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6. NDT&E: Introduction to Methods

6.1. Ultrasonic Testing: Basics of Elasto-Dynamics

6.2. Principles of Measurement

6.3. The Pulse-Echo Method

6.4. UT-Systems: Transducer, Instrument, Manipulator

6.5. Current Developments

6.6. Case Studies by Movies

NDT&E Methods: UT
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UT BASICS
In the 1870s: 

Lord Rayleigh: Theory of Sound

Nature and Properties of Sound 
Result from Mechanical Vibrations 

in Solids, Liquids, and Gases 

Spring Model of  Vibrating Particle Masses
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Sound Generation by mechanical Impact
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Constitutive Equations of Sound Waves

NDT&E Methods: UT 

In physics and engineering, 
a constitutive equation or constitutive relation is 

a relation between two physical quantities that is specific to a material, 
and approximates the response of that material to external stimuli, 

usually as applied fields or forces. 
They are combined with other equations governing physical laws 

to solve physical problems; 

for example in fluid mechanics the flow of a fluid in a pipe, 
in solid state physics the response of a crystal to an electric field, 

or in structural analysis, the connection between applied stresses or forces 
to strains or deformations.

Some constitutive equations are simply phenomenological; 
others are derived from first principles

(From WIKIPEDIA)
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Constitutive Equations of Sound Waves

NDT&E Methods: UT

Stress and Strain - The roots for elastic waves

The stress-strain constitutive relation for linear materials

is commonly known as Hooke's law. 

In its simplest form, the law defines

the spring constant (or elasticity constant) k in a scalar equation, 

stating the tensile/compressive force is proportional 

to the extended (or contracted) displacement x:

meaning the material responds linearly. 

Equivalently, in terms of

the stress σ, Young's modulus E, and strain ε (dimensionless):
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Constitutive Equations of Sound Waves

NDT&E Methods: UT

Stress and Strain
The roots for elastic waves

In general, forces which deform solids can be 

normal to a surface of the material (normal forces), 

or tangential (shear forces), 

this can be described mathematically 

using the stress tensor:

where C is the elasticity tensor 

and S is the compliance tensor
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Constitutive Equations of Sound Waves

Newton’s Law:

F = m
𝒅𝟐𝒙

𝒅𝒕𝟐

m: mass

Hooke's law is only a 
first order linear approximation
to the real response of springs 
and other elastic bodies 
to applied forces

NDT&E Methods: UT – the spring model

Hook’s Law:
F = -kΔx
k: stiffness
(positive constant)

Simplifications:
1-dimensional

Linear 
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NDT&E Methods: UT – the spring model
Constitutive Equations of Sound Waves

Harmonic Oscillator:

F = m
𝒅𝟐𝒙

𝒅𝒕𝟐
= -kx

Solving this differential equation, 

we find that the motion

is described by the function:
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NDT&E Methods: UT – the spring model
Constitutive Equations of Sound Waves

Wave propagation

Mass Displacement

It is already a 
• 1-dimensional
• undamped
• harmonic wave
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NDT&E Methods: Elastic Waves in Solids
Constitutive Equations of Sound Waves

ASSUMING: 
Linear Hook’s Law, 1-dimensional case, isotropic material



F  EL L  L  
F

L
 E

  E

Hook’ Law: Stress = E * Strain

The stress created by the hammer 

blow, causes one side of the rod 

to be displaced by an amount hx

and hx+dx on the right 

due to the wave taking time 

to travel along dx and to the elastic 

properties of the material

A Little Experiment
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NDT&E Methods: Elastic Waves in Solids
Constitutive Equations of Sound Waves

• The force on the left face is given as (using the definition of stress):

• While the force on the right side is:

• The net force is the difference between the left and right sides and of course is 

equal to the mass times the acceleration of the segment.

