Material Degradation of Nuclear Structures

Mitigation by Nondestructive Evaluation

17 MnMoV 6 4 (WB35): Stretched Zone

Material Degradation of Nuclear Structures Mitigation by Nondestructive Evaluation

3.	Focus on Steel – Carbon Steels			
3.1.	Basic Characteristics of Steel			
3.2.	Steel Qualities and Characterization Methods			
3.3.	Carbon Steel Microstructures			
3.4.	Microstructure Transformation			
3.5.	Transformation Diagrams			
3.6.	Localized Hardening			
3.7.	Steel Alloys			

Making of Steel Properties

MICROSTRUCTURE

HEAT TREATMENT

changes the mechanical properties, usually ductility, hardness, yield strength, or impact resistance

ALLOYING

enables the significant complexity of steel alloys by specific effects of various alloying elements

Tough & Strong

Heat treatment is a systematic sequence of various processes of "heating" and "cooling"

PURPOSE OF HEAT TREATING CARBON STEEL

Thermal treatment of steel is done for a variety of reasons,

but these can generally be divided into three categories:

- 1. Reduce and relieve internal stresses
- 2. Reduce hardness and/or create a more uniform grain structure
- 3. Achieve specific mechanical properties

Focus on Steel – Carbon Steels PURPOSE OF HEAT TREATING CARBON STEEL

changing the mechanical properties of steel

Ductility Hardness Yield Strength Impact Resistance Wear Resistance

Note:

Electrical and thermal conductivity are only slightly altered. Young's modulus (elasticity) is unaffected (Sound Velocity). All treatments of steel trade ductility for increased strength and vice versa.

Heat treatments

A TOLN

We know already: Effect of Carbon on Mechanical Properties

Heat Treatments Transformation Diagrams

Heat Treatments Transformation Diagrams

Heat treatments cause changes of microstructure by phase transformations

The changes depend on the way of heating/cooling; Phase transformations do not occur instantaneously. Diffusion-dependent phase transformations can be rather slow and the final structure often depend on the rate of cooling/heating.

We can assess microstructure changes by transformation diagrams but we need to consider the time dependence or kinetics of the phase transformations

Heat Treatments Microstructural Transformations

Heat Treatments

Heat Treatments Transformation Diagrams

Three Categories of Phase Transformations:

Diffusion-dependent

no change in phase composition or number of phases present (melting, solidification of pure metal, allotropic transformations, recrystallization, etc.)

Diffusion-dependent

with changes in phase compositions and/or number of phases (e.g. eutectoid transformations)

Diffusionless phase transformation produces a metastable phase by cooperative small displacements of all atoms in structure (e.g. martensitic transformation)

UNDERSTAND THE DIFFERENCE:

CRYSTALS Ferrite Austenite Cementite Graphite Martensite

MICROSTRUCTURE

Pearlite Bainite Ledeburite Tempered martensite Widmanstätten structure

Products of Austenitic Transformations

Microconstituents	Description
• Pearlite	 Transformation rate increases with decreasing temperature Coarse pearlite: alternating ferrite and cementite layers are relatively thick Fine pearlite: alternating ferrite and cementite layers are relatively thin Formed between 540 °C to 727 °C (above the nose)
Bainite	 Forms at temperatures between those at which pearlite and martensite transformation occurs microstructure consists of α-ferrite and fine dispersion of cementite Formed between 215 °C to 540 °C (below the nose)
Spheroidite	 Steel alloy composed of either pearlitic or bainitic microstructures is heated and held at a temperature below the eutectoid point for a long time (example: ≈700 °C for 18 – 24 h) Sphere-like particles
Martensite	•A metastable iron phase supersaturated in carbon that is the product of a diffusionless transformation from austenite •Quenched to a relatively low temperature
Material Degradat Kröning	ion of Nuclear Structures - Mitigation by Nondestructive Evaluation TPU Lecture Course 2014

