INSPECTION BY CAUSE - A CASE STUDY PWSCC

Primary Water Stress Corrosion Crack

INSPECTION BY CAUSE - A CASE STUDY

4.	Mitigation Strategies – The world is never perfect
4.1.	Structure Design and NDT
4.2.	Application of NDT
4.3.	Limits of NDT
4.4.	Quantitative NDT
4.5.	Material Characterization
4.6.	Case Study: Inspection by Cause

ALLOY SUSCEPTIBILITY TO STRESS CORROSION CRACKING

EVIDENCE

PRIMARY WATER STRESS CORROSION CRACKING

Component Item	Date PWSCC Initially Observed	Service Life₃ (Calendar Years)
Steam Generator Hot Leg Tubes and Plugs	~1973	~2
Pressurizer Instrument Nozzles	1986	2
Steam Generator Cold Leg Tubes	1986	18
Pressurizer Heaters and Sleeves	1987	5
Steam Generator Channel Head Drain Pipes	1988	1
Control Rod Drive Mechanism Nozzles	1991	12
Hot Leg Instrument Nozzles	1991	5
Power Operated Relief Valve Safe End	1993	22
Pressurizer Nozzle Welds	1994	1
Cold Leg Piping Instrument Nozzles	1997	13
Reactor Vessel Hot Leg Nozzle Buttering/Piping Welds	2000	17
Control Rod Drive Mechanism Nozzle/RV Head Welds	2000	27
Surge Line Nozzle Welds	2002	21
Reactor Vessel Lower Head In-Core Instrumentation Nozzles/Welds	2003	14

zinc additions to the reactor coolant system (reduction of general corrosion)

welding procedure (bead dimension, stress relief treatment) assessment of operational and residual stress state

material and weld microstructure (No repair!!No weld defects) quality assessment of manufacturing

Primary Water Stress Corrosion Cracking - PWSCC

Main Parameters

Mitigation Potential

 hydrogen partial pressure (or corrosion potential)

• temperature

- zinc additions to the reactor coolant system (Reduction of general corrosion)
- temperature reduction (thermally-activated mechanism)

INSPECTION WITH CAUSE Primary Water Stress Corrosion Cracking - PWSCC

heat treatment

stress relief heat treatment

INSPECTION WITH CAUSE Primary Water Stress Corrosion Cracking - PWSCC

MATERIAL

STATE

Main Parameters

- material and weld microstructure
- weld defects

(relatively large and sharp defects, lack of fusion areas, promote PWSCC by acting as stress concentrators)

Mitigation Potential

- *metals with 30% chromium* (threshold for PWSCC resistance: between 22 and 30% chromium)
- *quality assessment* (no repair, weld bead size, heat treatment, weld design)

Assessment of Dissimilar Welds: "Risk for PWSCC" Monitored Subject: "Nickel-Base Weld Metal"

(1 = no risk up to 4 = higher risk)

1	2	3	4
no	yes	yes	yes
yes	yes	yes	no
no	no	no	yes
no	yes	yes	yes
n.r.	n.r.	?	no
n.r.	n.r.	?	manual
n.r.	n.r.	?	182
n.r.	without	?	with
n.r .	n.r.	?	with
n.r.	n.r.	?	?
no	no	?	Yes
no	no	yes	yes
	1 no yes no n.r. n.r. n.r. n.r. n.r. n.r. n.r. n.r.	1 2 no yes yes yes no no no no no yes no yes no yes no yes nr. n.r. n.r. n.r.	123noyesyesyesyesyesnonononoyesyesnrnr?nrnr?nrnr?nrnr?nrnr?nrnr?nrnr?nrnr?nrnr?nrnr?nrnr?nrnr?nrnr?nrnr?nrnr?nrnr?nrnr?nrnoyes

