ОБРАБОТКА РЕЗУЛЬТАТОВ ЭКСПЕРИМЕНТОВ

ПОЛУЧЕНИЕ АНАЛИТИЧЕСКИХ ЗАВИСИМОСТЕЙ

Пусть в результате эксперимента получены значения двух измеряемых величин: y_1 , y_2 , y_3 , ..., y_n и x_1 , x_2 , x_3 ,..., x_n , которые связаны некоторой функциональной зависимостью y = f(x), вид которой заранее не известен.

На плоскости XOY каждая пара совместно измеренных значений (x_i, y_i) определяет положение некоторой точки. Величины x_i и y_i не свободны от погрешностей, поэтому определяемые ими точки не лежат точно на какой-то кривой, а образуют некоторое облако с нечеткими границами.

Регрессионная кривая

Подлежащая определению функциональная зависимость y = f(x) описывает некоторую кривую, называемую *регрессионной кривой*, проходящую через область, заполненную точками (x_i, y_i) .

В основу выбора вида кривой y = f(x) могут быть положены различные факторы: вид облака точек и имеющаяся информация о связи величин x и y, а также соображения удобства использования полученной кривой в дальнейшем и др. Просто найти параметры теоретической кривой, наилучшим образом соответствующие эксперименту, не достаточно. Необходимо, чтобы совпадали основные качественные особенности поведения этих кривых. Так, для случая, показанного на рисунке, аппроксимация экспериментальной зависимости прямой линией (показана штрихами) недопустима и необходимо использование нелинейной функции (показана сплошной линией).

Пример необходимости нелинейной аппроксимации

Аналитическая зависимость y = f(x) обычно содержит ряд параметров $a_1, a_2, ..., a_K$, не зависящих от *x*, и выражение подлежащей определению кривой можно записать в виде

$$y = f(x, a_1, a_2, ..., a_K).$$

Изменяя параметры, можно изменять как вид кривой в некоторых пределах, так и ее положение на плоскости *Х*О*У*.

В случае совпадения качественных особенностей кривых указанные параметры зависимости должны быть найдены таким образом, чтобы искомая теоретическая кривая y = f(x) наилучшим образом ложилась бы на экспериментальные точки набора совместных наблюдений (x_i, y_i), i = 1, ..., N.

Подставив в качестве аргумента функции $y = f(x, a_1, a_2, ..., a_K)$ значение x_i , получим $y = f(x_i, a_1, a_2, ..., a_K) \neq y_i$. Для наблюдений будут иметь место отклонения

$$\Delta y_i = y_i - f(x_i, a_1, a_2, ..., a_K)$$

которые называются остаточными погрешностями.

Существуют различные критерии выбора наилучшего соответствия экспериментальных точек и регрессионной кривой. Одним из наиболее общих способов отыскания оценок истинных значений искомых параметров является разработанный Лежандром и Гауссом *метод наименьших квадратов* (МНК).

Согласно этому методу оценки параметров *a_j* выбираются так, чтобы *минимизировать* сумму квадратов остаточных погрешностей

$$g(a_1, a_2, ..., a_K) = \sum_i (\Delta y_i)^2 \to \min_{a_1, a_2, ..., a_K}$$

На примере линейной зависимости рассмотрим несколько методов, позволяющих получить неизвестную аналитическую функцию.

Графический метод получения параметров аналитической зависимости

Аналитические методы получения параметров функциональной зависимости

Графический метод получения параметров аналитической зависимости

По имеющимся экспериментальным данным y_1 , y_2 , y_3 , ... y_n и x_1 , x_2 , x_3 ,... x_n построим график зависимости y = f(x). По виду графика (с учетом погрешности измерений) определим, можно ли имеющуюся зависимость считать линейной.

Если изучаемую зависимость можно считать линейной, то она может быть выражена формулой y = ax + b, где a и b – неизвестные коэффициенты, подлежащие определению.

Обязательными условиями применения данного метода являются следующее: начало отсчета по обеим осям начинается с нуля; обе оси имеют равномерный масштаб.

На построенном графике зависимости у = f (x) проводят сглаживающую прямую до пересечения с осью ординат. Прямая проводится на глаз как можно ближе к экспериментальным точкам.

Два способа определения неизвестных коэффициентов *а* и *b* на основе графика.

Способ 1. Из математического анализа известно, что отрезок, отсекаемый искомой прямой от оси ординат, равен коэффициенту b, а тангенс угла наклона прямой к оси абсцисс (с учетом масштаба) определяет величину a.

Из рисунка видно, что график пересекает вертикальную ось на высоте 3,2. Следовательно, b = 3,2.

Для нахождения тангенса угла наклона нужно на сглаживающей прямой выбрать две точки 1 и 2, расположенные достаточно далеко друг от друга и определить их координаты (значения аргумента x₁, x₂ и функции y₁, y₂). Тогда $a = \frac{\Delta y_{y_2-y_1}}{\Delta x_{x_2-x_1}}$. Из рисунка $a = \frac{4}{6,9} = 0,58$. Тогда искомое уравнение прямой: y = 0,58 x + 3,2. Способ 2. Формально для определения коэффициентов *a* и *b* достаточно взять две произвольные точки на проведенной на глаз прямой с координатами (x_1 ; y_1), (x_2 ; y_2). Подстановка этих значений в уравнение y = ax + b позволяет получить систему из двух уравнений для определения неизвестных коэффициентов *a* и *b*.

$$ax_1 + b = y_1;$$

$$ax_2 + b = y_2.$$

Решая систему уравнений, находим:

$$a = \frac{y_2 - y_1}{x_2 - x_1}; b = y_1 - ax_1$$
или $b = y_2 - ax_2.$

Этот способ можно применять, если сглаживающая прямая проведена так, что **хотя бы две экспериментальные точки точно лежат на ней**. Из графика видно, что точки М и N принадлежат сглаживающей прямой. Эти точки имеют координаты: N (1,5; 4,1) и M (13,5; 11,1). Тогда найдем коэффициент а и b:

$$a = \frac{y_N - y_M}{x_N - x_M} = \frac{11,1 - 4,1}{13,5 - 1,5} = \frac{7}{12} = 0,583$$
$$b = y_M - ax_M = y_N - ax_N = 11,1 - 0,583 \cdot 13,5 = 3,229$$

Таким образом y = 0,583 x + 3,23.

Линеаризация функциональных зависимостей

В случае если экспериментальная зависимость имеет нелинейный характер, путем замены переменных ее можно привести к линейному виду (получается новая координатная сетка). После этого можно вновь применить графический метод определения параметров аналитической зависимости. Этот прием называют линеаризацией функциональных зависимостей.

Рассмотрим, например, квадратичную зависимость $y \sim x^2$. Если на оси ОУ нанести равномерную шкалу, а на оси OX_1 – шкалу квадратов $x_1 = x^2$, то получится сетка, где уравнение параболы имеет изображение прямой линии ($y \sim x_1$).

Особенно часто используются различные логарифмические шкалы, с помощью которых можно «выпрямлять» графики степенных и показательных функций.

Пример: $y = ae^{bx}$; $\ln y = bx + \ln a$. Полагая, что $\ln y = y_1$; $\ln a = A$, запишем исходное уравнение в виде $y_1 = A + bx$, откуда видно, что оставив равномерной шкалу x и построив логарифмическую шкалу y_1 , можно изобразить исходное уравнение прямой линией. Полученная координатная сетка называется полулогарифмической.

Очевидно, что такого рода преобразования возможны и в более общем случае. Всякая неявная функция, заданная соотношением вида

 $a\varphi(x) + b\psi(y) + c = 0,$

где *a*, *b*, *c* – постоянные, будет изображаться прямой линией на функциональной сетке, где на оси ОХ построена шкала $\varphi(x)$, а на оси ОУ – шкала функции $\psi(y)$. Используемые при этом функции $\varphi(x)$ и $\psi(y)$ должны удовлетворять условиям непрерывности и монотонности.

В таблице приведены примеры линеаризации некоторых функций.

Исходная	Преобразованная	Замена	Линеаризованная
формула	формула	переменных	формула
		$\ln y = y_1$	
$y = ax^{o}$	$\ln y = b \cdot \ln x + \ln a$	$\ln x = x_1$	$y_1 = bx_1 + a_1$
		$\ln a = a_1$	
$y = a \cdot \ln x + b$		$\ln x = x_1$	$y = ax_1 + b$
$y = e^{bx+k}$	$\ln y = bx + k$	$ \ln y = y_1 \\ b = a $	$y_1 = ax + k$

Линеаризация некоторых функций

Линеаризация некоторых функций

$y = ae^{bx}$	$\ln y = \ln a + bx$	$\ln y = y_1$ $b = b_1$ $\ln a = a_1$	$y_1 = b_1 x + a_1$
$y = \frac{a}{x} + b$		$\frac{1}{x} = x_1$	$y = ax_1 + b$
$y = \frac{1}{ax+b}$	$\frac{1}{y} = ax + b$	$\frac{1}{y} = y_1$	$y_1 = ax + b$
$y = \frac{x}{ax+b}$	$\frac{1}{y} = \frac{b}{x} + a$	$\frac{1}{y} = y_1$ $\frac{1}{x} = x_1$	$y_1 = bx_1 + a$

Когда исследуемая экспериментальная зависимость представляет собой нелинейную кривую, по графику на глаз трудно судить, какого типа функцией ее лучше всего описать. Переведя полученные экспериментальные данные на функциональные сетки, можно оценить на какой из них эта зависимость ближе всего к линейной и, следовательно, какой функцией лучше всего описываются.

Аналитические методы получения параметров функциональной зависимости

Способ средней

Пусть в результате эксперимента получены значения двух измеряемых величин (y_1 , y_2 , y_3 , ..., y_n и x_1 , x_2 , x_3 ,..., x_n), между которыми предполагается линейная зависимость вида y = ax + b. Наблюдаемые значения величины y_i будут отличаться от значений, полученных по формуле $ax_i + b$, вследствие наличия экспериментальных ошибок. Обозначим через Δ_i соответствующую ошибку

$$\Delta_i = y_i - ax_i - b \ (i = 1, 2, \dots n).$$

Если выбирать параметры a и b так, чтобы для всех n наблюдений ошибки уравновешивались, т.е.

$$\sum_{i=1}^n \Delta_i = \sum_{i=1}^n y_i - ax_i - b = 0,$$

то это привело бы к одному уравнению, тогда как для нахождения двух коэффициентов *a* и *b* требуются два уравнения. Поэтому предположим, что уравновешивание происходит не для всех произведенных наблюдений в целом, а для каждой из двух групп, содержащей половину (или почти половину) всех наблюдаемых значений в отдельности.

