiffness k:
$$\tau = \pi (m/k)^{1/2}$$

Michael Kröning

The very early beginning of NDT&E "THE HUMAN SENSES"

Surface Roughness Testing: Mechanical (in contact) Laser optics (contactless)

$$R_a = 1/L \int_0^L |y| dx - Roughness Average$$

Our sense of "touch" can indicate the surface condition of various objects as well as their relative temperatures

Michael Kröning

NDT&E

IN THE COURSE OF INDUSTRIALIZATION

DRIVEN BY ACCIDENTS & WARS

ENABLED BY PROGRESS IN ENGINEERING & PHYSICS

MISSISSIPPI STEAMSHIP SULTANA 1865 Boiler Explosion with estimated deaths 1200-1600

NDT&E EVOLUTION

In a Nut-Shell

History of NDT&E

History of NDT&E

NDT&E -EVOLUTION

NDT&E EVOLUTION

Michael Kröning

TPU Lecture Course 2015/16

History of NDT&E

BC (approx.)	Visual testing becomes the first NDT method when God creates the heavens and earth and "sees" that it is good!				
1800	First thermography observations by Sir William Herschel				
1831	First observation of electromagnetic induction by Michael Farraday				
1840	First infrared image produced by Herschel's son, John				
1868	First reference to magnetic particle testing reported by S. H. Saxby, by observin how magnetized gun barrels affect a compass				
1879	Early use of eddy currents to detect differences in conductivity, magnetic permeability, and temperature initiated by E. Hughes				
1880–1920	"Oil and whiting" technique, forerunner of present-day penetrant test used for railroad axles and boilerplates				
1895	X-rays discovered by Wilhelm Conrad Roentgen				
1898	Radium discovered by Marie and Pierre Curie				

History of NDT&E

1922	Industrial Radiography for metals developed by Dr. H. H. Lester				
1927–28	Electric current innduction/magnetic field detection system developed by Dr. Elmer Sperry and H. C. Drake for the inspection of railroad track				
1929	Magnetic particle tests/equipment pioneered by A. V. deForest and F. B. Doane				
1929	First experiments using quartz transducers to create ultrasonic vibrations in materials were conducted by S. Y. Sokolov in Russia				
1930	Practical uses for gamma radiography using radium were demonstrated by Dr. Robert F. Mehl				
1935-1940	Penetrant techniques developed by Betz, Doane, and DeForest				
1935–1940's	Eddy current instrument developments by H. C. Knerr, C. Farrow, Theo Zuschlag and Dr. F. Foerster				
1940–1944	Ultrasonic test method developed in United States by Dr. Floyd Firestone				
1942	First ultrasonic flaw detector using pulse-echo introduced by D. O. Sproule (United Kingdom)				
1946	First portable ultrasonic thickness measuring instrument, the Audigage, was introduced by Branson				
1950	Acoustic emission introduced as an NDT method by J. Kaiser				
Mid 1950's	First ultrasonic testing immersion B and C scan instruments developed by Donald C. Erdman				

HISTORY

Pierre Curie 1859-1906 Piezo-Effect

Alexander Behm Paul Langevin 1880-1952 SONAR ¹⁸⁷²⁻¹⁹⁴⁶ (Submarines)

Early Pioneers of Ultrasonic Testing

HISTORY

- 1842 Magnetostrictive effect discovered by Joule
- 1877 Rayleigh's "Theory of Sound" laid foundation for modern acoustics.
- 1880 Curie brothers discovered the piezoelectric effect
- 1912 Sinking of Titanic led to proposals on use of acoustic waves to detect icebergs
- 1928 Sokolov proposed use of ultrasound for flaw detection
- 1936 Pohlman developed an ultrasonic imaging method
- 1937 Sokolov invented an ultrasonic image tube
- 1940 Firestone, in the United States and Sproule, in Britain, discovered ultrasonic pulse-echo metal-flaw detection

MILESTONES IN UT HISTORY

HISTORY

The 'Supersonic' UT unit, which was one of the first.

Early pipe testing with Krautkrämer apparatus (1950s)

Michael Kröning

PHYSICAL PROPERTIES

Michael Kröning

There are Many

NDT is divided into various *methods* of nondestructive testing, each based on a particular scientific principle.