• Or, more explicitly



Fleft  A x  AE  AE
h

x x



Fright  A xdx  AE  AE
h

x xdx



F  Fright  Fleft  m
 2h

t 2



AE
h

x xdx


h

x x









 Adx

2h

t 2
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NDT&E Methods: Elastic Waves in Solids
Constitutive Equations of Sound Waves

• Rearranging the previous equation we have:

• This represents a 1-dimensional wave equation for the propagation of a longitudinal 

wave through an elastic homogeneous medium as a function of position and time.

• With v representing the wave speed through the medium and comparing this to the 

standard form of the wave equation we have



2h

x 2



E

2h

t 2



E

h

x xdx


h

x x

dx



















 
 2h

t 2



 2h

x 2


1

v 2

 2h

t 2



E

 2h

t 2
m
𝒅𝟐𝒙

𝒅𝒕𝟐
= -kxRemember:
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NDT&E Methods: Elastic Waves in Solids
Constitutive Equations of Sound Waves

• We’ve determined the speed of a sound wave in a 1-dimensional medium by applying 

Newton’s laws of to a small segment of material and we find that that the speed of sound 

depends further on its density,  and the elastic properties of the medium, or equivalently in 

terms of the compressibility, K, through

• The compressibility is defined as the fractional change in volume of material per unit 

increase in pressure

• Thus a large compressibility, K, means that it is easier to squeeze something.

• Again, E is called the elastic (or Young’s) modulus of the material and is a measure 

of the stiffness of the material.  



v 
E




1

K



K  
1

V

dV

dP
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NDT&E Methods: UT – Waves in Liquids

Wavelength λParticle Motion

Direction of propagation
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NDT&E Methods: UT – Waves in Liquids
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NDT&E Methods: UT – Waves in Liquids
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NDT&E Methods: UT – Waves in Liquids
Constitutive Equations of Sound Waves

Euler’s identity
is an equality found in mathematics 

that has described as 
"the most beautiful equation." 

It is a special case of a foundational equation 
in complex arithmetic called Euler’s Formula

In Fluid Dynamics, the constitutive equation is a Euler equation 



Michael Kröning
Nondestructive Testing & Evaluation 

TPU Lecture Course 2015/16

NDT&E Methods: Elastic Waves in Solids
Constitutive Equations of Sound Waves

In fluid dynamics, 
the Euler equations are a set of quasilinear hyperbolic 

equations governing adiabatic and inviscid flow. 

They are named after Leonhard Euler (St. Peterburg)

The equations represent Cauchy equations of 
• conservation of mass (continuity), and 

• balance of momentum and energy, 

and can be seen as particular Navier–Stokes equations 
with zero viscosity and zero thermal conductivity
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NDT&E Methods: UT – Waves in Liquids
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NDT&E Methods: Elastic Waves in Solids
Constitutive Equations of Sound Waves

However,

The World, 
Material Properties and Applied Stresses 

are
3-Dimensional

Makes it much more difficult
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NDT&E Methods: UT – Plane Body Waves

The 3-D Constitutive Equation for an infinite medium 
containing a linear, elastic, homogeneous isotropic material

(Hook’s Law) 

σxy= σyx

σxz= σzx

σyz= σzy

Cauchy STRESS-Tensor Σ:

σxx

σyx

σzz

σyy

σxy σxz

σyz

σzx σzy

The Stress tensor is symmetric due to the 
conservation of linear and angular momentum
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NDT&E Methods: UT – Plane Body Waves

The 3-D Constitutive Equation for an infinite medium 
containing a linear, elastic, homogeneous isotropic material

(Hook’s Law) 

σxy= σyx

σxz= σzx

σyz= σzy

Cauchy STRESS-Tensor Σ:

σxx

σyx

σzz

σyy

σxy σxz

σyz

σzx σzy
The Stress tensor is symmetric due to the 

conservation of linear and angular momentum
Euler–Cauchy stress principle
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NDT&E Methods: UT – Waves in Solids
Constitutive Equations of Sound Waves

Deformation and Strain

We distinguish 

Displacement & Deformation

Deformation: 
An alteration of shape, as by pressure or stress.