Это предположение позволяет прийти к системе уравнений

$$\sum_{i=1}^{m} (y_i - ax_i - b) = 0$$
$$\sum_{i=m+1}^{n} (y_i - ax_i - b) = 0$$

где *т* – число наблюдений в первой группе.

Данную систему уравнений перепишем в виде

$$\begin{cases} a \sum_{i=1}^{m} x_i + mb = \sum_{i=1}^{m} y_i \\ a \sum_{i=m+1}^{n} x_i + (n-m)b = \sum_{i=m+1}^{n} y_i \end{cases}$$

Для нахождения коэффициентов *а* и *b* необходимо решить полученную систему уравнений, предварительно рассчитав четыре несложные суммы.

Проиллюстрируем данный метод на том же примере, что и графический метод. Для удобства данные из таблицы (координаты графика) разделим на две части и перепишем в виде таблицы: 14 измерений разделим на две группы, m = 7 в первой и n - m = 7 во второй.

Была таблица значений (на основании которых построена линейная зависимость)

x	0,4	1,5	2,5	3,5	4,6	5,5	6,5	7,5	8,4	9,5	10,7	11,7	13	13,5
y	3,5	4,1	4,9	5,3	5,3	6,4	7,2	7,5	7,9	8,9	9,1	10,6	11	11,1
		М												Ν

Данные из таблицы (координаты графика) разделим на две части и перепишем в виде таблицы: 14 измерений разделим на две группы, *m* = 7 в первой и *n* – *m* = 7 во второй.

п	x	У	п	x	У
1	0,4	3,5	8	7,5	7,5
2	1,5	4,1	9	8,4	7,9
3	2,5	4,9	10	9,5	8,9
4	3,5	5,3	11	10,7	9,1
5	4,6	5,3	12	11,7	10,6
6	5,5	6,4	13	13	11
7	6,5	7,2	14	13,5	11,1
	$\sum_{i=1}^{7} x_i = 24,5$	$\sum_{i=1}^{7} y_i = 36,7$		$\sum_{i=8}^{14} x_i = 74,3$	$\sum_{i=8}^{14} y_i = 66,1$

Рассчитаем суммы, которые необходимы для записи системы уравнений:

$$\sum_{i=1}^{7} x_i = 24,5; \ \sum_{i=1}^{7} y_i = 36,7; \ \sum_{i=1}^{14} x_i = 74,3; \ \sum_{i=8}^{14} y_i = 66,1.$$

Подставив полученные значения в систему уравнений, получим:

Решая систему уравнений, найдем коэффициенты а и b:

$$(74,3-24,5) a = 66,1-36,7$$

 $49,8 a = 29,4$
 $a = 0,590$
 $b = 3,176$

Тогда уравнение прямой (линейной зависимости) примет вид

y = 0,590 x + 3,176.

Метод наименьших квадратов

Суть его заключается в подборе таких значений коэффициентов, при которых сумма квадратов отклонений измеренных в эксперименте значений y_i (i = 1, 2, 3, ...n) от искомой кривой y = ax + b была бы минимальна.

Найдем сумму квадратов отклонений

$$S = \sum_{i=1}^{n} \left[y_i - (ax_i + b) \right]^2$$

Под знаком суммирования раскроем квадрат. В результате получим

$$\begin{split} S &= \sum_{i=1}^{n} \left(y_i^2 - 2ax_i y_i - 2by_i + a^2 x_i^2 + 2abx_i + b^2 \right) \\ \text{или } S &= S_{yy} - 2aS_{xy} - 2bS_y + a^2 S_{xx} + 2abS_x + nb^2 , \\ \text{где } S_{yy} &= \sum_{i=1}^{n} y_i^2 \ ; \ S_{xy} &= \sum_{i=1}^{n} x_i y_i \ ; \ S_y &= \sum_{i=1}^{n} y_i \ ; \ S_{xx} &= \sum_{i=1}^{n} x_i^2 \ ; \ S_x &= \sum_{i=1}^{n} x_i \ . \end{split}$$

Значения $y_1, y_2, y_3, \ldots y_n$ и $x_1, x_2, x_3, \ldots x_n$ – фиксированные экспериментальные данные. Поэтому сумма квадратов отклонений *S* зависит только от значений коэффициентов *a* и *b*. сумма квадратов отклонений является функцией двух независимых переменных a и b. Для нахождения минимума функции S(a, b) необходимо приравнять к нулю ее частные производные по a и по b:

20

Полученные выражения позволяют записать систему уравнений для отыскания «наилучших» значений коэффициентов *a* и *b* в виде

$$S_{xx}a + S_xb = S_{xy}$$
$$S_xa + nb = S_y$$

Решая эту систему, находим:

$$a = \frac{1}{D} (nS_{xy} - S_x S_y)$$

$$b = \frac{1}{D} (S_{xx}S_y - S_xS_{xy})$$
, где $D = nS_{xx} - S_x^2$.

Рассмотрим применение данного метода на том же примере, что и графический метод. Для удобства данные из таблицы (линейная зависимость на слайде 4) представим в виде таблицы, дополнительно вычислив значения x_i^2 и $x_i y_i$, необходимые для расчета величин S_{xv} и S_{xx} . Число измерений n = 14.

$$S_{yy} = \sum_{i=1}^{n} y_i^2 \; ; \; S_{xy} = \sum_{i=1}^{n} x_i y_i \; ; \; S_y = \sum_{i=1}^{n} y_i \; ; \; S_{xx} = \sum_{i=1}^{n} x_i^2 \; ; \; S_x = \sum_{i=1}^{n} x_i \; .$$

y i	3,5	4,1	4,9	5,3	5,3	6,4	7,2	7,5	7,9	8,9	9,1	10,6	11	11,1
x	0,4	1,5	2,5	3,5	4,6	5,5	6,5	7,5	8,4	9,5	10,7	11,7	13	13,5

		_	
x	У	x^2	xy
0,4	3,5	0,16	1,4
1,5	4,1	2,25	6,15
2,5	4,9	6,25	12,25
3,5	5,3	12,25	18,55
4,6	5,3	21,16	24,38
5,5	6,4	30,25	35,2
6,5	7,2	42,25	46,8
7,5	7,5	56,25	56,25
8,4	7,9	70,56	66,36
9,5	8,9	90,25	84,55
10,7	9,1	114,49	97,37
11,7	10,6	136,89	124,02
13	11	169	143
13,5	11,1	182,25	149,85
$S_{\rm r} = 98.8$	$S_{\nu} = 102.8$	$S_{\rm rrr} = 934,26$	$S_{yy} = 866.13$

Рассчитаем все необходимые суммы:

$$S_x = 98,8, S_{xx} = 934,26, S_{xy} = 866,13, S_y = 102,8$$

Учитывая, что число измерений n = 14, получим систему уравнений:

$$\begin{cases} S_{xx}a + S_xb = S_{xy} \\ S_xa + nb = S_y \end{cases} \implies \begin{cases} 934,26a + 98,8b = 866,13 \\ 98,8a + 14b = 102,8 \end{cases}$$

Тогда

$$D = nS_{xx} - S_x^2 = 14.934,26 - (98,8)^2 = 3318,2$$

$$a = \frac{1}{D}(nS_{xy} - S_xS_y) = \frac{1}{3318,2}(14.866,13-102,8.98,8) = 0,5934$$

$$b = \frac{1}{D}(S_{xx}S_y - S_xS_{xy}) = \frac{1}{3318,2}(934,26\cdot102,8 - 98,8\cdot102,8) = 3,1548$$

Получили следующее уравнение прямой: y = 0,5934 x + 3,1548.

Выполнение ИДЗ № 4 – найти по МНК коэффициенты *a* и *b* в уравнении у=*a*х+*b* по известным значениям координат (x_i,y_i).

Как видно, метод наименьших квадратов достаточно громоздок. Поэтому его применение становится наиболее эффективным при использовании вычислительной техники.

Метод наименьших квадратов также применяется и при построении нелинейных зависимостей. Например, при получении коэффициентов квадратичной зависимости вида $y = ax^2 + bx + c$ необходимо найти минимальное значение суммы квадратов *S* вида:

$$S = \sum_{i=1}^{n} (\Delta y)^{2} = \sum (y_{i} - ax_{i}^{2} - bx_{i} - c)^{2}.$$

В результате для нахождения коэффициентов *a*, *b*, *c* необходимо решить систему уравнений:

$$\begin{cases} a\sum_{i=1}^{n} x_{i}^{2} + b\sum_{i=1}^{n} x_{i} + nc - \sum_{i=1}^{n} y_{i} = 0\\ a\sum_{i=1}^{n} x_{i}^{3} + b\sum_{i=1}^{n} x_{i}^{2} + c\sum_{i=1}^{n} x_{i} - \sum_{i=1}^{n} x_{i} y_{i} = 0\\ a\sum_{i=1}^{n} x_{i}^{4} + b\sum_{i=1}^{n} x_{i}^{3} + c\sum_{i=1}^{n} x_{i}^{2} - \sum_{i=1}^{n} x_{i}^{2} y_{i} = 0 \end{cases}$$

Использование современных специализированных компьютерных программ (например, MS Excel, Origin, Mathematica и др.) позволяет строить по методу наименьших квадратов и более сложные зависимости.

ИСПОЛЬЗОВАНИЕ ЭЛЕКТРОННЫХ ТАБЛИЦ ДЛЯ ОБРАБОТКИ РЕЗУЛЬТАТОВ ЭКСПЕРИМЕНТОВ НА ПРИМЕРЕ MS EXCEL

Расположение данных и отображение результатов

Рабочая область в MS Excel представляет собой таблицу из большого числа ячеек, расположенных по строкам и столбцам. Строки и столбцы нумеруются автоматически: строки – с помощью арабских цифр, начиная с единицы; а столбцы – с помощью латинских букв.