These methods may be further subdivided into various *techniques*.

	METHOD	APPLICATION	CONTRAST		
	Visual Inspection VT	Surface Imperfections	Optical		
	Liquid Penetrant PT	Surface Cracks	Color/Capillary Effect		
	Magnetic Flux Leakage MFL	Imperfections in Magnetic Surfaces	Strayflux		
	Eddy Current EC	Imperfections in Conductive Surfaces	Electric Impedance		
	Current Potential Drop	Imperfections in Conductive Surfaces	Electric Current		
Μ	ichael Kröning	Nondestructive lesting & Evaluation TPU Lecture Course 2015/16	TOLMI		

There are Many

METHOD	APPLICATION	CONTRAST
Ultrasound UT	Surface & Volume Imperfections	Acoustic Impedance
Acoustic Emission AE	Surface & Volume Imperfections	Elastic Energy Conversion at Imperfections
Radiography RT	Surface & Volume Imperfections	Attenuation
Infrared & Thermal IR	Surface and Sub-Surface Imperfections	Thermal Conductivity/ Surface Emissivity
Leak Detection LT	Leaking Structures	Various Contrast Methods
Magnetic Resonance MR	Imperfections in Materials with H (Polymer, Concrete)	Magnetic Resonance

TESTING COMPOSITES

Martha di ad	Type of Defect							
Inspection	Disbond	Delamination	Dent	Crack	Hole	Water Ingestion	Overheat and Burns	Ī
Visual	X (1)	X (1)	X	X	X		X	t
X-Ray	X (1)	X (1)		X (1)		X		l
Ultrasonic TTU	X	X						I
Ultrasonic pulse echo		X				X		l
Ultrasonic bondtester	X	X						I
Tap test	X (2)	X (2)						1
Infrared thermography	X (3)	X (3)				X		I
Dye penetrant				X (4)				l
Eddy current				X (4)				I
Shearography	X (3)	X (3)						

For detects that open to the surface 1 × J

(2) For thin structure (3 plies or less)

(3) The procedures for this type of inspection are being developed

(4) This procedure is not recommended

LET US DISCUSS NEW MEANING OF NDT&E:

Nondestructive Testing & Evaluation TPU Lecture Course 2015/16

Michael Kröning

Security

There is a disastrous cause: TERRORISME A Thread for Societies and Individuals

Aviation Security

Transportation Security Administration (TSA)
Access Control

Cargo Control

Situation Control

Generic Figure

Security

Highlighting

Area for

Resolution

Michael Kröning

AVIATION SECURITY

Michael Kröning

Nondestructive Testing & Evaluation TPU Lecture Course 2015/16

Security

AVIATION SECURITY

Airport Security System for Luggage Inspection

Michael Kröning

AVIATION SECURITY

PRIVACY CONCERNS

"The Naked Passenger"

Active Sub-millimeter 3-D Microwave Scanner

Michael Kröning

System Integration & Working Flow

Site Layout

Michael Kröning

Integrity of Nuclear Structures - Material Degradation and Mitigation by NDE TPU Lecture Course 2014/15

System Configuration

Michael Kröning

Integrity of Nuclear Structures - Material Degradation and Mitigation by NDE TPU Lecture Course 2014/15

Michael Kröning

Integrity of Nuclear Structures - Material Degradation and Mitigation by NDE TPU Lecture Course 2014/15

Security

Scanning Image for THSCAN Relocatable X-ray Inspection System

six stowaways

Integrity of Nuclear Structures - Material Degradation and Mitigation by NDE TPU Lecture Course 2014/15

Literature

1. Hellier, C. J. *The Handbook of Nondestructive Evaluation*. New York, N.Y.: McGraw-Hill, 2001

2. Whitehouse, David. *Surfaces and their Measurement*. Boston: Butterworth-Heinemann, 2012, ISBN 978-0080972015.

3. Graff, K. F. *A History of Ultrasonics*, in Physical Acoustics, Volume XV Academic Press, New York, 1982

4. Golden, M. (Contact Point). *Privacy Impact Assessment for TSA Whole Body Imaging*, U.S. Department of Homeland Security, 2008