Michae

Microconstituent	Phases Present	Arrangement of Phases	Mechanical Properties (Relative)			
Spheroidite	α Ferrite + Fe ₃ C	Relatively small Fe ₃ C sphere-like particles in an α - ferrite matrix	Soft and ductile			
Coarse Pearlite	α Ferrite + Fe ₃ C	Alternating layers of α -ferrite and Fe3C that are relatively thick	Harder and stronger than spherodite, but not as ductile as spherodite			
Fine Pearlite	α Ferrite + Fe ₃ C	Alternating layers of α -ferrite and Fe ₃ C that are relatively thin	Harder and stronger than coarse pearlite, but not as ductile as coarse pearlite			
Bainite	α Ferrite + Fe ₃ C	Very fine and elongated particles of Fe₃C in a α-ferrite matrix	Hardness and strength greater than fine pearlite; hardness less than martensite; ductility greater than martensite			
Tempered Martensite	α Ferrite + Fe ₃ C	Very small Fe_3C sphere-like particles in an α -ferrite matrix	Strong; not as hard as martensite, but much more ductile than martensite			
Martensite	Body-centered tetragonal, single phase	Needle-shaped grains	Very hard and very brittle			
Material De Michael Kröning	ichael Kröning					

Michael Kröning

TPU Lecture Course 2014

Thermally Activated Transformation Rate $r = A e^{-Q/RT}$

(similar to the temperature dependence of the diffusion constant D)

	Diffusion Constants for Iron			
Diffusion Constant D in Solids	System	Temperature (°C)	Diffusion Constant (m ² s ⁻¹)	
$D \equiv D_0 \cdot \exp\left(-\frac{1}{R \cdot T}\right)$		10	1,66 × 10 ⁻¹³	
Arrhennius Equation	Hydrogen	50	11,4 × 10 ⁻¹³	
		100	124 × 10 ⁻¹³	
	Carbon	800	15 × 10 ⁻¹³	
		1100	450×10^{-13}	

Heat Treatments Diffusion in Solids

The diffusion coefficient in solids at different temperatures is generally found to be well predicted by :

$$D = D_0 e^{-E_A/(RT)}$$
 ARRHENIUS EQUATION

Where

- **D** the diffusion coefficient (m^2 / s)
- D_0 the maximum diffusion coefficient (at infinite temperature; m² / s)
- E_A the activation energy for diffusion (J mol⁻¹)
- T the temperature (K)
- *R* the gas constant (J K^{-1} mol⁻¹)

Gibbs Free Energy: G = U - TS

where U = Internal Energy, T = Absolute Temperature, and S = Entropy

driving "force" for the phase transformation: difference in G between the old and new phases

Note:

The release of heat when a metal solidifies indicates that the crystalline phase has a lower Gibbs Free Energy, G, than the liquid.

At the equilibrium freezing temperature the Gibbs Free Energy of the liquid and the crystalline phase are equal.

TPU Lecture Course 2014

Michael Kröning

Critical Nucleus Radius r^{*}

$$\frac{d(\Delta G)}{dr} = \mathbf{0}!$$

with

$$\Delta G = \frac{4}{3}\pi r^3 G_V - 4\pi r^2 \gamma$$

$$r^* = -rac{2\gamma}{\Delta G}$$

GRAIN COARSENING An effect of minimization of the surface energy

Temperature has an important impact on the kinetics of any solid state transformation.

TEMPERATURE DEPENDANCY

Hardening

a metallurgical and metalworking process used to increase the hardness of a metal

Grain Boundary Strengthening (Hall-Petch Method)

Grain boundary strengthening by fine grained microstructure. The increased number of dislocations running into grain boundaries form strong dislocation barriers. In general, smaller grain size will make the material harder

Precipitation Hardening (Age Hardening)

A second phase in solid solution with the matrix metal is precipitated out of solution with the metal as it is quenched, leaving particles of that phase distributed throughout to cause resistance to slip

Work Hardening (Cold Working)

Plastic straining generate new dislocations. With increasing dislocation density, further dislocation movement becomes more difficult since they hinder each other. The material hardness increases.

Martensitic Transformation (Quenching & Tempering)

Hardening by Martensitic Transformation

Steel hardening is performed to impart strength and hardness.

Steel is heated up to austenitic region and held there until its carbon is dissolved, and then cooled rapidly.

