лабораторная работа 0 - 14

ОПРЕДЕЛЕНИЕ ТЕПЛОЕМКОСТИ МЕТАЛЛОВ

Цель работы: определение значений теплоемкости для алюминия, железа и меди. Проверка справедливости закона Дюлонга-Пти.

Приборы и принадлежности: Калориметр (500 мл), металлические тела (алюминий, латунь, железо), стальной резервуар, барометр, ртутный термометр, секундомер, весы, стеклянные мерные колбы, стеклянные шарики, нагревательная плитка

ТЕОРЕТИЧЕСКОЕ ВВЕДЕНИЕ

Понятие теплоемкости

Теплоемкостью тела C называют отношение количества сообщаемой ему теплоты к соответствующему изменению температуры тела:

$$C = \frac{dQ}{dT} \tag{1}$$

Теплоемкость, отнесенная к единице массы вещества, называется удельной теплоемкостью.

$$c = \frac{dQ}{mdT} \tag{2}$$

Теплоемкость, отнесенная к одному молю вещества, называется молярной теплоемкостью.

$$C = \frac{dQ}{vdT} \tag{3}$$

Между удельной и молярной теплоемкостями одного и того же вещества существует соотношение

$$C = cM, (4)$$

где M – молярная масса вещества (определяется по таблице Менделеева).

Величина теплоемкости зависит от условий, при которых происходит нагревание тела. Различают теплоемкость при постоянном объеме C_V и теплоемкость при постоянном давлении C_P . При нагревании тела при

постоянном объеме все тепло идет на приращение его внутренней энергии, тогда как при нагревании при постоянном давлении часть тепла идет ещё и на совершение работы расширения тела. Таким образом, C_P всегда больше C_V и связаны они друг с другом формулой Майера:

$$C_P = C_V + R \tag{5}$$

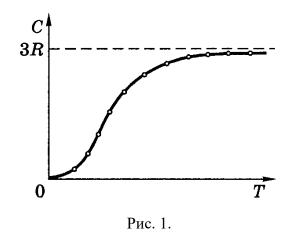
Но эта формула справедлива лишь для газов. В случае твердых тел изменение объема является настолько маленьким, что можно считать

$$C_P \approx C_V$$
 (6)

Классическая модель теплоемкости твердых тел

Твердое тело рассматривается как система колеблющихся частиц (узлов кристаллической решётки) в трех взаимно перпендикулярных направлениях. При подводе тепла к телу, оно расходуется на увеличение энергии колебаний частиц. Каждая частица в кристалле обладает тремя колебательными степенями свободы. На каждую степень свободы приходится энергия kT (kT/2 в виде кинетической энергии и kT/2 в виде потенциальной энергии). Таким образом, на каждую частицу приходится в среднем энергия 3kT. Энергия одного моля вещества равна:

$$U = N_A 3kT = 3RT \tag{7}$$


Отсюда молярная теплоемкость

$$C = 3R \tag{8}$$

Т.е., теплоемкость моля тел в кристаллическом состоянии одинакова и равна 3R. Это утверждение является **законом Дюлонга и Пти**. Этот закон хорошо выполняется при высоких температурах, у большинства тел уже при комнатной температуре. При низких температурах теплоемкость тел убывает по закону

$$C \propto T^3$$
 (9)

Зависимость показана на рис. 1.

Модель Эйнштейна

Трудности, на которые натолкнулась классическая теория в вопросе о теплоемкости твердых тел, устранила квантовая теория. Эта теория была разработана Эйнштейном. В этой модели кристалл рассматривается как система, состоящая из N атомов, каждый из которых является квантовым гармоническим осциллятором. При этом предполагается, что атомы колеблются с одинаковой частотой и независимо друг от друга.

Энергия, приходящаяся на одну степень свобода атома равна:

$$\varepsilon = h \mathbf{v} n,$$
 (10)

где ν — частота колебаний атома, h —постоянная Планка, равная $6,62\cdot10^{-10}$ 34Дж·сек, n — любое целое число.

Число осцилляторов с различной энергией определяется <u>распределением</u> <u>Больцмана</u>.

$$N = A \exp\left(-\frac{\varepsilon}{kT}\right),\tag{11}$$

где A — нормировочный коэффициент.

