

NDT&E Methods: UT

6.	NDT&E: Introduction to Methods
6.1.	Ultrasonic Testing: Basics of Elasto-Dynamics
6.2.	Ultrasonic Testing: Ultrasound Generation
6.3.	The Pulse-Echo Method
6.4.	Flaw Detection and Evaluation
6.5.	UT-Systems: Transducer, Instrument, Manipulator
6.6.	Current Developments
6.7.	Case Studies by Movies

NDT&E Methods: UT The Pulse-Echo Method

Michael Kröning

CONCEPT & TERMS

UT detects and evaluates specular reflections:

Michael Kröning

Nondestructive Testing & Evaluation

CONCEPT & TERMS

UT detects scattering and compound reflectors:

Stochastic & Rayleigh Scattering

Limits sensitivity

Multiple Directions Low Amplitude (Echo Grass) Interfering Signals & Artifacts (Compound Echo)

Compound

Scattering

Flaw Geometry \neq

Reflector Image

Nondestructive Testing & Evaluation

CONCEPT & TERMS

There are strong & weak scattering interfaces depending on the impedance ratio:

Nondestructive Testing & Evaluation

NDT&E Methods: UT Flaw Detection & Evaluation CONCEPT & TERMS We call interfaces with impedance change:

Material Inhomogeneity

Inhomogeneity is characterized by a local change of material properties. Homogeneous material is uniform without irregularities

Material Discontinuity

- Surface
- Volume

Discontinuity is defined as an interruption of the typical material structure, (a lack of homogeneity in its mechanical, metallurgical, or physical characteristics). A discontinuity could be the result of a defect, but isn't necessarily a defect Material Inhomogeneity

CONCEPT & TERMS

We call interfaces with impedance change:

Material Imperfection/Irregularity

- Macro (lamination)
- Micro (small inclusions)

Imperfections/irregularities are characterized by a non-perfect material quality as specified. It does not relate to the usability of the material.

Material Flaw

A flaw is a feature that mars the designed quality of the material. It may but must not hurt or damage the intended use of material.

Material Defect

A defect is a flaw that by nature or accumulated effect (for example, total crack length) renders a part or product unable to meet minimum applicable acceptance standards or specifications. A defect results in rejection of the part or product and may cause failure when

part is in operation or use. Michael Kröning

NDT&E Methods: UT Flaw Detection & Evaluation **CONCEPT & TERMS** We call interfaces with impedance change: **Typical Material Flaws** Inclusion Undercut **Delamination** Pore Void Blister Crack* Dent Lack of Bonding Pit There are many more flaws, depending on material, joining/production technologies

and load conditions when in use.

* A crack is evaluated a defect in most cases due to its stress concentration effect

Ultrasonic Flaw Indication

Macrosection of a Cracked Weld

Correlation Problem

OBJECTIVE

QUANTITATIVE ULTRASONIC TESTING

FAST SCANNING & REAL TIME FLAW EVALUATION

Nondestructive Testing & Evaluation TPU Lecture Course 2015/16

Michael Kröning

Two Successive Steps

Probability of Detection

Reproducibility

Completeness

Flaw Type

Dimensions

Risk Assessment

Nondestructive Testing & Evaluation TPU Lecture Course 2015/16

Michael Kröning

DETECTION

Remind the Basics:

We use high-frequency ultrasonic pulses – very much directed (Standard frequencies for most of the steel part inspections: 1MHz to 5MHz)

The received pulse is a specular reflection of discontinuities of mm – dimensions (or a compound diffuse reflector or a systematic appearance of low amplitude echo signals)

The transmitted pulse strikes the surface of discontinuity perpendicularly (or we have to use "pitch and catch" transducers: the discontinuity mirrors the pulse back to the receiving transducer)

Required Minimal Sensitivity for Flaw Signal Detection

Michael Kröning

DETECTION

Calibration:

We have to calibrate the inspection instrument for:

Correct positioning of detected discontinuity
 Sensitivity for flaw detection

DETECTION

Calibration:

We have to calibrate the inspection instrument for:

Correct positioning of detected discontinuity

Sound Velocity

Angle of Incidence

Wedge: Surface position of measured amplitude-time signal

Michael Kröning

Correct positioning of detected discontinuity

Schematic of "Skip Distances"

For Discussion:

Calibration Standard Blocks

ISO 2400 Number 1 block

The standard Nr.1 block is 300mm long and 25 or 50mm thickness with a 100mm radius machined on one end.