n.r. = nonrelevant ? = unknown

Ultrasonic Dissimilar Weld Inspections at NPP Grafenrheinfeld

Mischnahtprüfungen im Primärkreis in KKG zwischen 1997 und 2011										
Prüfjahr	Prüfstelle									
	YA 10		YA 20		YA 30		YA 40		YP 10	
	Komponente	Bemerkung								
1997					106 W	kalte Einsp.				
					115 W	heiße Einsp.				
1998							106 W	kalte Einsp.	16/1	VAL
							115 W	heiße Einsp.		
2001	106 W	kalte Einsp.	16/1	VAL						
									138a W	VAL
2006					115 W	heiße Einsp.	115 W	heiße Einsp.	16/1	VAL
									H1	DH-Stutzen
									H2	DH-Stutzen
									H3	DH-Stutzen
									H4	DH-Stutzen
									E2	DH-Stutzen
2008	125 W	TA-Stutzen								
	106 W	kalte Einsp.								
	115 W	heiße Einsp.								
2010			106 W	kalte Einsp.					16/1	VAL
			115 W	heiße Einsp.					138a W	VAL
									1 W	DH-Stutzen zum Abblase- behälter
									H1	DH-Stutzen
									H2	DH-Stutzen
									Н3	DH-Stutzen
									H4	DH-Stutzen
									E2	DH-Stutzen
2011					106 W	kalte Einsp.			195 W	VAL
					115 W	heiße Einsp.				

CONCLUSION Material State

EVIDENCE OF PWSCC

PROOF OF WELDING PROCEDURE

STRESS RELEASE BY HEAT TREATMENT

NO WELDING FLAWS/ NONCONFORMITIES **NO CRACKS FOUND**

PROVED QUALITY OF WELDING PROCEDURE

> STRESS RELEASE VIABLE

BASELINE INSPECTION AS REFERENCE

ALLOY 600/182

Michael Kröning

CONCLUSION Material State

NO LONG-TERM PROOF (LABORATORY!)

POOR WELDABILITY

STRESS RELEASE BY HEAT TREATMENT

NO WELDING FLAWS/ NONCONFORMITIES **QUALIFIED MATERIAL**

AUTHORITY ACCEPTANCE

STRESS RELEASE VIABLE

BASELINE INSPECTION AS REFERENCE

ALLOY 690 (Higher Chromium Content)

CONCLUSION SIDE CONSIDEARATIONS

REPLACEMENT

WELDING PROCEDURE QUALIFICATION

BASELINE INSPECTION AS REFERENCE

NO WELDING FLAWS/ NONCONFORMITIES

(COSTS)

(TIME DELAY)

NO REPLACEMENT

AUTHORITY ACCEPTANCE

BASELINE INSPECTION AS REFERENCE

ENGINEERING PROOF (GRAFENRHEINFELD)

STRESS RELEASE VIABLE

(COMPATIBLE TO ANGRA 2)

ULTRASONIC INSPECTION of DISSIMILAR WELDS

Standard PWR Steam Generator Nozzle DMW Configuration

Ultrasonic Inspection of Dissimilar Welds INSPECTION PROBLEM

Transverse and Longitudinal Sections with Homogeneous Anisotropic Structure

PHOTOMICROGRAPHS of WELD SECTIONS

Model of the transverse isotropic structure of stainless steel weld joints V_{ph} = Phase Velocity; Cij = Elastic Constant; ρ - Density, Φ – Fiber Orientation

INSPECTION PROBLEM Acoustic Anisotropy of Transverse Isotropic Materials

SIMULATION

transversal isotropic

Impulse – Echo Technique

45° Shear Wave Transducer

INSPECTION PROBLEM False Calls

S. PUDOVIKOV, A. BULAVINOV, R. PINCHUK, R. SRIDARAN VENKAT Quantitative Ultraschallprüfungen an anisotropen Materialien mittels Sampling Phased Array Technik, DGZfP-Jahrestagung 2010

Rules for Practitioners

LONGITUDINAL MODE
 ~ 8 times less than shear mode

SCATTERING:

- FOCUSSING (T/R Transducers)
 limits the contribution of scattering
- FILTERING and BEAM FORMING reduction of scattering contribution (TOPIC of R&D)

FOCUSSING & DEFOCUSSING OF SOUND FIELDS IN TRANSVERSE ISOTROPIC MATERIALS

Rules for Practitioners

- LONGITUDINAL & SHEAR MODE
 opposite behavior
- FOCUSSING of LONG. MODE at intersecting angles of 0° and 90°
- DEFOCUSSING of LONG. MODE at intersecting angles of +/- 45°