N	Microsoft Exc	:el - Книга1					• 🗙
	<u>Ф</u> айл <u>П</u>	равка <u>В</u> ид	Вст <u>а</u> вка	Фор <u>м</u> ат	С <u>е</u> рвис	<u>Д</u> анные <u>С</u>	<u>)</u> кно
: <u>C</u> i	правка Ас	lo <u>b</u> e PDF					- 8 ×
	🖻 🖬 🕻	3 🛃 🐰	🖻 🖺 -	5-0-	- I 🛍	;	Ъ 🔁 📮
Ari	ial Cyr		10 -	ж К 🗏		a 🗉 🗕 🗸	<u>⊳</u> - 関
	C5	•	f×				
	A	В	С	D	E	F	G
1							Â
2							
3							E
4							
5							
6							
7							
8							
9							
10							.
H 4	∟ н н∖ли	ст1 / Лист2	2 / Лист3 /		۲ II	1	► at
Де	йс <u>т</u> вия 🕶 🗟	Автофи <u>г</u>	уры - 🔨	100	🛆 🖪 🛟	🕭 - 🔳	ŧ.
Гото	60				NU	М	tt.

Многие встроенные функции применяются либо к столбцу, либо к строке, поэтому однотипные данные в электронных таблицах удобно располагать либо в одном и том же столбце, либо в одной и той же строке. В русифицированных версиях MS Excel для отделения дробной части числа используется запятая.

X N	Aicrosoft Exc	cel - Книга1					
	<u>Ф</u> айл <u>П</u>	равка <u>В</u> ид	Вст <u>а</u> вка	Фор <u>м</u> ат	С <u>е</u> рвис "	Данные	<u>О</u> кно
<u></u>	правка Ас	do <u>b</u> e PDF					_ 8 ×
		3 🕹 👗	b 12 -	9 - (°	· £01		12 🔁 🚽
Ari	ial Cyr	-	10 -	ж к 🛛			🕭 🗸 📲
	B7	👻 🗙 🗸 j	≨ 1,27				
	Α	В	С	D	E	F	G
1							î
2		1,25					
3		1,26					Ξ
4		1,31					
5		1,28					
6		1,32					
7		1,27					
8							
9							
10							.
H 4	⊢ ► ЭН\Ли	ют1 / Лист2	/ Лист3 /	·	۰ II	1	• E
Де	йс <u>т</u> вия ▼	Автофи <u>г</u> у	/ры 🔹 🔪	$\mathbf{\nabla}$	A 3	🕭 - 🔳	∎ 🛱 📲
Ввод	ı				NU	М	

Над интересующей ячейкой правой клавишей мыши вызовите контекстное меню, в котором выберите пункт «Формат ячейки». По умолчанию обычно используется формат «Общий». Для корректного отображения числовых данных следует выбрать формат «Числовой», указав необходимое количество десятичных знаков после запятой на вкладке «Число» диалогового окна «Формат ячеек».

🛛 Microsoft Excel - Кни	ra1				Формат яч	чеек					? 🗙
	<u>В</u> ид	Вст <u>а</u> вка Фор <u>м</u> ат С <u>е</u>	рвис Данные	<u>О</u> кно	Число	Выравнивание	Шрифт	Граница	Вид	Защита	
<u>С</u> правка Ado <u>b</u> e PD	F			_ 8 ×	<u>Ч</u> исловые	е форматы:	Образец				
	Ж	🗈 🙈 + 🔊 + (° + 16	1	1 🛼 👷 🗋	Общий	A	1,25				
Arial Cyr	+	10 • X K = =		<u></u>	Денежны	ม มหั	Число дес	ятичных <u>з</u> на	аков:	2	
B2 -		£ 1.25		T	Финансо	вый					
AB	Í	C D	E F	G-	Время		Раздел	итель групг	празрядов	в()	
1				^	Процент	ный	Отрицател	льные числа			
2 1	25	-			Экспонен	1 нциальный	-1234,10				*
3 1	ň	<u>В</u> ырезать		E	Текстовь	ый	1234,10				
4 1	E)	<u>К</u> опировать			Дополни	тельный 🔻	-1234,10				-
5	2	Вст <u>а</u> вить				marbiy	-1234,10				
7		Специальная вставка									
8				_				~	<i>c</i>		
9		Добавить ячейки			Лля выво	и формат является ода денежных зна	я наиволее чений испо	ООЩИМ СПОС	овом пред акже фор	ставления ч маты "Лене»	исел. кный" и
10		<u>У</u> далить		-	Финансо	вый".				доло	
н + + н Лист1/Л		Очистить содер <u>ж</u> имое		• • • <u>-</u>							
Дейс <u>т</u> вия ▼ 🔓 Авто	1	Добавить приме <u>ч</u> ание		t⇔ ï,					ОК		мена
Готово	P	Формат <u>я</u> чеек									
		В <u>ы</u> брать из раскрываюш	цегося списка								
		Добавить контрольное з	начение								
		Создать список									
	9	Гиперсс <u>ы</u> лка									
	13	<u>П</u> оиск		-							

Для более комфортной работы с электронной таблицей рекомендуется в некоторых ее ячейках вводить поясняющий текст, позволяющий лучше ориентироваться в имеющихся данных. Для таких ячеек удобнее использовать формат «Текстовый».

📧 Microsoft Excel - Книг	al															
📳 <u>Ф</u> айл <u>П</u> равка	Вид Вст <u>а</u> вка	Фор <u>м</u> ат	С <u>е</u> рвис	Данные (<u> О</u> кно	Φο	рмат яч	еек						E	? 🔀	
<u>С</u> правка Ado <u>b</u> e PDF					_ 8 ×		Нисло	Выравнива	ние	Шрифт	Граница	Вид	Защи	та		
1 🖬 🖌 🖓	🔏 🗈 🖺 •	1) - (21 -	· 🏨		12 💅 📮	<u> </u>	исловые	форматы:	_	Образец						
Arial Cyr	• 10 •	ж к 🔳		∰ <u>III</u> • 4	🗞 🗸 📲	4)бщий Іисловой	i	^	b (см)						
C2 -	<i>f</i> ∗ b (см)					Д ф	енежны инансов	ій зый		Вначен	ия в текст	овом фор	иате			
A B	С	D	E	F	G	АВ	ата ремя			отобра	ажаются то	чно так ж	е, как			
1 Размеры тела:	1. (роцентн	ный		строки	вне зависи	мости от	ИХ			
2 а (СМ)	<u>b (см)</u>	h (см)) A	кспонен	циальный		содер	кания.					
3 1,	52 3,84	0,87			=		екстовы	ий								
4 1,	53 3,82	0,89				Д	ополнит	тельный	-							
5 1,	51 3,83	0,9					все форм	10101/								
6 1,	52 3,83	0,88														
7 1.	54 3,84	0,89														
8 1.	51 3,81	0,88														
9																
10																
И • • • И Лист1 / Ли	ст2 / Лист3 /		٠ I	1	► a											I
Дейс <u>т</u> вия ▼ 👌 Автос	игуры • 🔪	100	A 0	🕭 - 🚍	₽							ОК		Отм	ена	
Готово			NL	M												

Расчеты

На основе внесенных в электронную таблицу данных можно выполнять математические расчеты.

Для этого в ячейку, в которой предполагается расположить результат вычислений, необходимо ввести формулу в соответствии со следующими правилами:

1) формула начинается со знака «равно» (=);

2) формула записывается в строку с явным указанием всех математических операций (+ – сложение; – – вычитание; * – умножение; / – деление; ^ – возведение в степень);

3) все математические операции производятся над адресами (именами) ячеек.

Например, необходимо найти площадь основания прямоугольного параллелепипеда по данным расположенным в строке 3. Для этого в ячейку ЕЗ введем следующую формулу:

🔀 N	🛛 Microsoft Excel - Приложение										
	<u>Ф</u> айл <u>П</u>	равка <u>В</u> ид	, Вст <u>а</u> вка	Фор <u>м</u> ат	С <u>е</u> рвис	Данные	<u>О</u> кно				
<u>C</u>	правка Ас	lo <u>b</u> e PDF					_ 8 ×				
	🞽 🛃 🔓	3 🛃 🐰	🖻 🖺 -	9 • (°	· 🛍		🏂 💅 🖕				
Ari	al Cyr		• 10 •	ж К 🗏		a: 🗌 🗸	🖏 🗸 📲				
	E3	•	<i>f</i> ∗ =B3*C3								
	Α	В	С	D	E	F	G				
1	Размеры т	тела:					Â				
2		а (см)	b (см)	h (см)	S (см ²)						
3		1,52	3,84	0,87	5,84						
4		1,53	3,82	0,89							
5		1,51	3,83	0,90							
6		1,52	3,83	0,88							
7		1,54	3,84	0,89							
8		1,51	3,81	0,88							
9											
10							-				
14 4	• • • П/Ли	ст1 / Листа	2 / Лист3 /		•		E L				
🗄 Действия 🔹 😓 Автофигуры 🔹 🔪 🗖 🔿 🍋 📿 🥰 🗧 🧱 🍟											
Гото	B0				NU	M					

=B3*C3

Непосредственно над таблицей помимо поля «Имя» также расположено поле «Строка формул», перед которой расположен значок *fx*.

Если в активной (выделенной) ячейке расположено введенное пользователем число или текст, то в строке формул отображается то же значение, что и в ячейке таблицы. Если в активную ячейку введена формула (и ввод завершен), то в строке формул отображается соответствующая формула, а в ячейке – результат вычислений.

Нажав Enter (ввод), увидим результат вычислений в ячейке ЕЗ.

Если аналогичные расчеты необходимо выполнить и для других строк в таблице, то достаточно записать формулу для одной строки, а затем воспользоваться механизмом протягивания.

На рамке, выделяющей активную ячейку, справа внизу имеется жирный квадратик. Протягивание рамки активной ячейки за этот квадратик позволяет распространить записанные в активной ячейке действия на необходимое количество ячеек. Так, потянув за квадратик ячейки ЕЗ, можно применить ту же формулу к ячейкам Е4, Е5 ... Е8. При этом в каждой из этих ячеек формула автоматически записывается через ячейки той же строки.