Исходя из этого, можно определить среднее значение энергии частицы.

$$\overline{\varepsilon} = \frac{h\nu}{2} + \frac{h\nu}{e^{\frac{h\nu}{kT}} - 1},\tag{12}$$

 $\frac{hv}{2}$ – **нулевая энергия осциллятора**. Она не зависит от температуры и не имеет отношения к тепловому движению. Поэтому ей можно пренебречь и тогда внутренняя энергия одного моля будет равна:

$$U = 3N_A \frac{h\nu}{\frac{h\nu}{e^{\overline{kT}} - 1}} \tag{13}$$

На основании (8) и (13) молярная теплоёмкость кристаллической решетки равна:

$$C = \frac{dU}{dT} = 3N_A k \frac{\left(\frac{h\nu}{kT}\right)^2 e^{\frac{h\nu}{kT}}}{\left(e^{\frac{h\nu}{kT}} - 1\right)^2}$$
(14)

Это выражение называется формулой Эйнштейна.

При больших температурах она переходит в закон Дюлонга и Пти, а при $T \rightarrow 0$ и теплоёмкость стремится к нулю, в полном соответствии с опытом.

Температурная зависимость теплоёмкости, вычисленная из теории Эйнштейна, в целом близка к экспериментально наблюдаемой, и только при низких температурах появляются незначительные расхождения между теорией и опытом. Эти расхождения объясняются произвольностью допущения, что все колебания молекул твёрдого тела совершаются с одинаковой частотой v.

Модель Дебая

Дебай, Эйнштейна, сохранив основную идею существенно усовершенствовал теорию теплоемкости. В модели Дебая кристаллическая решетка рассматривается как связанная система взаимодействующих атомов. Колебания такой системы являются результатом наложения гармонических колебаний с различными частотами. Под гармоническим осциллятором той или иной частоты теперь надо понимать колебания не отдельного атома, а всей системы в целом. То есть в твёрдом теле существует целый набор частот колебаний, называемым спектром. Колебания в данном случае являются упругими колебаниями, ответственными за распространение звука в твёрдом теле, а скорость звука о в этой среде равна

$$\upsilon = \sqrt{\frac{E}{\rho}},$$

где E – модуль Юнга, ρ – плотность твердого тела.

Задача сводится к нахождению спектра частот этих осцилляторов. Это достаточно сложно. Дебай упростил задачу. Он обратил внимание на то, что при низких температурах основной вклад в теплоемкость вносят колебания (осцилляторы) низких частот, которым соответствуют малые кванты энергии hv. Практически только такие колебания и возбуждены при низких температурах.

В квантовой теории энергию звуковых колебаний hv рассматривают как особые частицы (квазичастицы) фононы. Число возможных частот колебаний бесконечно велико. Число же атомов в твёрдом теле хотя и очень велико, но конечно (порядка 10^{22} в 1 см³). Поэтому необходимо принять, как это сделал Дебай, что в твёрдом теле спектр колебаний ограничен некоторой максимальной частотой v_m . Из теории Дебая следует, что, начиная с некоторой температуры Θ , которую называют характеристической температурой Дебая или температурой Дебая, теплоёмкость начинает быстро убывать с понижением температуры. Это та температура, при которой энергия тепловых движений $k\Theta$ становится равной максимальной энергии осцилляторов:

$$k\Theta = h\nu_m$$

отсюда можно определить температуру Дебая

$$\Theta = \frac{h\nu_m}{k} \tag{16}$$

При температурах значительно меньших Θ , теплоёмкость убывает пропорционально третьей степени температуры (закон T^3), при температурах больших Θ теплоемкость стремится к значению 3R, что соответствует опытным данным.

Температура Дебая Θ может считаться границей между высокими и низкими температурами, причем не только для теплоемкости. Эта граница для каждого твердого тела определяет область температур, где становится существенным квантование энергии.

С точки зрения квантовой теории теплоёмкости тот факт, что некоторые вещества (алмаз, кремний, бор и др.) не подчиняются закону Дюлонга и Пти

даже при комнатных температурах, объясняется именно тем, что у этих веществ характеристическая температура Дебая настолько высока, что комнатная температура должна считаться низкой. Например, в случае алмаза характеристическая температура оказывается равной 2000°С.

Измерение теплоёмкости и её температурного хода играют большую роль в исследовании твёрдых тел. Это связано с тем, что теплоёмкость непосредственно определяется колебаниями атомов в кристаллической решётке. Характер этих колебаний должен зависеть от структуры решётки, от её симметрии, и т.д. Из-за этого во многих случаях превращения, которые могут происходить в веществе, сопровождаются различными аномалиями теплоёмкости.

В частности, фазовые переходы второго рода, при которых скрытая теплота перехода не выделяется (и не поглощается), сопровождаются скачком теплоёмкости, разрывом в её монотонном изменении с температурой. Исследуя температурный ход теплоёмкости, можно обнаружить такие превращения.