The test block also contains two drilled holes, 50 and 1.5mm in diameter and a flat bottomed machined notch

Calibration Standard Blocks

The ISO 7963 Number 2 block

NDT&E Methods: UT Flaw Detection

Calibration:

We have to calibrate the inspection instrument for:

> Appropriate sensitivity for flaw detection

KEY: Reference Reflector

➢Notch

Flat Bottom Hole FBH (Disk)

Side Drilled Hole SDH (Cylinder)

Spherical Void SPH (Sphere)

➢ Back-Wall (AVG)

NDT&E Methods: UT Flaw Detection Calibration:

Flat Bottom Holes (FBH) Reference for Weld Inspection

Michael Kröning

NDT&E Methods: UT Flaw Detection Calibration:

Flat Bottom Holes (FBH) Reference for Weld Inspection

Michael Kröning

NDT&E Methods: UT Flaw Detection Calibration:

Flat Bottom Holes (FBH) Reference for Weld Inspection

Michael Kröning

NDT&E Methods: UT Flaw Detection

Calibration:

Flat Bottom Holes (FBH) Reference for Weld Inspection

Michael Kröning

NDT&E Methods: UT Flaw Detection

Calibration:

Flat Bottom Holes (FBH) Reference for Weld Inspection

Michael Kröning

NDT&E Methods: UT Flaw Detection DISTANCE CORRECTION

Nondestructive Testing & Evaluation

TOL

NDT&E Methods: UT Flaw Detection

"AVG" (Distance-Gain-Size) Diagram

Back-Wall can serve as reference; valid for rather resonant transducers only

Nondestructive Testing & Evaluation

TPU Lecture Course 2015/16

Michael Kröning

Required Minimal Sensitivity for Flaw Signal Detection

P	Unacceptable
	Indication
	Evaluation
	Sensitivity
	Registration
	Sensitivity
	Scanning
	Sensitivity
	Noise

Amplitude Criteria for Flaw Detection, Recording, and Evaluation

Amplitude Criteria for Flaw Detection, Recording, and Evaluation

NDT&E Methods: UT Flaw Registration 6 dB Drop Method

Scan Position

Length of Detected Discontinuity

NDT&E Methods: UT Flaw Detection

Probability of Detection INSPECTION PROCEDURE

- Material
- Geometry
- Access
- Safety Classification
- Flaw Catalog
- Flaw Classes

- Inspection Volume
- Frequency of Inspection
- Manual/Automated (Human Factor)
- Transducers
- Sensitivity Settings

Required Minimal Sensitivity for Flaw Signal Detection

NDT&E Methods: UT Flaw Evaluation

The detected reflector is characterized by

>Its maximum amplitude
(in reference to calibration reflector)
>Its length
>Its position
>Its systematic

Required Minimal Sensitivity for Flaw Signal Detection

Michael Kröning

NDT&E Methods: UT Flaw Evaluation

Flaw Evaluation & Sizing demands

Required Minimal Sensitivity for Flaw Signal Detection

Michael Kröning

Sometimes a Problem of Engineering Ethics:

EVALUATION

Risk Assessment

Are you sure about your evaluation? Often, there is no method on hand that gives you a perfect finding

Are you aware of the related risks of failure?

Are there already similar findings and damages?

Use all available information

Do not protect business, care for safety!!!!

Michael Kröning

A Virtual SAFT Experiment

Michael Kröning

Sparse Migration Array Experiment

8 Elements with skips of 4 wavelengths

Michael Kröning

a) Complete Compound Scan

b) Limited Compound Scan

(Transducer: Olympus 60L5; 4 Transmit Elements; L-Mode)

Crack Imaging

Michael Kröning

Literature

1.