💌 N	🕱 Microsoft Excel - Приложение									
	<u>Ф</u> айл <u>П</u>	равка <u>В</u> ид	, Вст <u>а</u> вка	Фор <u>м</u> ат	С <u>е</u> рвис	<u>Д</u> анные <u>С</u>	<u>)</u> кно			
: <u>C</u> r	правка Ас	lo <u>b</u> e PDF					_ 8 ×			
10	🞽 🖬 🕻	3 🛃 🐰	🖻 🖺 -	1) - (21 -	- 🏨	;	Ъ 🖌 🖕			
Ari	al Cyr	٠	• 10 •	ж К 🗏		a 🗉 🗸 🗸	» - 💾			
	E3	•	f ∗ =B3*C3							
	Α	В	С	D	E	F	G			
1	Размеры т	ела:					Â			
2		а (см)	b (см)	h (см)	S (см ²)					
3		1,52	3,84	0,87	5,84		E			
4		1,53	3,82	0,89	5,84					
5		1,51	3,83	0,90	5,78					
6		1,52	3,83	0,88	5,82					
7		1,54	3,84	0,89	5,91					
8		1,51	3,81	0,88	5,75					
9						-				
10							-			
H 4	→ н\ли	ст1 / Лист	2 / Лист3 /		</td <td>1</td> <td>▶</td>	1	▶			
🗄 Дейс <u>т</u> вия 🔻 😓 Автофи <u>г</u> уры 🕶 🔪 🗖 🔿 🔛 🖂 🎲 🙅 🗸 🧮 🥰										
Гото	B0		Сумма=34,9	95	NU	M				

Перемещаясь по ячейкам (после протягивания) можно заметить, что в ячейке ЕЗ записана формула =В3*СЗ, а в ячейке Е5 – формула =В5*С5.

При протягивании адреса в формулах меняются следующим образом: 1) при протягивании вниз увеличивается номер строки; 2) при протягивании вправо увеличивается номер столбца. Адрес (имя) ячейки можно принудительно зафиксировать, так чтобы при протягивании номер строки (или столбца) не изменялся. Для этого в MS Excel используется знак \$.

Если необходимо зафиксировать строку, знак \$ ставится перед номером строки (например, E\$5). Если необходимо зафиксировать столбец, знак \$ ставится перед номером столбца (например, \$E5). Если необходимо зафиксировать ячейку полностью, знак \$ ставится дважды, и перед номером строки, и пред номером столбца (например, \$E\$5).

X	🛛 Microsoft Excel - Приложение									
2	<u>Ф</u> айл <u>П</u>	равка <u>В</u> ид	Вст <u>а</u> вка	Фор <u>м</u> ат	С <u>е</u> рвис	<u>Д</u> анные <u>(</u>	<u>)</u> кно			
<u>Справка Adob</u> e PDF _ & ×										
D 😂 🖬 💪 🍕 X 🗈 🛍 + 🔊 + 🗠 + 🏨 💦 🚦 🚼 🚼 🛃 🖕										
Ar	ial Cyr	•	• 10 •	ж К 🗏		a <	3» - 🙄			
	H3	•	<i>f</i> ∗ =G3-H\$	1						
	F	G	Н		J	K				
1	Вес этало	на (г)	10,54				<u> </u>			
2		Вес тела (г)							
3		10,52	-0,02				Ξ			
4		10,56	0,02							
5		10,48	-0,06							
6		10,60	0,06							
7		10,55	0,01							
8				-						
9										
10										
H -	с ► Э \Ли	ст1 / Лист2	2 <u>/</u> Лист3 /		•	III	►			
Де	айс <u>т</u> вия ▼ 🕞	Автофи <u>г</u>	уры - 🔨	$\sim \Box \circ$	🛆 🖪 🛟	🅭 - 🚍	ŧ ï			
Гото	060		Сумма=0,01	L	NU	M				

В следующем примере рассчитывают, насколько отличается каждое значение из столбца G от значения, расположенного в ячейке H1. Для этого в ячейку H3 запишем формулу

=G3-H1

Так как данные расположены в столбце, необходимо будет протянуть формулу, написанную в ячейке H3, вниз. Это приведет к изменению номеров строк во всех ячейках формулы. А по условиям задачи из значений, расположенных в столбце G, необходимо вычитать только ячейку H1. Поэтому, перемещая курсор по строке формул, в написанной формуле зафиксируем строку в ячейке H1

=G3-H\$1

После протягивания получим результаты, представленные на рисунке.

🛛 Microsoft Excel - Приложение										
] <u>Ф</u> айл <u>П</u>	равка <u>В</u> ид	Вст <u>а</u> вка	Фор <u>м</u> ат	С <u>е</u> рвис	Данные	<u>О</u> кно			
<u>c</u>	правка Ас	do <u>b</u> e PDF					_ 8 ×			
	D 🐸 🖬 B ≤ X 🖻 🛍 • ? • ∾ • 🏨 💦 🚼 🛣 📮									
Ar	Arial Cyr 🔹 10 🔹 🗶 🗶 🚍 🔤 🔛 🔹 🌺 🗸 🍟									
	H3	•	∱ ∡ =G3-H\$	1						
	F	G	Н		J	K	L -			
1	Вес этало	на (г)	10,54				L Â			
2		Вес тела (г)							
3		10,52	-0,02				Ξ			
4		10,56	0,02							
5		10,48	-0,06							
6		10,60	0,06							
7		10,55	0,01							
8				.						
9										
10							-			
H -	с → эі\ли	ют1 / Листа	2 / Лист3 /			III	▶			
ЕДе	ейс <u>т</u> вия - В	Автофи <u>г</u>	уры - 🔨	100	A 🦪	🖄 - 🔳				
Гото	060		Сумма=0,01	1	NU	M				

Формулы могут также содержать числовые константы. Число π часто встречается в расчетах, поэтому в MS Excel введена стандартная функция для использования этой константы:

ПИ()

Тогда формула, содержащая число π, может быть записана, например, как на рисунке (см. строку формул).

X	🛛 Microsoft Excel - Приложение										
	<u>Ф</u> айл <u>П</u>	равка <u>В</u> ид	, Вст <u>а</u> вка	Фор <u>м</u> ат	С <u>е</u> рвис	Данные 🧕	<u>О</u> кно				
<u>i</u> <u>c</u>	правка Ас	lo <u>b</u> e PDF					_ 8 ×				
	! □ ☞ 및 ≧ ④ ୬ 등 않 • ୭ • ୯ • ₩										
Ar	ial Cyr	•	• 10 •	ж К 🗏		a	🗞 🚽 📮				
	E3	•	<i>f</i> ≈ =4/3*∏l	1()*A3^3							
	A	В	С	D	E	F	G				
1	Сферичес	кое тело					Â				
2	Радиус (с	м)	Площадь	(см ²)	Объем (см	1 ³)					
3	1,24		4,831		7,9864		Ξ				
4											
5											
6											
7											
8											
9											
10	L						T				
	с ► н\ли	ст1) Лист	2 / Лист3 /		< [1	► La				
. Де	йствия 🔹 🗟	Автофи <u>г</u>	уры 🕶 🔨 🐪	100	🔺 🖪	🕭 - 🔳	; ⇒				
Гото	080				NU	M					

В электронных таблицах MS Excel большое количество встроенных функций. Приведем правила написания некоторых из них:

Математическая функция	Правила написания в MS Excel				
х (модуль)	ABS(x)				
arccos x	ACOS(x)				
$\arcsin x$	ASIN(x)				
arctg x	ATAN(x)				
$\cos x$	COS(x)				
$\sin x$	SIN(x)				
e ^x	EXP(x)				
$\ln x$	LN(x)				
$\lg x$	LOG10(<i>x</i>)				
tg x	TAN(x)				
радианы → градусы	ГРАДУСЫ(x)				
\sqrt{x}	KOPEHЬ(x)				
градусы → радианы	РАДИАНЫ(x)				
a ^x	CTEПEH $b(a; x)$				

Здесь *х* – адрес одной из ячеек таблицы или математическое выражение.

Кроме этого в электронных таблицах существует ряд функций, которые применяются сразу к нескольким ячейкам. Например, функция СУММ позволяет вычислить сумму значений, расположенных в нескольких ячейках одного столбца или строки. Функция СРЗНАЧ позволяет вычислить, соответственно, среднее значение по данным расположенным в нескольких ячейках одного столбца или строки.

X N	🕱 Microsoft Excel - Приложение									
	<u>Ф</u> айл <u>П</u>	равка <u>В</u> ид	Вст <u>а</u> вка	Фор <u>м</u> ат	С <u>е</u> рвис	<u>Д</u> анные <u>(</u>	<u>)</u> кно			
<u>Справка Adob</u> e PDF _ 🗗 🗙										
i 🗅 😂 🛃 🕹 🖓 💺 🛍 • 🔊 • 🗠 • 1 🛍 💦 🚼 🚼 🚼 🚼										
Ari	ial Cyr	•	• 10 •	ж К 🗏		a <	» - 🔋			
	B9	•	fx -							
	Α	В	С	D	E	F	G			
1		а (см)					<u> </u>			
2		1,52								
3		1,53					=			
4		1,51								
5		1,52								
6		1,54								
7		1,51								
8	Среднее з	начение:								
9										
10							-			
14 4	⊢ н ∖ли	ст1 / Лист2	2 Дист3 /	/	Image:	1	 Image: A main sector 			
і Де	йс <u>т</u> вия ▼ 🔓	Автофи	уры 🕶 🔨		🔺 🦪 🔅	🕭 - 🚍	tt *			
Гото)B0				NU	M				

Например, если данные, по которым необходимо вычислить среднее, расположены в столбце В, необходимо сначала выбрать (сделать активной) ячейку, которую предполагается В Ha результат. поместить рисунке среднее будем искомое значение располагать в ячейке В9.

Выберем в строке меню пункт «Вставка» и подпункт «Функция»

Каждой встроенной функции соответствует определенное количество полей, которые необходимо заполнить, чтобы функция работала правильно. Это происходит в окне «Аргументы функции», которое появляется после того, как Вы выбрали функцию.