The carbon does not get sufficient time to escape and get dissipated in the lattice structure. This helps in locking the dislocation movements when stresses are applied.

Heat Treatments Processes

Quenching

Quenching is performed to cool hot metal rapidly by immersing it in brine^{*}, water, oil, molten salt, air or gas.

Brine: salt water

Quenching sets up residual stresses in the work piece and sometimes results in cracks.

Heat Treatments Tempering

Tempering is applied to hardened steel to reduce brittleness, increase ductility & toughness and relieve stresses in martensitic structure.

The steel is heated to lower critical temperature keeping it there For about one hour and then cooled slowly at prescribed rate.

Tempering increases ductility and toughness but also reduces hardness, strength and wear resistance marginally. Increase in tempering temperature lowers the hardness.

Heat Treatments - Tempered Martensite

Tempering: Heating to 250-650°C for some time

Lower hardness/strength
 Enhanced ductility (ferrite phase!)

Mechanical properties depend on particle size of cementite

 Fewer, larger particles: yield less boundary area produce softer, more ductile material
 Particle size increases with higher temperature, longer time (more C diffusion)

Heat Treatments

Focus on Steel – Crystals

Alpha Ferrite

Michael Kröning

Focus on Steel – Martensite Formation

Martensite

a body-centered tetragonal form of iron in which some carbon is dissolved. Martensite forms during quenching, when the face centered cubic lattice of austenite is distored into the body centered tetragonal structure without the loss of its contained carbon atoms into cementite and ferrite. Instead, the carbon is retained in the iron crystal structure, which is stretched slightly so that it is no longer cubic. Martensite is more or less ferrite supersaturated with carbon.

Body Centered Tetragonal Unit Cell

Focus on Steel – Martensit Formation Martensite

A very hard needle-like structure of iron and carbon, only formed by very rapid cooling from the austenitic structure. Needs to be modified by tempering before acceptable properties reached.

The needle-like structure of martensite, the white areas are retained austenite.

Focus on Steel – Martensite Formation

Photomicrograph of Martensite Structure

Heat Treatments

Focus on Steel – Martensite

CARBON CONTENT

The block width decreases with an increase in the carbon content.

The block width of the Fe-23Ni alloy is much larger than that of the Fe-C alloys.

Optical micrographs of the Fe-C lath martensite

Heat treatments

Heat Treatments - Annealing

Annealing occurs by the diffusion of atoms within a solid material. The material progresses towards its equilibrium state

Annealing involves

- heating a material
- maintaining a suitable temperature,
- \succ and then cooling.

It alters the physical (and sometimes chemical properties)

- of a material by refining its structure
- to increase its ductility
- to relieve internal stresses
- and to make it more workable (cold working properties)

Stages of the annealing process during heating: ➢ recovery

softening of the metal through removal of dislocations and related internal stresses; recovery occurs at the lower temperature stage before the appearance of new strain-free grains.

recrystallization

New strain-free grains nucleate and replace those deformed by internal stresses

grain growth

If annealing continues and recrystallization has completed, then grain growth occurs. The microstructure starts to coarsen, the metal looses a substantial part of its original strength

Heat Treatments – Specialized Cycles of Annealing

Normalization

Normalization is used on steels of less than 0.4% carbon. It gives the material a uniform fine grained structure and make it less brittle. transforming retained austenite into ferrite, pearlite and sorbite.

heating the steel to 20-50 Kelvin above its upper critical point soaking for a short period at that temperature cooling in air

Smaller grains form that produce a tougher, more ductile material. It eliminates columnar grains and dendritic segregation that sometimes occurs during casting and welding. Normalizing improves machinability of a component and provides dimensional stability if subjected to further heat treatment processes

Heat Treatments Transformation Diagrams

Full Anneal

(LP Annealing – lamellar pearlite)

A full anneal typically results in the second most ductile state a metal can assume for metal alloy. Steel is heated to 50°C above the austenite temperature and held for sufficient time to allow the material to fully form austenite or austenite-cementite grain structure. The material is then allowed to cool slowly (e.g. in air) so that the equilibrium microstructure is obtained.