Displacement: 
A vector or the magnitude of a vector 

from the initial position to 

a subsequent position assumed by a body
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NDT&E Methods: UT – Waves in Solids
Constitutive Equations of Sound Waves

Strain characterizes a deformation

Example:

1D strain ε1 = 
𝐿−𝐿0

𝐿0

L0:          

L:  
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NDT&E Methods: Strain & Stress

Kinematics of Continuous Body
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NDT&E Methods: Strain & Stress

Kinematics of Continuous Body

THERE ARE TWO POSSIBLE DESCRIPTIONS:

LAGRANGIAN:
The motion is described by the material coordinate and time

EULERIAN:
The motion is described by the spatial coordinate and time
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NDT&E Methods: Strain & Stress

Kinematics of Continuous Body
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NDT&E Methods: Strain & Stress

Kinematics of Continuous Body
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NDT&E Methods: Strain & Stress

Kinematics of Continuous Body
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NDT&E Methods: Strain & Stress

Kinematics of Continuous Body
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NDT&E Methods: Strain & Stress

Kinematics of Continuous Body
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NDT&E Methods: Strain & Stress

Kinematics of Continuous Body
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NDT&E Methods: Strain & Stress

Kinematics of Continuous Body



Michael Kröning
Nondestructive Testing & Evaluation 

TPU Lecture Course 2015/16

NDT&E Methods: Strain & Stress

Kinematics of Continuous Body
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NDT&E Methods: UT – the spring model
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NDT&E Methods: UT – the spring model

Engineering Strains

Coordinates: x,y,z Displacements: x,y,z

Normal Strains

𝜺𝒙 =
𝝏𝒖

𝝏𝒙
= 𝒆𝟏𝟏

𝜺𝒚 =
𝝏𝒖

𝝏𝒚
= 𝒆𝟐𝟐

𝜺𝒛 =
𝝏𝒖

𝝏𝒛
= 𝒆𝟑𝟑

Shear Strains

𝜺𝒙𝒚 =
𝝏𝒖

𝝏𝒚
+
𝝏𝒗

𝝏𝒙
= 𝟐𝒆𝟏𝟐

𝜺𝒙𝒚 =
𝝏𝒗

𝝏𝒛
+
𝝏𝒘

𝝏𝒚
= 𝟐𝒆𝟐𝟑

𝜺𝒙𝒚 =
𝝏𝒖

𝝏𝒛
+
𝝏𝒘

𝝏𝒙
= 𝟐𝒆𝟏𝟑
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NDT&E Methods: UT – the spring model

Integrability Condition related to Compatibility of Strain Fields:

Integration of Strain Fields Yields 
Unique Displacement Components

Characteristic for Material Constants
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NDT&E Methods: UT – Material Constants

The strain tensor is a field tensor – it depends on external factors. 
The compliance tensor is a matter tensor –

it is a property of the material and does not change with external factors.

Let us consider the material
by introducing the Lamé Constants:

Young Modulus
E – λ(first parameter)

Shear Modulus – Poisson’s Ratio
G – μ(second parameter)

The Lamé constants are material-dependent quantities 
denoted by λ and μ that arise in strain-stress relationships.
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NDT&E Methods: UT – Material Constants

The Constitutive Equation between Stresses and Strains 
for an Infinite Medium

containing a linear, homogeneous isotropic Material
(HOOK’S LAW)