Для функции СРЗНАЧ (в большинстве случаев) достаточно заполнить только одно поле «Число1» (рис. в). Справа от этого поля расположен элемент управления в виде цветного квадрата. Этот элемент позволяет непосредственно в таблице указать ячейки, к которым нужно применять данную функцию. После нажатия на этот элемент (цветной квадрат) окно «Аргументы функции» сворачивается до размеров поля «Число1», а данные в электронной таблице становятся хорошо видны. С помощью мыши охватите ячейки, по данным которых нужно вычислить среднее значение. Номера выбранных ячеек автоматически отобразятся в поле «Число1». Если выбраны ячейки В2, В3, ... В7, то в поле будет записано В2:В7 (рис. г).

После этого вновь нажмите на управляющий элемент в виде цветного квадрата, чтобы восстановить прежний вид окна «Аргументы функции», и нажмите кнопку «ОК» для завершения операции.

	🗷 Microsoft Excel - Приложение									
	<u>Ф</u> айл <u>П</u>	равка <u>В</u> ид	Вст	<u>а</u> вка	Фор <u>м</u> ат	C	<u>е</u> рвис	Данные	<u>О</u> кно	
<u>C</u>	<u>С</u> правка Ado <u>b</u> e PDF			Стр	о <u>к</u> и				- 6	×
10	E 🗃 🖬 🔒 🚳 🖌 🛛			Сто	л <u>б</u> цы				1 🔁 t	7 .
Ari	Arial Cyr 🗸			<u>Л</u> ис	т	199		ā 🔛 🗸	<u>ð</u> γ +	12
	B9 v ß			С <u>и</u> м	вол					
	A	В	f _x	<u>Ф</u> ун	кция		E	F	(G
1		а (см)		Имя	1	,				- 1
2		1,52		_	X					-
3		1,53			•				_	=
4		1,51				-				-11
0 6		1,52				-				_
7		1,54				-			_	- 11
8	Среднее з	1,51 Haueune:				-			_	-
9	ореднее з	and termic.				-			_	-
10		ů – – – – –							_	
14 4	с⊢н∖ли	ст1 / Лист2	λли	ст3/		•	1		•	L at
Де	йствия 🕶 🔓	Автофи <u>г</u> ур	ы -	1		A	। 🖪 🔅	🕗 - 🗉	∎₽	++ ₹
Гото	060						NU	IM		4

Аргументы функции				x					
СРЗНАЧ									
	Число1		💽 = число						
	Число2		💽 = число						
			=						
Возвращает среднее (арифия массивами или ссылками на я	Возвращает среднее (арифметическое) своих аргументов, которые могут быть числами или именами, массивами или ссылками на ячейки с числами.								
	Число1: число1;чи среднее.	кло2; от 1 до 30 аргу	ментов, для которых вычисляе	тся					
Справка по этой функции	Значение:		ОК Отмена						

Мастер фун	кций - шаг 1 из 2	? 💌						
Поиск функц	ии:							
Введите к выполнить	раткое описание действия, которое нужно », и нажмите кнопку "Найти"	<u>Н</u> айти						
<u>К</u> атегория:	Статистические	1						
Выберите фу	нкцию:							
PAHF POCT CKOC		*						
CPTAPM CPTEOM								
СРЗНАЧ СРЗНАЧА		Ŧ						
СРЗНАЧ(ч	исло1;число2;)							
Возвращает среднее (арифметическое) своих аргументов, которые могут быть числами или именами, массивами или ссылками на ячейки с числами.								
Справка по э	той функции ОК	Отмена						

ſ	🕱 Microsoft Excel - Приложение								
	▲ <u>Ф</u> айл	<u>П</u> равка	<u>В</u> ид	Вст <u>а</u> вка	Фор <u>м</u> ат	С <u>е</u> рвис	Данные	<u>О</u> кно	
	<u>С</u> правка	Ado <u>b</u> e PE	DF					_ 8 ×	
	i 🗅 🖻 🔒	26	X	à 🛍 - I	10 - (1	- (tů)		12 🔂 🚽	
н	ты функции								×
									

Í	Аргументы функции
	B2:B7

87									
		A	В	С	D	E	F	G	_
	1		а (см)						ŝ
	2		1,52						
	3		1,53						Ξ
	4		1,51						
	5		1,52						
	6		1,54						
	7		1,51						
	8	Среднее з	начение:						
	9		(B2:B7)						
	10								Ŧ
	H 4	с ► н∖ли	іст1 <u>/</u> Лист2	2) Лист3 /		Image:	1	•	
	Де	йс <u>т</u> вия т ⊳	Автофи <u>г</u>	уры 🕶 🔪		A 🕄	🅭 - 🔳	₽	** Ŧ
	Ука	жите				NU	M		

В результате в ячейке В9 появится посчитанное среднее, а в строке формул:

=CP3HA4(B2:B7)

💌 N	🕱 Microsoft Excel - Приложение										
	<u>Ф</u> айл <u>П</u>	равка <u>В</u> ид	Вст <u>а</u> вка	Фор <u>м</u> ат	С <u>е</u> рвис	<u>Д</u> анные <u>(</u>	<u>)</u> кно				
<u>C</u>	<u>С</u> правка Ado <u>b</u> e PDF _ & ×										
E D 😂 🖬 B I 🚳 I X 🖻 🛍 + I 🕫 + 🗠 + I 🛄 💦 🚼 🚼 🛃 📮											
Ari	ial Cyr	-	10 🔹	Ж К 🗏	= = =	🔤 🛄 🗸 🗸	» - 🔋				
	B9	▼ ;	fx =CP3H	A4(B2:B7)							
	Α	В	С	D	E	F	G				
1		а (см)					<u> </u>				
2		1,52									
3		1,53					=				
4		1,51									
5		1,52									
6		1,54									
7		1,51									
8	Среднее з	начение:									
9		1,522									
10							-				
4) н н∖ли	ст1 / Лист2	2 Лист3 /	/	Image:	11	 Image: A main and A				
Де	йс <u>т</u> вия 🕶 🔓	Автофи	уры 🕶 🔨	$\mathbf{V} \Box \mathbf{O}$	🔺 📣 🛟	🕭 - 🚍	tt:				
Гото	60				NU	M					

Чтобы получить тот же результат, можно написать этот же текст в строке формул (вручную).

Аналогично используют функцию СУММ, вычисляющую сумму значений, расположенных в нескольких ячейках. В отличие от функции СРЗНАЧ функция СУММ относится к категории «Математические».

X N	Aicrosoft Exc	cel - Прилож	ение									
	<u>Ф</u> айл <u>П</u>	равка <u>В</u> ид	Вст <u>а</u> вка	Фор <u>м</u> ат	С <u>е</u> рвис	<u>Д</u> анные <u>(</u>	<u>О</u> кно					
<u>C</u> r	<u>С</u> правка Ado <u>b</u> e PDF _ 🗗 🗙											
	ED 😂 🖬 🕒 I 🎒 I 🔏 🛍 + I 🤊 + 🗠 + I 🛄 🔡 🚼 🛣 🖕											
Ari	Arial Cyr • 10 • 🗶 🔏 📰 🔛 • 🖄 • 🦉											
	D9	▼ ;	fx =CYMN	I(D2:D8)								
	С	D	E	F	G	Н						
1		Количеств	о частиц									
2		2										
3		4					=					
4		12										
5		45										
6		31										
7		10										
8		Суммарно	е количетс	во частиц								
9		104										
10		L,	_				T					
H 4	▶ М\Ли	ст1 / Лист2	?_ \ Лист3 /		•		■ •					
Де	йс <u>т</u> вия ▼ 🕞	Автофи <u>г</u> у	/ры 🕶 🔨	100	🗠 🖪 😳	🕭 - 🔳	₽₽₽					
Гото	60				NU	M	4					

Функция КВАДРОТКЛ вычисляет сумму квадратов отклонений от среднего для указанного набора данных. Если в таблицу внесены данные, соответствующие измерениям некоторой величины *x*, то результат применения функции КВАДРОТКЛ к этим данным эквивалентен вычис

$$\sum_i (\tilde{x} - x_i)^2$$

где \tilde{x} – среднее арифметическое значение измеряемой величины. Данную функцию можно найти в категории «Статистические».

При обработке эксэкспериментальных данных необходимо учитывать коэффициенты статистических распределений.

В MS Excel имеется большое количество встроенных функций, позволяющих рассчитывать различные характеристики статистических распределений.

При расчетах погрешности экспериментальных результатов обычно применяют коэффициенты Стьюдента $t_{\alpha n}$. Встроенная функция СТЬЮДРАСПОБР позволяет получить нужные коэффициенты для заданного числа степеней свободы N и вероятности p:

=СТЬЮДРАСПОБР (p; N)

Если в расчетах погрешности используются экспериментальные данные n опытов, то число степеней свободы определяется как N = n - 1.

Если для данной серии опытов известна доверительная вероятность α , то вероятность $p = 1 - \alpha$.

Тогда коэффициент Стьюдента для *n* опытов при доверительной вероятности α в MS Excel можно рассчитать следующим образом:

=СТЬЮДРАСПОБР $(1 - \alpha; n - 1)$

Пример использования данной функции для 5 опытов при доверительной вероятности 0,95 (95%) приведен на рисунке. Функция может быть вызвана как для фиксированных значений =СТЬЮДРАСПОБР(1-0,95;5-1)

N	Microsoft Exc	el - Прилож	ение								
2	<u>Ф</u> айл <u>П</u>	равка <u>В</u> ид	Вст <u>а</u> вка	Фор <u>м</u> ат	С <u>е</u> рвис	<u>Д</u> анные <u>С</u>	<u>)</u> кно				
<u></u>	: <u>С</u> правка Ado <u>b</u> e PDF _ 🗗 ×										
	▋ 😂 🖬 👌 🖂 👗 🛍 + 🔊 + 🗠 → 🛍 📲 🦉 🛃										
Ar	ial Cyr	-	10 🗸	ж К 🗏	: = = :	🔤 🛄 🗸 🏅	🔊 - 📲				
	B10	•	∱ ∗ =СТЬЮ	ДРАСПОБ	P(1-0,95;5	-1)					
	A	В	С	D	E	F	G				
5 6 7 8 9 10 11 12 13 14	Коэффици n = α = t =	ент Стьюде 5 0,95 2,776	ента t								
: n-	Nerrow - N	Arratur					→ <u></u>				
: Де Гото	ово	Автофи <u>г</u>	уры • 🔪		NU	IM					

так и для значений, расположенных в ячейках таблицы. Если значение α хранится в ячейке B8, а значение *n* хранится в ячейке B7, тогда тот же результат можно получить, записав

=СТЬЮДРАСПОБР(1-В8;В7-1)

Пример расчета погрешности

Пусть в эксперименте измеряли линейные размеры параллелепипеда с целью определить его объем. Высота *h*, длина *a* и ширина *b* измерялись по 3 раза с помощью штангенциркуля с ценой деления нониуса 0,1 мм. В результате чего были получены следующие результаты [.]