TENDENCY of BENDING into the columnar grain orientation

BENDING:

INSPECTION PROBLEM Acoustic Anisotropy – Sound Field Bending

R&D Reverse Phase Matching

DEFINITION: ACOUSTIC TRANSVERSAL ISOTROPIC DOMAINS TID SECTIONS WITH HOMOGENEOUS ACOUSTIC PROPERTIES

TRANSVERSAL ISOTROPIC DOMAINS TID

Water gap depth (lens shaped): 0.18 mm (λ /8 in steel, λ /2 in water)

Water gap depth (lense shaped): 0.18 mm $(\lambda/8 \text{ in steel}, \lambda/2 \text{ in water})$

LOCALIZATION OF REFLECTOR INDICATIONS

INSPECTION PROCEDURE Best Practice

STANDARD PROCEDURE NOT APPLICABLE

REGISTRATION: AMPLITUDE CRITERIA IN REFERENCE TO CALIBRATION REFLECTORS EVALUATION: LOCALIZATION, CONTRAST & RESOLUTION SENSITIVITY

Coupling; Bending; Attenuation; Scattering; Shaped Inspection Geometry; Systematic Indications; False Calls

IMAGING OF SYSTEMATIC INDICATIONS BY PHASED ARRAYS

INSPECTION PROBLEM OPTIMIZATION

List of Possible Transducers

- > 45°, 60°, 70° Shear Wave
- > 45°, 60°, 70° Longitudinal Wave
- Double Element Transducers ADEPT
- LLT Transducers
- Mode Conversion Transducers
- 'Creeping wave' Transducers

(2) Choice of appropriate transducers

(1) Simulation of US wave propagation

(3) Qualification of inspection technique & testing personnel

INSPECTION PROCEDURE Best Practice

INSPECTION PROCEDURE Best Practice

CONCLUSION NDT SUPPORTED MITIGATION CONCEPT

CRACK GROWTH RATES

FLAW DETECTION

Assessment of Dissimilar Welds: "Risk for PWSCC"

Advanced Inspection Technique

 Specially designed Phased Array Transducers with several inspection techniques in one housing: *FIT: Fit for Inspection Transducer:* Multiple modes (longitudinal and transversal), Multiple beam angles and focusing, Tandem (SSS, LLS)
 Accurate absolute and relative position data Accurate system repositioning for repeated inspections

(manipulator technology)

Selectable imaging of reflector systematics

CONCLUSION

We can inspect dissimilar welds!

However, We need proof of

- Inspection procedure and performance (validation)
- Advanced inspection equipment (phased array imaging)
 - Precise transducer positioning by smart manipulators
- 3D localization of reflectors in the component geometry

And a lot of professional experience

Ultrasonic Inspection of Dissimilar Welds RESEARCH & DEVELOPMENT

MIGRATION ARRAYS

Migration Array

Phased Array – Migration Array

Experience in DM-Welds at iNDT Results by Sampling Phased Array from ID

DM Test Block

3-D Representation

MIGRATION ARRAYS

Some (new) Statements

- **Position Controlled Measurement**
- Array aperture determines near field with synthetic focusing
- **Resolution depends on Element Aperture**
- One set of A-Scan data of array elements received in parallel
 - allows full and complete image reconstruction with:

Excellent Contrast Sensitivity (all space angle of incidence) Highest possible Resolution Contrast through synthetic focusing

BEAM FORMING & FILTERING COARSE GRAIN MATERIAL

TOLN

BEAM FORMING & FILTERING HIGH RESOLUTION AND CONTRAST SENSITIVITY

TRANSDUCER TRACKING

REVERSE PHASE MATCHING

$$\sum A_{ij} \left(t + \Delta \varphi_{ij} \right)$$

Phase corrected summation

REVERSE PHASE MATCHING

Phased array transducer and test specimen

Conventional Phased Array

Sampling Array with Reverse Phase Matching

THANK YOU FOR YOUR INTEREST

24/08/2007

SAFETYAVAILABILITYECONOMY