𝝈𝒙𝒙 = 𝝀 + 𝟐𝝁 𝜺𝒙𝒙 + 𝝀 𝜺𝒚𝒚 + 𝜺𝒛𝒛

𝝈𝒚𝒚 = 𝝀 + 𝟐𝝁 𝜺𝒚𝒚 + 𝝀 𝜺𝒙𝒙 + 𝜺𝒛𝒛

𝝈𝒛𝒛 = 𝝀 + 𝟐𝝁 𝜺𝒛𝒛 + 𝝀 𝜺𝒙𝒙 + 𝜺𝒚𝒚

𝝈𝒚𝒛 = 𝝈𝒛𝒚 = 2𝝁𝜺𝒚𝒛 = 2𝝁𝜺𝒛𝒚

𝝈𝒛𝒙 = 𝝈𝒙𝒛 = 2𝝁𝜺𝒛𝒙 = 2𝝁𝜺𝒙𝒛

𝝈𝒙𝒚 = 𝝈𝒚𝒙 = 2𝝁𝜺𝒙𝒚 = 2𝝁𝜺𝒚𝒙

𝜺𝒊𝒋: Components of Strains; 𝝈𝒊𝒋: Components of Stresses
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NDT&E Methods: UT – Material Constants

Lamé’s Constants are related to 
Young’s Modulus E and Poisson’s Ratio ν

λ = 
𝑬𝝂

𝟏+𝝂 𝟏−𝟐𝝂
μ = 

𝑬

𝟐 𝟏+𝝂

Governing Differential Equation of Motion for a Continuum:

𝜕𝜎𝑥𝑥

𝜕𝑥
+ 
𝜕𝜎𝑥𝑦

𝜕𝑦
+ 
𝜕𝜎𝑥𝑧

𝜕𝑧
= ρ

𝜕2𝑢𝑥

𝜕2𝑡

𝜕𝜎𝑥𝑦

𝜕𝑥
+ 
𝜕𝜎𝑦𝑦

𝜕𝑦
+ 
𝜕𝜎𝑦𝑧

𝜕𝑧
= ρ

𝜕2𝑢𝑦

𝜕2𝑡

𝜕𝜎𝑥𝑧

𝜕𝑥
+ 
𝜕𝜎𝑦𝑧

𝜕𝑦
+ 
𝜕𝜎𝑧𝑧

𝜕𝑧
= ρ

𝜕2𝑢𝑧

𝜕2𝑡

𝒖𝒊 : Components of the 
Particle Displacement Vector
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NDT&E Methods: UT – Material Constants

Some Mathematics Later:

The Three-Dimensional Wave Equation 
for Linear, Elastic, Homogeneous Isotropic Material

(λ+μ)
𝜕Δ

𝜕𝑥
+ μ𝛻2ux = ρ

𝜕2𝑢𝑥

𝜕2𝑡
(λ+μ)

𝜕Δ

𝜕𝑦
+ μ𝛻2uy = ρ

𝜕2𝑢𝑦

𝜕2𝑡

(λ+μ)
𝜕Δ

𝜕𝑧
+ μ𝛻2uz = ρ

𝜕2𝑢𝑧

𝜕2𝑡

𝑉𝑜𝑙𝑢𝑚𝑒 𝐷𝑖𝑙𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑒 𝐷𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 Δ:
Δ = εxx + εyy + εzz
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NDT&E Methods: UT – Modes & Velocities

For Isotropic Materials, 
There are only two Distinct Values for  Wave Velocities: 

𝒗𝑳 =
𝝀 + 𝟐𝝁

𝝆
𝒗𝑻 =

𝝁

𝝆

Longitudinal Mode Transversal Mode 
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NDT&E Methods: UT

GROUP VELOCITY

Speed of 
Energy Transport

PHASE VELOCITY

Speed of
Phase Propagation

For isotropic, homogeneous, linear materials
due to linearity and causality principles. 

A propagating medium is said to be dispersive
if the phase velocity is a function of frequency,

which is the case for attenuating materials, for example.
For dispersive and anisotropic materials

group and phase vectors are different
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NDT&E Methods: Elastic Waves in Solids
Constitutive Equations of Sound Waves

The strain tensor is a field tensor – it depends on external factors. 
The compliance tensor is a matter tensor –

it is a property of the material and does not change with external factors.