п	а, мм	<i>b</i> , мм	<i>h</i> , мм
1	12,7	12,7	14,8
2	12,7	12,8	14,9
3	12,7	12,9	14,7

Расположим эти данные в электронной таблице MS Excel в столбцах A, B и C. Оставив место на поясняющие подписи, в ячейках A7, B7 и C7 вычислим соответствующие средние арифметические значения.

Для этого в ячейку A7 записываем=СРЗНАЧ(A2:A4) и протягиваем ее на ячейки B7 и C7 (рис. 30).

	Мicrosoft Excel - Пример ▲ Файл Правка Вид Вставка Формат Сервис Данные Окно Справка Adobe PDF										
	! D 😂 🖬 B 3 X B B B + 9 + 0 + ∰ 🔡 📑 🚼 😴 📮										
Ari	Arial Cyr - 10 - 🗶 K 🖉 🚍 🔤 - 🖄 - 🗛 - 🙄										
	A7 🗸	fx =	=СРЗНАЧ(/	A2:A4)							
	А	В	С	D	E	F 🕂					
1	а, мм	<i>b</i> , мм	<i>h</i> , мм								
2 12,7 12,7 14,8											
3	12,7	12,8	14,9			=					
4	12,7	12,9	14,7								
5	Средние знач	ения									
6	<a>		<h></h>								
7	12,70	12,80	14,80								
8											
9											
10	10										
н • ► н Лист1 Лист2 Лист3 / _ • ►											
і Дейс <u>т</u> вия • 😓 Автофи <u>г</u> уры • 🔪 🔌 🗆 🔿 🚵 🐗 🥲 • 🚍 🥰 🍟											
Гото	80	Сумм	ia=40,30		NUM						

Для расчета среднеквадратичного отклонения каждой из измеренных величин необходимо просуммировать квадраты разности между каждым измеренным значение и средним арифметическим. Например, для величины *а* нужно найти значение

$$\sum_{i=1}^3 (\widetilde{a} - a_i)^2 \,,$$

где *a_i* – это измеренные значения. Используем для этого встроенную функцию КВАДРОТКЛ. В ячейке А9 запишем : =КВАДРОТКЛ(А2:А4)

	Місгозоft Excel - Пример Файл Правка Вид Вставка Формат Сервис Данные Окно Справка Adobe PDF —										
	! D 💕 🖬 B ≝ X 🖻 🖻 - 🤊 - 🗠 - 🛄 💦 🚼 🚼 🛃 🖕										
Ari	al Cyr	- 10	- Ж	K 📄 🗐	• a •	• 🖄 • <u>A</u> ·	- 1				
	A9 🗸	fx =	=КВАДРОТ	ҠЛ(А2:А4)							
	A	В	С	D	E	F					
1	1 а, мм b, мм h, мм										
2 12,7 12,7 14,8											
3	12,7	12,8	14,9				Ξ				
4	12,7	12,9	14,7								
5	Средние знач	ения									
6	<a>		<h></h>								
7	12,70	12,80	14,80								
8				-							
9	0,0000	0,0200	0,0200	Сумма ква	адратов Σ						
10	0,0000	0,0577	0,0577	Среднеква	адратичное	отклонени	е 🚽				
н • • • • Лист1 Лист2 / Лист3 / • • • •											
🗄 Дейс <u>т</u> вия • 😓 Автофи <u>г</u> уры • 🔪 🕨 🔿 🚵 🗐 🖓 • 🚍 🚍 🔋											
Гото	B0	Суми	ıa=0,1555		NUM						

Среднеквадратичное отклонение вычисляется следующим образом:

$$\widetilde{\sigma}_{a} = \sqrt{\frac{1}{n \cdot (n-1)} \sum_{i=1}^{3} (\widetilde{a} - a_{i})^{2}} = \sqrt{\frac{1}{3 \cdot 2} \sum_{i=1}^{3} (\widetilde{a} - a_{i})^{2}}.$$

Так как сумма квадратов уже посчитана в ячейке А9, то для вычисления среднеквадратичного отклонения необходимо вычислить корень из значения А9 деленного на 6: =КОРЕНЬ(А9/6)

Запишем эту формулу в ячейку А10.

Выделив и протянув ячейки А9 и А10 вправо, получим сумму квадратов и среднеквадратичное отклонение для двух других измеренных в эксперименте величин.

	💌 Microsoft Excel - Пример										
<u>c</u>	Справка Adobe PDF _ В ×										
	! D 📽 🖬 B S S S S S S S S S										
Ar	i Arial Cyr • 10 • Ж 𝑘 ≡ ≡ 🔤 🔛 • 🖑 • 🗛 • 🙄										
	A9 🗸	fx =	=КВАДРОТ	ҠЛ(А2:А4)							
	A	В	С	D	E	F -					
1	a, mm	<i>b</i> , мм	<i>h</i> , мм			^					
2	12,7	12,7	14,8								
3	12,7	12,8	14,9			E					
4	12,7	12,9	14,7								
5	Средние знач	ения									
6	<a>		<h></h>								
7	12,70	12,80	14,80								
8											
9	0,0000	0,0200	0,0200	Сумма ква	адратов Σ						
10	10 0,0000 0,0577 0,0577 Среднеквадратичное отклонение -										
	♦ ▶ № <u>Лист1</u>	∖ Лист2 (Ј	Пист3 /			▶					
🗄 Дейс <u>т</u> вия • 😓 Автофи <u>г</u> уры • 🔪 🔪 🖸 🔿 🎦 🥰 🤹 🚆 🚆											
Гот	080	Сумм	ia=0,1555		NUM						

Далее необходимо рассчитать случайную погрешность, которая для величины *а* вычисляется по формуле

$$\Delta a_{CT} = t_{\alpha n} \cdot \widetilde{\sigma}_a$$
,

где $t_{\alpha n}$ – коэффициент Стьюдента. Для n = 3 (три измерения) и доверительной вероятности $\alpha = 0,95$ получим коэффициент Стьюдента в ячейке С12

=СТЬЮДРАСПОБР(1-0,95;3-1)

	Aicrosoft Exce	el - F	Пример					×		
🕙 <u>Ф</u> айл <u>П</u> равка <u>В</u> ид Вст <u>а</u> вка Фор <u>м</u> ат С <u>е</u> рвис <u>Д</u> анные <u>О</u> кно										
<u>Справка Adob</u> e PDF										
10	! D 💕 🖬 B ≝ X 🖻 🛍 - 🤊 - 🗠 - 🛄 🔡 🚼 🚼 🛃 🖕									
Ari	ial Cyr		- 10	- Ж	K ≣ ≡	• a •	- 🖄 - <u>A</u>	- 2		
	A13	•	fx =	=A10*C12						
	Α		В	С	D	E	F			
5	Средние зн	аче	ения							
6	<a>			<h></h>						
7	12,	70	12,80	14,80						
8								_		
9	0,00	00	0,0200	0,0200	Сумма ква	адратов Σ		-		
10	0,00	00	0,0577	0,0577	Среднеква	адратичное	отклонени	e		
11										
12				4,303	Коэффици	ент Стьюд	ента			
13	0,00	00	0,2484	0,2484	∆сл					
14								-		
4	🕞 н 🔪 Лис	π1)	Дист2/Л	1ист3 /	•		•			
і Действия • 👌 🛛 Автофигуры • 🔪 🔪 🗆 🔿 🖓 🖓 • 🚍 🥰 🭟										
Гото)B0		Сумм	ia=0,4968		NUM				

А в ячейках A13, B13, C13 рассчитаем случайные погрешности для величин a, b, h, соответственно :

							010	U 1 1		
	<mark>Лicrosoft Exco</mark> <u>Ф</u> айл <u>П</u> р правка Ad	el - I равк о <u>b</u> e	Пример а <u>В</u> ид Е PDF	Зст <u>а</u> вка Фо	ор <u>м</u> ат С <u>е</u> ј	овис Данн	ные <u>О</u> кно _ В	×		
i D										
Ari	al Cyr		- 10	- Ж	K ≣ ≣		• 🕭 • <u>A</u> •	-		
	A13	•	fx :	=A10*C12						
	А		В	С	D	E	F	-		
5	Средние зн	нач	ения							
6	<a>			<h></h>						
7	12	,70	12,80	14,80						
8								-		
9	0,00	000	0,0200	0,0200	Сумма ква	адратов Σ		=		
10	0,00	000	0,0577	0,0577	Среднеква	адратичное	отклонение	e		
11								_		
12				4,303	Коэффици	ент Стьюд	ента	_		
13	0,00	000	0,2484	0,2484	Δсл					
14								Ŧ		
H 4	🕞 н 🔪 Лис	ст1	∖Лист2 ∕Л	Лист3 /			4	зđ		
Де	йс <u>т</u> вия 🕶 🔓	A	втофи <u>г</u> уры	- \		🗐 🛟 🗳	<mark>} - ≡ </mark> ₹	*		
Гото	60		Сум	1a=0,4968		NUM				

=A10*C12 =B10*C12 =C10*C12

> В этом эксперименте все три величины a, b, h измерялись одним и тем же прибором – штангенциркулем с ценой деления нониуса d = 0,1 мм. Поэтому погрешность однократных измерений Δ_{ou} всех трех величин будет одинаковой и рассчитывается с учетом доверительной вероятности α = 0,95 как

$$\Delta_{OH} = d \cdot \alpha = 0.1 \cdot 0.95 = 0.095 \text{ (MM)}.$$

Данную величину нетрудно рассчитать в уме, но для большей наглядности также внесем эти вычисления в электронную таблицу: цену деления прибора d – в ячейку B14, доверительную вероятность α – в ячейку B15, а результат вычисления ошибки однократных измерений по формуле =B14*B15 – в ячейку C16.

