Tutorial Workshop Solution 1.11.2014

Problems and Exercises - Object-Oriented Design: Principles
1. Describe in your own words how an object-oriented program works.

As per Figure 10-1, view objects (windows) receive inputs, and send and receive data via messages to business layer objects. As required, business objects send and receive data to database access objects, which retrieve and update the database. The basic approach is that an object-oriented program is a set of interacting objects that get work done sending messages and requesting services from each other.

2. What is instantiation?

It is the process of creating and new “instance” of an object using the template provided by the class definition.

3. List the models that are used for object-oriented systems design.

The primary UML models are component diagrams deployment diagrams, design class diagrams, Interaction diagrams (sequence diagrams and communication diagrams), state machine diagrams, and package diagrams. Although not a UML model, CRC cards can also be considered a model.

4. What UML diagram is used to model architectural design?

Component diagrams can be used to model architectural design.

5. Explain how domain classes are different from design classes.

Domain classes usually contain the class name and a list of attributes. Design classes extend domain classes by type casting the attributes, identifying keys, identifying initial values. Design classes also include method signatures with return type and passed parameters.

6. What is an enterprise-level system? Why is it an important consideration in design?

An enterprise-level system is one which is used by multiple people or groups and has common resources that must be shared by all users. Designing an enterprise-level system requires considerations about the network and how these common resources will be made available to all users. Hence designing an enterprise-level system requires a broader view of the system and how it will fit into the organization.

7. What are some of the differences between a client-server network system and an Internet system?

There are three primary differences identified in the chapter (Figure 10-3).

· State – or the ability of the system (both clients and server) to remember what was the last activity and know what to do next. Client-server systems have state, particularly remembering the last connection activity, where Internet system is stateless and the server does not remember what each client was doing.

· Screens and reports – a client-server has its screens directly programmed, while an Internet system depends on a browser to display and present the screens. “Active screens” which do things dynamically on Internet system must also use browser accepted programming languages, where client-server can program the screens directly in any desired language.

· Server configuration – client-server systems are connected directly where an Internet system uses the services of an Internet server.

8. What is an API? Why is it important?

API stands for Application Program Interface and it is mechanism that a subsystem or a component provides its services to the world. An API is set of method signatures for public methods that can be used by other systems to access internal services. Since OO systems depend on objects (and at a higher level, subsystems or components) to work together by invoking methods, the API is a critical part of this interacting set of objects.

9. What notation is used to identify the interface of a component?

The notation is a port and socket. The port is represented by a ball and the socket is represented by a cup into which the ball fits.

10. What is the difference between the notation for problem domain classes and design classes?

Problem domain classes usually only contain two internal compartments, one for the class name, and the other for the attribute list. Design classes add an addition compartment to list the method names.

11. In your own words, list the steps for doing object-oriented detailed design.

The domain model is enhanced to add type information to the attributes and to add navigation visibility. (First cut).

The following steps are done on a use-case by use-case basis, i.e. for each use case independently.

· For simple use cases use CRC cards to design the method interactions.

· For more complex use cases use sequence diagrams to define multi-level interactions.

· Update the design class diagram to add method signatures and additional navigation visibility.

· Add package diagrams as necessary.

12. What do we mean by use-case driven design, and what is use case realization?

Use case driven design means that detailed design is performed on a use-case by use-case basis. Use case realization is the process of identifying and defining all of the internal messages (methods) between the view layer, business logic layer, and data access layer objects for the specified use case.

13. What are a) persistent classes, b) entity classes, c) boundary classes, d) control classes, and e) data access classes?

· Persistent classes are those where the data must be stored between program executions, usually in a database. The genesis of persistent classes are usually the problem domain classes.

· Entity classes are the business classes, which also come from the problem domain classes.

· Boundary classes are the view layer classes

· Control classes are those classes that act as the interface between the view layer and the business layer. These classes are like switchboard classes.

· Data access classes are those in the data layer and contain the logic necessary to read and write to the database.

14. What are class-level methods and class-level attributes?

Class-level methods and attributes are those that are maintained at the class level and do not need an instantiated object. A class level method can either provide a service method that does not depend on an object, or it can provide a service across all instantiated objects.

15. What are attribute and method visibility, and what are the types of visibility shown on a design class diagram?

Attribute and method visibility define whether attributes and methods are public or private, if objects from other classes can access them or if only objects of the same type (class) can access them.

On a design class diagram are attribute and method visibility plus navigation visibility, which indicates which classes (objects) have references to which other classes (objects).

16. What is a method signature?

A method signature is a unique identifier of a method. Depending on the programming language, it usually consists of the method name, the return type, and the list of all the parameters with the type of each.

17. Compare and contrast abstract and concrete classes. Give an example of each.

An abstract class is one which cannot have any objects instantiated. A concrete class does allow for objects to be instantiated. An abstract class might be a “vehicle”, with concrete subclasses of “car” and “truck.” There are no vehicles that are not also a car or truck.

18. Describe navigation visibility. Why is it important in detailed design?

Navigation visibility is the ability of the objects in one class to have a reference to, and thus access the API, of the objects in another class. Obviously, if a class does not have a reference to another class, it cannot access its methods. It is a critical design concept.

19. List some typical conditions that dictate in which direction navigation visibility occurs.

A superior/subordinate relationship with the superior being able to view the subordinate

Mandatory relationship such as a client and order. A client object should know about its orders.

Informational requirements will need visibility to access the class with the information

20. What information is maintained on CRC cards?

CRC cards have one card for each class. On the card are listed the class name, the responsibilities (which are like the methods), other classes that are required to collaborate, and on the back a list of the attributes for that class.

21. What is the objective of a CRC card design session?

A CRC design session is to define a set of collaborating classes (i.e. a set of CRC cards) that work together to carry out a use case. It is a simple way to do use case realization.

22. Compare and contrast the ideas of coupling and cohesion.

Coupling has to do with how closely connect two (or more) classes are connected. Ideally classes are loosely coupled so that programming changes to one do not also require changes to the other class. So coupling is a concept describing the relationship between classes.

Cohesion is an internal concept to describe the “focus” or “unity” within a class. A class with high cohesion is easier to maintain because it does not have a lot of extraneous methods of functions that may be negatively impacted to programming changes.

23. What is protection from variations, and why is it important in detailed design?

Protection from variations is a technique to isolate or segregate those portions of the system that change frequently from those portions that are more stable. By isolating the less stable portions, changes can be made without having to investigate large portions of the system. It isolates the changes to a few classes.

24. What is meant by object responsibility, and why is it important in detailed design?

Object responsibility is a principle to help decide which classes should have which methods. By considering object responsibility during design, the result is a set of classes with high cohesion. Classes are given responsibility for their own data and for their own functions.