МЕТОДИКА ОПРЕДЕЛЕНИЯ ТЕПЛОЕМКОСТИ МЕТАЛЛОВ

Из определения теплоемкости следует, что для её определения нужно подвести к исследуемому образцу точно измеренное количество теплоты и измерить последовавшее за этим изменение температуры, обусловленное изменением внутренней энергии тела (процесс теплообмена). В данном случае можно записать уравнение теплового баланса:

$$\sum Q_{0} = \sum Q_{\Pi} \tag{17}$$

Т.е., суммарное количество теплоты Q_o , отданное при теплообмене всеми охлаждаемыми телами замкнутой системы, равно сумме количеств теплоты, полученных всеми нагревающимися телами Q_n .

Для исследования тепловых процессов применяются калориметры. В работе используется простейший калориметр, состоящий из двух

металлических сосудов, вставленных один в другой и разделенных воздушным промежутком. Внутренние стороны сосудов зеркальные. Таким образом, потери внутренней энергии сводятся к минимуму.

Предварительно нагретые в кипящей воде металлические образцы помещаются в калориметр, наполненный водой известной температуры. В процессе теплообмена калориметр и вода, находящаяся в нем получают теплоту, а металлические образцы ее отдают. Спустя некоторое время устанавливается тепловое равновесие. Изменения температуры воды в калориметре с течением времени фиксируются, и по полученным результатам строится график зависимости (рис. 2), по которому определяется конечная температура.

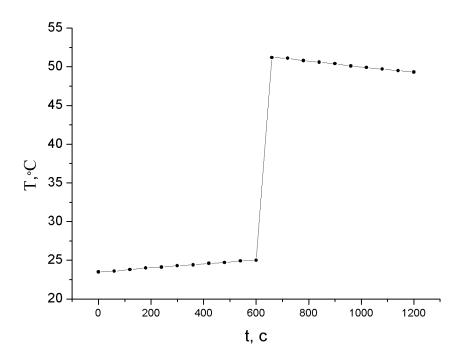


Рис.2. Примерный вид зависимости температуры воды в калориметре от времени.

Используя уравнения (2) и (17) легко получить выражение для расчета значения удельной теплоемкости исследуемого металла:

$$c_2 = \frac{(c_1 m_1 + C)(T_{\rm rp} - T_1)}{m_2 (T_2 - T_{\rm rp})},\tag{18}$$

где С- теплоемкость калориметра, равная 66 Дж/К;

 c_1 — удельная теплоемкость воды, приблизительно равная значению 4,2 кДж/ (кг·К);

 m_1 – масса воды в калориметре;

m₂ – масса металлических образцов;

 T_1 – температура воды до погружения металлического образца;

 T_2 — температура воды, в которой находились металлические образцы до погружения в калориметр;

 $T_{\text{тр}}$ — температура воды в калориметре после установления теплового равновесия.

Таблица 1. Зависимость температуры кипения воды от давления

Р, кПа	t _k ,°C	Р, кПа	t _k ,°C	Р, кПа	t _k ,°C
0,981	6,698	78,45	92,99	588,4	158,08
1,961	17,20	88,26	96,18	686,5	164,17
3,923	28,64	98,07	99,09	784,5	169,61
9,807	45,45	101,3	100,00	882,6	174,53
19,61	59,67	147,1	110,79	980,7	179,04
29,42	68,68	196,1	119,62	1961	211,38
39,23	75,42	245,2	126,79	2452	222,90
49,03	80,86	294,2	132,88	4903	262,70
58,84	85,45	392,3	142,92	9807	309,53
68,65	89,45	490,3	151,11		

ОПИСАНИЕ ЭКСПЕРИМЕНТАЛЬНОЙ УСТАНОВКИ

Экспериментальная установка представлена на рис. 3. Установка состоит из калориметра 1, погружаемого в него ртутного термометра 2, нагревательной плитки 3, стального резервуара с водой4, весов5 и непосредственно металлических тел6, теплоемкости которых необходимо измерить.

На дно стального резервуара помещается слой стеклянных шариков, чтобы при нагревании металлические тела не соприкасались с дном резервуара. Также для выполнения измерений понадобятся мерный стакан и секундомер.

Рис.3. Схема установки для проведения измерений по определению удельной теплоемкости металлов

РЕКОМЕНДАЦИИ ПО ВЫПОЛНЕНИЮ РАБОТЫ

1. Массы металлических тел: $m_{Al} = 60 \ \Gamma, \ m_{cmaлb} = 60 \ \Gamma, \ m_{латунb} = 60 \ \Gamma$

Таблица 2

	m_2	P	T_2	V_e	m_1	T_1	T_{mp}
Алюминий							
Латунь							
Сталь							

2. На дно стального резервуара насыпьте слой стеклянных шариков, толщиной 1–2см и заполните его водой, примерно на две трети. Поставьте резервуар на нагревательную плитку и доведите воду до кипения.