X N	🛛 Microsoft Excel - Пример										
	🕙 <u>Ф</u> айл <u>П</u> равка <u>В</u> ид Вст <u>а</u> вка Фор <u>м</u> ат С <u>е</u> рвис <u>Д</u> анные <u>О</u> кно										
<u>Справка Adobe PDF</u>											
10	! D 💕 🖬 B (≝) X 🖻 🖻 - I 🤊 - (° - I 🏨 💦 🚼 🚼 🚼 🛃 .										
Ari	ial Cyr	- 10	- Ж	K 📰 🗏	+a+	• 🖄 • <u>A</u> • 関					
	A18 🔻	fx =	=КОРЕНЬ(/	A13^2+\$C1	6^2)						
	A B C D E F -										
11											
12			4,303	Коэффици	ент Стьюд	ента					
13	0,0000	0,2484	0,2484	∆ _{СЛ}							
14	d =	0,1	MM								
15	α =	0,95									
16			0,095	_{∆ои} Погре	шность од	нократных из					
17	∆a	Δb	Δh								
18	0,0950	0,2660	0,2660	Погрешно	ость измер	ений					
19											
20											
🗄 Действия 🔹 😓 Автофигуры 🔹 🔪 🗖 🔿 🏝 🥰 🙄											
Гото	080	Сумм	ia=0,6269		NUM						

Для каждой измеряемой величины необходимо рассчитать полную погрешность. Для величины *а* это следует сделать по формуле

$$\Delta a = \sqrt{\Delta a_{CJI}^2 + \Delta_{OII}^2} \; .$$

Запишем эту формулу в ячейку А18 в виде:

=КОРЕНЬ(А13^2+\$С16^2)

В ячейке С16, в которой расположена погрешность однократных измерений, зафиксируем номер строки и протянем вправо (по столбцам), чтобы получить погрешность Δb и Δh измерений двух других величин *b* и *h* (рисунок ниже).

	Microsoft Excel -	Пример				- • •					
3] <u>Ф</u> айл <u>П</u> равк	:а <u>В</u> ид В	Ст <u>а</u> вка Ф	ор <u>м</u> ат С <u>е</u> ј	рвис <u>Д</u> ані	ные <u>О</u> кно					
<u>Справка Adob</u> e PDF _ # ×											
	E 🖆 🖬 🔓 🖓 🖕 🕾 - 🔊 - 🗠 - 🛍 📲 🚼 😿 💂										
Ar	ial Cyr	- 10	- Ж	<i>K</i> = =		• 🖄 • <u>A</u> • 📳					
	A18 🔻	fx :	=КОРЕНЬ(A13^2+\$C1	6^2)						
	A	В	С	D	E	F -					
11											
12			4,303	Коэффици	ент Стьюд	ента					
13	0,0000	0,2484	0,2484	$\Delta_{\rm CЛ}$							
14	d =	0,1	MM								
15	α =	0,95									
16			0,095	_{∆ои} Погре	шность од	нократных из					
17	Δa	Δb	Δh			E					
18	0,0950	0,2660	0,2660	Погрешно	ость измер	ений					
19											
20 											
і Действия • 👌 Автофигуры • 🔪 🔪 🔿 🍋 拱 🗒 • 🚍 🚔 🍟											
Гото	080	Суми	ia=0,6269		NUM						

Искомый объем тела рассчитывают, используя средние значения \tilde{a} , \tilde{b} , \tilde{h} , каждой измеренной величины (в обозначениях, используемых на рисунках

$$\widetilde{a} = \langle a \rangle, \ \widetilde{b} = \langle b \rangle$$
 и $\widetilde{h} = \langle h \rangle$):
 $\langle V \rangle = \langle a \rangle \cdot \langle b \rangle \cdot \langle h \rangle.$

Запишем эту формулу в ячейку В20 в виде: =А7*В7*С7

Погрешность объема рассчитывается по формуле (как погрешность косвенных измерений, на предыдущем занятии разбирали):

$$\Delta V = < V > \sqrt{\left(\frac{\Delta a}{< a >}\right)^2 + \left(\frac{\Delta b}{< b >}\right)^2 + \left(\frac{\Delta h}{< b >}\right)^2}$$

Все необходимые для расчета по этой формуле значения расположены в таблице следующим образом: $\langle a \rangle$ – в ячейке A7, $\langle b \rangle$ – в ячейке B7, $\langle h \rangle$ – в ячейке C7, $\langle V \rangle$ – в ячейке B20, Δa – в ячейке A18, Δb – в ячейке B18, Δh – в ячейке C18. Поэтому в ячейку F20 запишем формулу для расчета погрешности объема в виде

=В20*КОРЕНЬ((А18/А7)^2+(В18/В7)^2+(С18/С7)^2)

Все необходимые для расчета по этой формуле значения расположены в таблице следующим образом: $\langle a \rangle$ – в ячейке А7, $\langle b \rangle$ – в ячейке В7, $\langle h \rangle$ – в ячейке С7, $\langle V \rangle$ – в ячейке В20, Δa – в ячейке А18, Δb – в ячейке В18, Δh – в ячейке С18. Поэтому в ячейку F20 запишем формулу для расчета погрешности объема в виде

5																
2	Microsoft Excel	- Пример					x		X N	/licrosoft Excel -	Пример					•
1	🕙 <u>Ф</u> айл <u>П</u> ра	вка <u>В</u> ид (Вст <u>а</u> вка Ф	ор <u>м</u> ат С <u>е</u>	рвис Дан	ные <u>О</u> кно			(P)	<u>Ф</u> айл <u>П</u> равк	а <u>В</u> ид В	Зст <u>а</u> вка Ф	ор <u>м</u> ат С <u>е</u>	рвис Дан	ные <u>О</u> кно)
	<u>С</u> правка Ado	<u>b</u> e PDF				_ 8	×		C	правка Ado <u>b</u> e	PDF					_ 8
1	🗋 💕 🔙 💪	🛃 👗 🖻	£ .		: 🗅	💕 🔒 👌 d	3 X 🗅	B - -)	- (* - 1	100%	- 28	12 12				
1	Arial Cyr	- 10	Ж	<i>K</i> = =		• 🖄 • <u>A</u>	- 1		Ari	al Cyr	- 10) – Ж	<i>K</i> = =		- 🕹 -	<u>A</u> -
	A13 - fx =A10*C12 F20 - fx =B20*KOPEHb((A18/A7)*2+(B18/B7)*2+(C18/C7)*2															
	A	В	С	D	E	F				А	В	С	D	E	F	e e
	5 Средние зна	ачения					_		13	0,0000	0,2484	0,2484	Δсл			
	6 <a>		<h></h>				-		14	d =	0,1	MM				
	7 12,7	70 12,80	14,80				_		15	α =	0,95					
	8		0.0000				=		16			0,095	∆ _{ОИ} Погре	шность од	нократных	измер
	9 0,000	0,0200	0,0200	Сумма кв	адратов Σ		_		17	Δa	Δb	Δh				
	10 0,000	0,0577	0,0577	Среднекв	адратичное	е отклонени	e		18	0,0950	0,2660	0,2660	Погрешн	ость измер	ений	
	12		1 202	Koodahuuu			- 1		19							
	12 0.000	0 0 2494	4,303	козффици	ент стьюд	CHId	-		20	Объем (мм ³):	2405,888		Погрешно	сть (мм ³):	68,499	
	13 0,000	0 0,2404	0,2404	4сл					21							
			Пист 3 /				Ť		22	▶ Ы Лист1		ПистЗ /	1			- F [
			////CI3/		41 21 1 9						A MICT Z A	nucro y		4 9 5		
1	Дейс <u>т</u> вия ▼ 😽	Автофи <u>г</u> уры			- 41 83 S	<mark>∛ = ≑</mark>	Ŧ		: Де	йс <u>т</u> вия ▼ 😽 А	втофи <u>г</u> уры	$\cdot \land \times$		4 🕄 📓	🕗 ד 💳	₩
Г	отово	Сум	ма=0,4968		NUM				Гото	в0				NUN	1	

Относительная погрешность (в процентах):

$$\delta = \frac{\Delta V}{\langle V \rangle} \cdot 100\% \,.$$

Эту формулу запишем в ячейку F21 в виде: =F20/B20*100

8	🛛 Microsoft Excel - Пример 📃 📼 💌										
N.	🕙 <u>Ф</u> айл <u>П</u> равка <u>В</u> ид Вст <u>а</u> вка Фор <u>м</u> ат С <u>е</u> рвис <u>Д</u> анные <u>О</u> кно										
1	<u>Справка Adobe PDF</u>										
	🗄 🗋 🗃 🔒 🖓 🖓 🖻 🛍 - 🔊 - 🗠 - 🏨 100% 🛛 - 🚆 🔂 😿 🖕										
4	Arial Cyr - 10 - X K ≡ ≡ ≡ ⊡ - 🏷 - A - 🦉										
	F21 ▼ fx =F20/B20*100										
	A		В	С	D	E	F	C _			
16 0,095 Дои Погрешность однократных измер											
1	7 ∆a		Δb	Δh							
10	3 0),0950	0,2660	0,2660	Погрешно	ость измер	ений				
19	9	. 2.				. 2.					
20	Объем	(мм°):	2405,888	_	Погрешно	сть (мм°):	68,499				
2	1			Относит	ельная пог	решность:	2,85	<u>%</u>			
24	2		V -	2410		70	3	=			
2	1		v –	2410	<u> </u>	70	мм				
2	5							-			
H	н • → н Лист1 Лист2 /Лист3 / · · · · · · · ·										
i A	🗄 Дейс <u>т</u> вия • 🔓 Автофи <u>г</u> уры • 🔪 🔌 🖂 🔍 🍋 🖂 🕌 🥥 • 🚍 🧮 🥊										
Го	тово					NUM	1				

Согласно результатам вычислений окончательный результат необходимо округлить до десятков (до первой значащей цифры в погрешности) и записать в виде:

 $V = (2410 \pm 70) \text{ mm}^{3.}$

Это также можно выполнить в электронной таблице MS Excel с помощью встроенной функции ОКРУГЛ(число;порядок), использование которой нетрудно освоить самостоятельно.