> The result is a more ductile material but a lower yield and tensile strength. Often the material to be machined is annealed, and then subject to further heat treatment to achieve the final desired properties.

Heat Treatments – Specialized Cycles of Annealing

Process Annealing

(intermediate annealing, subcritical annealing, or in-process annealing)

restores some of the ductility to a product during the process of cold working

The temperature ranges from 260 °C (500 °F) to 760 °C (1400 °F), depending on the alloy in question.

Short Cycle Anneal

Short cycle annealing is used for turning normal ferrite into malleable ferrite.

It consists of heating, cooling, and then heating again from 4 to 8 hours.

Heat treatments

Common temperature ranges for heat treating plain-carbon steels

Heat Treatments Spheroidizing

Spheroidizing

Heating steels just below Ae₁ until the shape of cementite particles becomes relatively spherical. (McGraw-Hill Dictionary of Scientific & Technical Terms, 6E, Copyright © 2003)

Annealing of pearlitic or bainitic microstructures at elevated temperatures just below eutectoid (e.g. 24 h at 700 C) leads to the formation of new microstructure – spheroidite-spheres of cementite in a ferrite matrix.

Composition or relative amounts of ferrite and cementite are not changing in this transformation, only the shape of the cementite inclusions is changing

 Transformation proceeds by C diffusion – needs high temperature
 Driving force for the transformation is the reduction in total ferrite - cementite boundary area

Heat Treatments Spheroidizing

The spheroidal distribution of cementite gives improved ductility and machinability

Focus on Steel – Steel Qualities Literature

1. web.utk.edu/~prack/MSE%20300/FeC.pdf

2. R. Manna, Time Temperature Transformation (TTT) Diagrams,

Centre of Advanced Study, Department of Metallurgical Engineering,

Institute of Technology, Banaras Hindu University, Varanasi-221 005, India;

rmanna.met@itbhu.ac.in

3. Heat Treatment of Steel Terminology

TPU Lectures 14 15\Heat Treatment Of Steel Terminology.docx

4. <u>http://www.virginia.edu/bohr/mse209/chapter11.htm</u>

5. F.J. Humphreys and M. Hatherly, *Recrystallization and Related Annealing Phenomena*, Elsevier Ltd., (2004), ISBN:978-0-08-044164-1

6. <u>http://www.nrc.gov/reading-rm/doc-collections/cfr/part050/part050-0066.html</u>

(Requirements for thermal annealing of the reactor pressure vessel)

7. K.H. Prabhudev, *Handbook of Heat Treatment of Steels*, Tata McGraw-Hill Education, (1988), ISBN 978-0-07-451831-1, retrieved November 11, 2012.

Heat Treatments Transformation Diagrams

Questions:

a) What temperature is steel heated to when it is annealed?

b) What temperature is hot working carried out at?

c) Which of the following are alternate layers

of ferrite and cementite known as:

- (i) austenite
- (ii) martensite
- (iii) pearlite

Our experts view is: a) Work hardened metal is annealed by heating it to a temperature that is approximately half of its melting point. b) Hot working is carried out on a metal heated to about 0.6 of its melting point. c) Alternate layers of ferrite and cementite are known as pearlite

STEEL CLASSIFICATION

BY PURPOSE: *DIN EN 10027-1*

Code Nr.		Scope	
	D	Steels for cold working	
	E	Engineering steels	
	н	High-strength flat products	
	L	Steels for pipe lines	
	Р	Steels for pressure vessels	
	R	Rail steels	
	S	Steels for steel construction	
Μ	thermo	mechanically rolled	
N	normalized		
Q	tempered		
G	other features with 1 or more digits		

S235JR+C

S: steel for steel construction 235: SMYS 235 N/mm² JR = 27J notch impact strength 20 ° C = cold rolled

+20	0	-20	-30	-40	-50	-60	
JR	JO	J2	J3	J4	J5	J6	27 J
KR	КО	K2	КЗ	K4	K5	K6	40 J
LR	LO	L2	L3	L4	L5	L6	60 J

- C cold working
- L for low temperatures
- H for semi profiles
- W weatherproof

Focus on Steel – Bainit Formation

Bainite Microstructure