- 3. С помощью барометра определите атмосферное давление и с помощью таблицы 1 определите температуру кипения воды (T_2) , данные занесите в таблицу 2.
- 4. Заполните калориметр холодной водой известного объема (200-300 мл). Рассчитайте массу воды в калориметре (m_1) , данные занесите в таблицу 2.
- 5. В кипящую воду на 10 мин. погрузите одно из металлических тел.
- 6. В калориметр погрузите термометр, и проведите измерения температуры через каждые 20-30 секунд в течение 2-3 мин. Данные занесите в таблицу 3.

Таблица 3

Алюминий	t, c					
	T,°C					
Латунь	t, c					
	T,°C					
Сталь	t, c					
	T,°C					

- 7. Осторожно выньте металлическое тело из резервуара с кипящей водой, быстро просушите и поместите его в калориметр. Продолжайте проводить измерения температуры воды в калориметре через каждые 20-30 секунд, до тех пор, пока температура не перестанет меняться (до установления теплового равновесия), тщательно перемешивая воду в калориметре. Данные продолжайте заносить в таблицу 3.
- 8. Пункты 4-7 повторите с двумя другими металлическими телами.

ОБРАБОТКА РЕЗУЛЬТАТОВ ИЗМЕРЕНИЙ

1. По данным таблицы 3 постойте графики зависимости температуры воды в калориметре от времени для каждого металла. Из графиков определите температуру воды до погружения в неё металлического тела (T_I) и температуру после установления теплового равновесия (T_{mp}) для каждого из трех случаев. Данные занесите в таблицу 2.

- 2. По данным таблицы 1, используя формулы (18) вычислить значения удельной теплоемкостей для каждого металла. Используя формулу (4) вычислить значения молярной теплоемкости алюминия и латуни.
- 3. Сравните полученные значения теплоемкостей для алюминия, железа и латуни с табличными значениями. Используя табличные значения, определите относительную погрешность измерений теплоемкостей исследованных металлов.

ВОПРОСЫ ДЛЯ САМОСТОЯТЕЛЬНОЙ И ИНДИВИДУАЛЬНОЙ РАБОТЫ

- 1. Что такое теплоемкость тела? Удельная и молярная теплоемкости, как они связаны между собой?
- 2. Как связаны между собой молярные теплоемкости при постоянном давлении и постоянном объеме.
- 3. В каких случаях формула Майера не справедлива.
- 4. Приведите основные положения классической теории теплоемкости твердых тел?
- 5. Выведите формулу для расчета молярной теплоемкости твердого тела при постоянном объеме.
- 6. В чем главное отличие теплоемкости жидких и твердых тел от теплоемкости газов?
- 7. Сформулируйте закон Дюлонга и Пти?
- 8. В чем заключаются трудности классической теории теплоемкости твердых тел?
- 9. Сформулируйте основные предпосылки теории Эйнштейна для теплоемкости твердых тел?
- 10. Выведите формулу Эйнштейна для определения молярной теплоемкости твердых тел.
- 11. Какие недостатки присутствуют в модели Эйнштейна для теплоемкости твердых тел?
- 12. В чем заключаются основные идеи теории теплоемкости Дебая?

- 13. Какая температура называется характеристической температурой Дебая?
- 14. Объясните причину отклонений от закона Дюлонга и Пти для некоторых веществ, таких как алмаз или бор?
- 15. Какие температуры относят к высоким, а какие к низким при исследовании теплоёмкости твёрдых тел?
- 16. Как изменяется удельная теплоемкость металлов с повышением температуры?
- 17. Выведите рабочую формулу (18) для определения удельной теплоемкости металлов.
- 18. Объясните, почему в опыте необходимо исключить соприкосновение при нагревании металлических образцов с дном резервуара?
- 19. Погрешность измерений каких параметров вносит наибольший вклад в точность определения удельной теплоемкости предложенным способом.
- 20. Из какого металла целесообразнее изготавливать радиаторы?
- 21. Какова роль в природе большой удельной теплоемкости воды?
- 22. Какое количество теплоты необходимо передать, чтобы повысить температуру медной детали массой 2 кг на 3°С?
- 23. Почему нельзя вскипятить ведро воды на спиртовке?
- 24. Алюминиевую и серебряную ложки одинаковой массы и температуры опустили в кипяток. Равное ли количество теплоты получат они от воды?
- 25. На что больше расходуется энергии: на нагревание чугунного горшка или воды, налитой в него, если их массы одинаковы?