× N	📧 Microsoft Excel - Пример 📃 📼 💌									
Файл Правка Вид Вставка Формат Сервис Данные Окно										
: <u>C</u> r	: <u>С</u> правка Ado <u>b</u> e PDF _ = = ×									
🗄 🗃 🛃 🛃 👗 🖆 🛍 - 🔊 - 🗠 - 🏙 100% 🛛 - 🚆 🔂 🔂 🚽										
Ari	[Arial Cyr • 10 • Ж 𝒦 ≡ ≡ ⊒ 🔤 🗄 • 🆄 • 🛓 • 🦉									
	F21 🔻	fx =	=F20/B20*1	00						
	A	В	С	D	E	F				
16			0,095	∆ _{ОИ} Погре	шность од	нократных	измер			
17	Δa	Δb	Δh							
18	0,0950	0,2660	0,2660	Погрешно	ость измер	ений				
19										
20	Объем (мм ³):	2405,888		Погрешно	сть (мм ³):	68,499				
21			Относит	ельная пог	решность:	2,85	%			
22							-			
23		V =	2410	±	70	MM ³	-			
24										
25	► Ы\ Пист1		1ист3 /	4						
		~,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			4 2 5					
: Де	йс <u>т</u> вия ▼ ↓	втофи <u>г</u> уры	- \ \		4 3 8	<u></u> =	ŧ.			
Гото)B0				NUM	1				

Построение графических зависимостей

В MS Excel существует встроенный мастер диаграмм, который позволяет не только строить диаграммы и графики различных видов, но и выполнять сглаживание экспериментальных результатов.

Рассмотрим построение графика с помощью MS Excel на примере зависимости координат тела при прямолинейном движении на плоскости y = f(x). Пусть в эксперименте выполнялись измерения координат тела x и y в различные моменты времени t. Результаты измерений представлены в следующей таблице:

х, м	0,4	1,5	2,5	3,5	4,6	5,5	6,5	7,5	8,4	9,5	10,7	11,7	13	13,5
у, м	3,5	4,1	4,9	5,3	5,3	6,4	7,2	7,5	7,9	8,9	9,1	10,6	11	11,1

В этом примере используются те же данные, что и при описании метода средней, метода наименьших квадратов и графического метода.

Поместим эти данные во вторую и третью строки электронной таблицы. Выделите (с помощью мыши или клавиатуры) ячейки, в которых расположены значения: B2, C2, ... O2, B3, C3, ... O3 (B2:O3).

N	/licrosoft	Excel - I	Книга1													x
	<u>Ф</u> айл	<u>П</u> равк	а <u>В</u> ид	Вст <u>а</u> в	ка Фо	р <u>м</u> ат	С <u>е</u> рвис	Даннь	ые <u>О</u> кі	но <u>С</u> п	равка	Ado <u>b</u> e F	PDF		- 8	×
: 🗅	💕 🔒		161	🔔 🍣	iii)	6 🖻 🛛	🔁 - 🏈	10 -	0	🧕 Σ	- A↓	1009	6 -	?	2	5
Ari	al		•	10 -	ж	KЦ	E	1	9	% 000	6,0 ,00 ,00 →,0	лін лін Мастер	і ——— Лиаграм	л. им – 4	<u>-</u>	
	B2	-	;	fx 0,4												
	A	В	С	D	E	F	G	Н	1	J	K	L	M	N	0	
1																T_
2	Х, М	0,4	1,5	2,5	3,5	4,6	5,5	6,5	7,5	8,4	9,5	10,7	11,7	13	13,5	
3	у, м	3,5	4,1	4,9	5,3	5,3	6,4	7,2	7,5	7,9	8,9	9,1	10,6	11	11,1	Ţ.
4																- -
H 4	► ► ►	Лист1	Дист2	2 / Лист3	3/					•		III			•	
Де	йс <u>т</u> вия ▼	∂	втофи <u>г</u> у	/ры • 🚿	× E		A 🦪	(† <u>8</u>	🔏 🖄	• 🚄 •	<u>A</u> -	=	₫ 🛢	-		
Гото	в0								Сум	na=201,€	5		NUM			

После нажатия на кнопку «Мастер диаграмм» появится окно «Мастер диаграмм: тип диаграммы» (рис. а), в котором выберем тип диаграммы «Точечная» как показано на рисунке. Этот тип диаграммы позволяет откладывать по обеим осям различные данные. Тип «График» позволяет задавать значения только по вертикальной оси, поэтому редко подходит для отображения результатов эксперимента. Для каждого типа диаграммы существует несколько видов. В нашем примере будет использован вид (рис. а), при котором точки графика не соединяются между собой. Нажмем кнопку «Далее».

Появится окно «Мастер диаграмм: источник данных диаграммы» (рис. б). В этом окне на вкладке «Ряд» можно регулировать, из каких строк и столбцов будут использоваться данные для построения графика.

Так как перед вызовом мастера диаграмм мы выделили область таблицы, где расположены необходимые для построения диаграммы данные, то в поле «Диапазон» автоматически указаны номера выбранных нами ячеек, а в верхней части окна показан предварительный вид будущей диаграммы. Если данные отображаются неправильно, можно перейти на вкладку «Ряд» и отрегулировать расположение данных. В нашем случае данные отображаются правильно, поэтому нажмем кнопку «Далее».

Появится новое окно – «Мастер диаграмм: параметры диаграммы» (рис. в). Здесь можно задать подписи осей и всей диаграммы, отрегулировать расположение легенды, линий сетки и т.д.

Г

Рассмотрим типичные дополнительные настройки.

1. Если график нужно будет распечатывать, лучше *изменить* серую *заливку фона диаграммы* на белую. Для этого на сером поле (где нет ни линий сетки, ни точек) щелкнем правой клавишей мыши для вызова контекстного меню, в котором выберем пункт «Формат области построения».

Появится окно, в котором вместо серого цвета заливки следует выбрать белый. В этом же окне при необходимости можно настроить и цвет рамки области построения. 2. Диапазон значений, откладываемых по осям на графике по умолчанию всегда шире, чем те данные, по которым он построен. *Изменим шкалу* горизонтальной оси. Для этого на одной из цифр, подписанных вдоль горизонтальной оси, щелкнем правой клавишей мыши для вызова контекстного меню, в котором выберем пункт «Формат оси» (рис. а).

Появится окно «Формат оси» (рис. б).

На вкладке «Шкала» в поля «Минимальное значение» и «Максимальное значение» вместо значений 0 и 15 введите 0 и 14 соответственно, а значение поля «Цена основных делений» задайте равным 2. Нажмите кнопку «ОК».

Аналогично для вертикальной оси задайте минимальное значение 2, максимальное 12, а цену основных делений 2. В результате получится график в виде, изображенном

на рисунке.

🛛 Microsof	t Excel - K	(нига1													×
📳 <u>Ф</u> айл	<u>П</u> равка	а <u>В</u> ид	Вст <u>а</u> в	ка Фо	р <u>м</u> ат	С <u>е</u> рвис	<u>Ди</u> агр	амма	<u>О</u> кно	<u>С</u> правк	a Ado	<u>b</u> e PDF		- 8	×
i 🗋 💕 🖬	I 🖪 🔒	161	à 🍣	iii }		<u>B</u> - 🚿	19 -	(21 - [🧕 Σ	- A↓	11	-	0	2	5
Arial Cyr		-	20 •	ж	КЦ				% 000 1	⊱,0 ,00 ,00 ⇒,0	<	-	🖏 + 🛓	<u> </u>	
Область ди	a 🔻	1	£.												
A	В	С	D	E	F	G	Н		J	K	L	M	N	0	
1 2 × M	04	15	2.5	3.5	46	5.5	6.5	7.5	84	9.5	10.7	117	13	13.5	•
3 у, м	3,5	4,1	4,9	5,3	5,3	6,4	7,2	7,5	7,9	8,9	9,1	10,6	11	11,1	1
4															
5	40														-
7	12														-
8												•	•	•	_
9	10													_	-
11										•	•				-
12	0									·					_
13	ΣΟ							+	•						. =
15															-
16	~ 6	+					•		_					' '	
17				•	•	+									-
19	1		•												-
20	4	•													-
21	_														-
22	2	+													-
24		~					~		•		~	40			-
25		0	2	2	4		٥,	м	8	1	0	12		14	-
20								, w							-
28	Лист1	ЛистЭ	Пист	3/					4					•	
. Лействия		втофири				AE A	°• 0	_ 	·	А	_	≓ ∎			
Готово		οτοφι <u>η</u> γ	100				o# 🙆								
101000												NOM			H

3. *Построение сглаживающей кривой*. Для этого щелкнем правой клавишей мыши на одной из точек графика, в появившемся контекстовом меню выберем пункт «Добавить линию тренда» (рис. а). Появится окно «Линия тренда» (рис. б).

Здесь можно настроить тип и параметры сглаживающей кривой. Доступны шесть типов сглаживания. В эксперименте, результаты которого обрабатываются в данном примере, изучалось прямолинейное движение тела на плоскости, поэтому зависимость y = f(x) должна носить линейный характер. Выберем тип линии тренда «Линейная».

Линия тренда		
Тип Параметры		
построение линии тр	енда (аппроксимация	и сглаживание)
; pitter.	i interes.	Степень:
<u>Л</u> инейная	Ло <u>г</u> арифмическая	Полиномиальная
جمنین	المنبية	Точки:
С <u>т</u> епенная	<u>Э</u> кспоненциальная	Линейная <u>ф</u> ильтрация
Построен на ряде:		
Ряд1	*	
	-	
		ОК Отмена

На вкладке «Параметры» отметьте «галочкой» поле «Показать уравнение на диаграмме» и нажмем кнопку «ОК».

Линия тренда 💽
Тип Параметры
Название аппроксимирующей (сглаженной) кривой
ОК Отмена

Коэффициенты сглаживающей прямой (линии тренда) рассчитываются по методу наименьших квадратов.

Получим график в виде, представленном на рисунке:

