ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ

Государственное образовательное учреждение высшего профессионального образования «ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

«УТВЕРЖДАЮ» Директор ИДО _____ А.Ф. Федоров « » 2006 г.

ТЕОРЕТИЧЕСКИЕ ОСНОВЫ ЭЛЕКТРОТЕХНИКИ Часть 1

Рабочая программа, методические указания и контрольные задания № 1 и № 2 для студентов специальностей 140601, 140604, 140203, 140211, 140205 Института дистанционного образования

Специальности	14060	01, 140604)3, 140211 40205
Семестр	4	5	4	5
Лекции, часов	4	12	4	12
Практические занятия, часов	2	10	2	10
Лабораторные занятия, часов		12		12
Курсовая работа, часов		_		4
Контрольная работа		1, 2		_
Самостоятельная работа, часов		167		82
Формы контроля		Экзамен		Экзамен
		Зачет		Зачет*

Теоретические основы электротехники. Часть 1: Раб. программа, метод. указ. и контр. задания № 1, № 2 для студентов спец. 140601, 140604, 140203, 140211, 140205 ИДО/ Сост. П.Н. Бычков, С.В. Пустынников, Р.Н. Сметанина. – Томск: Изд. ТПУ, 2006. – 40 с.

Рабочая	програ	имма,	мето	оди	ческие	ука	зания	И	конт	гро	льные
задания	pacci	иотре	ны	И	реком	иенд	ованы	-	К	ИЗ,	данию
методиче	еским	семи	наро	M	кафедр	Ы	теорет	иче	ески	X	основ
электрот	ехники	«					_ 2005	Γ.			
Зав. каф	редрой,	доцен	нт, к.	г.н.					_ Γ.E	3. F	Іосов

Аннотация

Рабочая программа, методические указания и контрольные задания по дисциплине «Теоретические основы электротехники. Часть 1» предназначена для студентов специальностей 140601, 140604, 140203, 140211, 140205 ИДО. Первая часть данной дисциплины изучается в пятом семестре. Данная дисциплина изучается три семестра.

Приведен перечень основных тем дисциплины, указаны перечень лабораторных работ и темы практических занятий для пятого семестра. Приведены варианты заданий для контрольных работ и курсовой работы. Даны методические указания по выполнению контрольных работ и курсовой работы.

1. ЦЕЛИ И ЗАДАЧИ УЧЕБНОЙ ДИСЦИПЛИНЫ

Курс «Теоретические основы электротехники» предполагает ознакомление студентов с основами теории линейных и нелинейных электрических цепей с сосредоточенными и распределенными параметрами, теории электромагнитного поля, освоение ими основных методов расчета установившихся и переходных процессов в электрических цепях, а также методов расчета электрических и магнитных полей.

Существенная часть курса посвящена методам расчета линейных сосредоточенными параметрами электрических цепей c постоянного установившемся при воздействии режиме Студенты синусоидального сигналов. получат представление практические навыки в использовании методов, основанных на составлении и решении узловых и контурных уравнений цепи, их алгебраизации. Для расчета линейных цепей, на которые воздействуют несинусоидальные периодические сигналы, применяются методы гармонического анализа. Предусмотрено знакомство студентов с принципами построения и применением многофазных систем.

Часть курса, посвященная изучению нелинейных электрических и магнитных цепей, включает в себя общее знакомство с такими цепями и методами их расчета (преимущественно графическими). Расчет переходных процессов в линейных электрических цепях рассматривается как важнейшая часть всего курса. Студенты освоят классический, операторный методы расчета, а также метод, основанный на применении интеграла Дюамеля.

В заключение курса предусмотрено знакомство студентов с теорией цепей с распределенными параметрами, а также с теорией и методами расчета электрического и магнитного полей. Весь курс разбит на три части, изучаемые в пятом, шестом и седьмом семестрах соответственно. Для закрепления практических навыков студентам будут предложены контрольные работы по основным разделам курса, а также лабораторный практикум.

Целью преподавания теоретических основ электротехники является ознакомление студентов с основополагающими законами теории электрических и магнитных цепей, электрического и магнитного полей, развитие у студентов умения и навыков расчетного и экспериментального исследования линейных и нелинейных цепей при воздействии на них различного рода сигналов в установившемся и переходном режимах, стационарных электрического и магнитного полей.

Задачи изучения дисциплины включают освоение студентами наиболее общих аналитических и графических методов расчета

установившихся и переходных режимов в простых линейных электрических цепях, установившихся режимов в простых нелинейных электрических и магнитных цепях, методов расчета стационарного электрического и магнитного полей. В процессе изучения курса студенты должны ознакомиться и приобрести навыки обращения с реальными элементами электрических цепей: постоянными и переменными резисторами, катушками индуктивности, конденсаторами, различного рода источниками питания и электроизмерительными приборами. В результате изучения курса студенты должны научиться составлять схемы замещения простых линейных и нелинейных цепей, рассчитывать их с применением мотивированно выбранных методов расчета, экспериментально исследовать такие цепи с использованием правильно выбранных ими же электроизмерительных приборов.

2. СОДЕРЖАНИЕ ТЕОРЕТИЧЕСКОГО РАЗДЕЛА ДИСЦИПЛИНЫ

В пятом семестре изучается первая часть курса, включающая следующие модули:

- Общие положения теории электрических цепей.
- Методы анализа и расчета линейных электрических цепей в установившемся режиме при воздействии на них постоянного и синусоидального сигналов.
- Воздействие на линейные электрические цепи несинусоидальных периодических сигналов.
 - Трехфазные цепи.
 - Четырехполюсники

2.1. Общие положения теории электрических цепей

- 2.1.1. Предмет курса «Теоретические основы электротехники», его место в подготовке и связь с практическими потребностями инженеров электротехнических специальностей.
- 2.1.2. Понятие электрической цепи. Физические явления в электрических цепях. Научные абстракции и допущения, принятые в теории цепей. Схема электрической цепи и ее элементы. Источники и потребители электрической энергии, их схемы замещения. Независимые и зависимые (управляемые) источники.
- 2.1.3. Положительные направления тока и напряжения. Топологические свойства схем электрических цепей, граф цепи и его элементы (узел, сечение, контур). Законы Кирхгофа для узлов, сечений, контуров. Уравнения равновесия для мгновенных значений. Принципы взаимности, наложения, компенсации. Линейность соотношений между напряжениями и токами. Теорема об эквивалентном генераторе.

- 2.1.4. Постоянный и синусоидальный токи в резистивном, индуктивном и емкостном элементах и в цепях с их последовательным и параллельным соединением. Мгновенное, амплитудное, действующее и среднее значения синусоидальных ЭДС, напряжений и токов. Изображение синусоидальных функций времени комплексными числами. Символический метод расчета цепей с синусоидальными сигналами.
 - 2.1.5. Потенциальные и векторные диаграммы.

2.2. Методы анализа и расчета линейных электрических цепей в установившемся режиме при воздействии на них постоянного и синусоидального сигналов

- 2.2.1. Эквивалентные преобразования в схемах. Узловые и контурные уравнения схемы. Расчет схем сложных электрических цепей с одним или несколькими источниками ЭДС и (или) тока. Пассивные и активные двухполюсники.
- 2.2.2. Расчет схем методами контурных токов, узловых потенциалов, наложения.
- 2.2.3. Мощность в цепи синусоидального тока. Мгновенная и средняя мощность. Понятие реактивной и полной мощности. Баланс мощностей в цепях при воздействии постоянного и синусоидального сигналов.
- 2.2.4. Резонансные режимы в последовательном и параллельном контурах. Частотные и резонансные характеристики цепей. Добротность контура, коэффициент передачи. Применение резонанса в электронике и силовой электротехнике.
- 2.2.5. Понятие взаимной индуктивности, расчет схем с индуктивно связанными элементами, развязка индуктивной связи. Воздушный трансформатор: уравнения, схемы, диаграммы. Совершенный и идеальный трансформатор.

2.3. Воздействие на линейные электрические цепи несинусоидальных периодических сигналов

- 2.3.1. Понятие несинусоидальных периодических сигналов. Причины возникновения несинусоидальной реакции на гармоническое воздействие.
- 2.3.2. Действующее значение несинусоидального периодического тока и напряжения. Коэффициенты, характеризующие несинусоидальный периодический сигнал.
- 2.3.3. Разложение несинусоидальной периодической функции в ряд Фурье. Применение метода наложения для расчета линейных схем с несинусоидальными периодическими сигналами.

2.3.4. Мощность в цепях с несинусоидальными сигналами. Баланс мощности.

2.4. Трехфазные цепи

- 2.4.1. Понятие многофазной системы. Симметричные и несимметричные трехфазные системы. Схемы соединения генератора и нагрузки: звезда, треугольник, зигзаг.
- 2.4.2. Расчет симметричной трехфазной цепи. Фазовый оператор. Расчет несимметричной трехфазной цепи. Трехфазные цепи с нулевым проводом и с изолированной нейтралью. Векторные диаграммы.
 - 2.4.3. Мощность в трехфазной цепи. Измерение мощности.
- 2.4.4. Получение и использование вращающегося магнитного поля.
- 2.4.5. Динамические режимы трехфазной цепи. Метод симметричных составляющих.

2.5. Четырехполюсники

2.5.1. Понятие Четырехполюсники. многополюсниках. Активные (автономные неавтономные) И И пассивные Обратимые и необратимые, симметричные и четырехполюсники. четырехполюсники. несимметричные Основные уравнения четырехполюсников. Формы записи уравнений основных четырехполюсников. коэффициентов Схемы Связь замещения. уравнений четырехполюсника и замещения. параметров схемы Согласованный режим. Характеристические сопротивления и мера передачи четырехполюсников.

3. СОДЕРЖАНИЕ ПРАКТИЧЕСКОГО РАЗДЕЛА ДИСЦИПЛИНЫ

3.1. Тематика практических занятий

- 3.1.1. Методы расчета электрических схем при воздействии на них постоянных и гармонических сигналов. Символический метод расчета цепей с синусоидальными сигналами. 2 часа.
- 3.1.2. Эквивалентные преобразования в схемах. Методы расчета электрических схем. Метод эквивалентного генератора. Метод контурных токов 2 часа.
- 3.1.3. Методы расчета электрических схем. Метод узловых потенциалов, метод наложения. Потенциальные и векторные диаграммы -2 часа.
- 3.1.4. Мощность в цепи синусоидального тока. Реактивная и полная мощности. Баланс мощности в цепях при воздействии постоянного и синусоидального сигналов 2 часа.

- 3.1.5. Резонансные режимы в последовательном и параллельном контурах. Частотные и резонансные характеристики цепей. Добротность контура, коэффициент передачи 2 часа.
- 3.1.6. Взаимная индуктивность, расчет схем с индуктивно связанными элементами, развязка индуктивной связи 2 часа.
- 3.1.7. Действующее значение несинусоидального периодического сигнала. Коэффициенты, характеризующие несинусоидальный периодический сигнал 2 часа.
- 3.1.8. Методы разложения несинусоидальной периодической функции в ряд Фурье. Расчет линейных схем с несинусоидальными периодическими сигналами. Мощность в цепях с несинусоидальными сигналами. Баланс мощности 2 часа.
- 3.1.9. Расчет симметричной трехфазной цепи. Фазовый оператор. Расчет несимметричной трехфазной цепи. Трехфазные цепи с нулевым проводом и с изолированной нейтралью. Векторные диаграммы. Мощность в трехфазной цепи. Измерение мощности 2 часа.
- 3.1.10. Активные и пассивные четырехполюсники. Обратимые и четырехполюсники. симметричные уравнения Основные четырехполюсников. Формы уравнений записи основных четырехполюсников. Схемы замещения. Выражение коэффициентов уравнений четырехполюсника через параметры схемы замещения. Согласованный режим. Характеристическое сопротивление коэффициент передачи четырехполюсников – 2 часа.

3.2. Перечень лабораторных работ

- 3.2.1. Исследование линейной разветвленной цепи постоянного тока 2 часа.
 - 3.2.2. Исследование активного двухполюсника 2 часа.
- 3.2.3. Конденсатор и катушка индуктивности в цепи синусоидального тока 2 часа.
 - 3.2.4. Исследование воздушного трансформатора 2 часа.
 - 3.2.5. Исследование резонанса напряжений 2 часа.
- 3.2.6. Исследование трехфазной цепи, соединенной звездой 2 часа.

Одно двухчасовое занятие предусмотрено в качестве вводного, на нем студенты знакомятся с правилами техники безопасности при прохождении лабораторного практикума, правилами прохождения практикума, требованиями к студентам при его прохождении. Методические указания к лабораторному практикуму приведены в [6].

4. КОНТРОЛЬНЫЕ РАБОТЫ

4.1. Общие методические указания

Для специальностей 140203, 140211, 140205 выполняется **курсовая работа**, которая включает в себя расчет и защиту контрольных заданий № 1 и № 2, специальности 140601, 140604 выполняют контрольные задания № 1 и № 2.

К представленным на рецензию контрольным заданиям предъявляются следующие требования:

- 1. Задания могут быть выполнены в ученических тетрадях или на чистых листах бумаги четвертого формата, обязательно сшитых.
- 2. Основные действия при выполнении задания должны сопровождаться достаточно подробными пояснениями.
- 3. Рисунки, графики, схемы, в том числе и заданные условием задачи, должны быть выполнены на отдельном листе бумаги (странице) аккуратно и в удобном для чтения масштабе.
- 4. В задании следует оставлять поля шириной не меньше 4 см для замечаний рецензента.
- 5. Вычисления должны быть выполнены с точностью до третьей значащей цифры.
 - 6. Задание должно быть подписано студентом и указана дата.
- 7. Варианты схем и их параметры выбираются из табл. по номеру шифра k. Если он больше 25, берут вариант (k-25).

Незачтенные контрольные задания должны быть исправлены и сданы на повторную рецензию вместе с первоначальным вариантом работы и замечания ми рецензента. Исправление ошибок в отрецензированном тексте не допускается. Все исправления должны быть выполнены под заголовком «Исправление ошибок».

При изучении курса «Теоретические основы электротехники» (ТОЭ) и выполнении контрольных заданий рекомендуются учебники и учебные пособия, выпущенные в последние годы, так как в старых изданиях изложение ряда новых вопросов может отсутствовать. Рекомендуется пользоваться одним учебником при изучении всего курса, но когда какой-либо вопрос изложен в нем недостаточно ясно или вовсе нашел отражения, использовать другой Целесообразность такого подхода обусловлена и тем, что в учебниках имеется небольшая разница в обозначениях и это может вызвать некоторые затруднения при переходе от одного учебника к другому. например, в одних книгах ЭДС обозначается буквой E, Так,

а в других — \mathfrak{I} ; потенциал — буквой \mathfrak{o} или \mathfrak{U} . В одних книгах положительное направление отсчета для напряжения между двумя узлами или точками схемы указывается с помощью индексов этих узлов или точек, в других — индексы узлов у напряжения не ставятся, а ставится стрелка и один индекс и т.д.

Рекомендуется, прорабатывая материал, составлять конспект, в который полезно выписывать основные законы, определения и формулы. Конспект оказывает большую помощь при выполнении контрольных заданий и при подготовке к экзаменам.

Достаточно полный перечень вопросов для самопроверки дан в учебнике Л.А. Бессонова «Теоретические основы электротехники» [2]. Там же приведены задачи с решениями по всему курсу ТОЭ. Для лучшего усвоения курса рекомендуется просмотреть решение этих задач.

Работа над контрольным заданием помогает студентам проверить степень усвоения ими курса, вырабатывает у них навык четко и кратко излагать свои мысли. Для успешного достижения этой цели необходимо руководствоваться следующими правилами:

- 1. Начиная решение задачи, указать, какие физические законы или расчетные методы предполагается использовать при решении, привести математическую запись этих законов и методов.
- 2. Тщательно продумать, какие буквенные или цифровые обозначения предполагается использовать в решении. Пояснить значение каждого обозначения.
- 3. В ходе решения задачи не следует изменять однажды принятые направления токов и наименования узлов, сопротивлений, а также обозначения, заданные условием. При решении одной и той же задачи различными методами одну и ту же величину надлежит обозначать одним и тем же буквенным символом.
- 4. Расчет каждой исходной величины следует выполнить сначала в общем виде, а затем в полученную формулу подставить числовые значения и привести окончательный результат с указанием единиц измерения. При уравнений целесообразно решении системы воспользоваться упрощения известными расчета методами определителей (например, вынесение за знак определителя общего множителя и др.), а иногда и еще проще методом подстановки.
- 5. Промежуточные и конечные результаты расчетов должны быть ясно выделены из общего текста.
- 6. Решение задач не следует перегружать приведением всех алгебраических преобразований и арифметических расчетов.
- 7. Для элементов электрических схем рекомендуется пользоваться обозначениями, применяемыми в учебниках по ТОЭ.

- 8. Каждому этапу решения задачи нужно давать пояснения.
- 9. При построении кривых выбрать такой масштаб, чтобы на 1 см оси координат приходилось $1 \cdot 10^{\pm n}$ или $2 \cdot 10^{\pm n}$ единиц измерения физической величины, где n целое число. Градуировку осей выполнять, начиная с нуля, равномерно через один или через два сантиметра. Числовые значения координат точек, по которым строятся кривые, не приводить. Весь график в целом и отдельные кривые на нем должны иметь названия.

Внимание! К выполнению лабораторных работ допускаются только подготовленные студенты, т.е. проработавшие соответствующие разделы курса, выполнившие необходимые контрольные работы, подготовившие необходимую документацию к работе, прошедшие собеседование с преподавателем (коллоквиум). После выполнения и защиты лабораторных работ студенту ставится зачет.

4.2. Контрольная работа № 1

Контрольная работа содержит две задачи.

На рис. 1 представлен граф электрической цепи, общий для обеих задач. Граф содержит 4 узла – а, b, c, d, между которыми включены 6 ветвей – ab, ac, bc, bd, da, dc. Ветви содержат активные и пассивные элементы электрической цепи и обозначены номерами 1...6 (рис. 2). В табл.1 приведены номера вариантов задания от 1 до 50 с указанием номеров ветвей, включенных между узлами (номер варианта равен индивидуальному номеру студента). Параметры ветвей электрической цепи приведены в табл. 2.

Задача 1.1

- 1. Полагая, что в цепи с постоянными токами и напряжениями индуктивность имеет нулевое сопротивление, а емкость нулевую проводимость, изобразить схему, достаточную для расчета параметров режима цепи при постоянных во времени источниках энергии: $e_1(t)=E_1$, $e_2(t)=E_2$, J(t)=J.
- 2. Преобразовать схему до трех контуров, заменив ветви с параллельным и последовательным соединениями резисторов на эквивалентные.
- 3. Выбрать направления токов в ветвях схемы (в ветвях с источниками ЭДС токи задать по направлению ЭДС).
- 4. В общем (буквенном) виде составить полную систему уравнений состояния цепи по законам Кирхгофа для расчета токов всех ветвей и напряжения на источнике тока.
- 5. Методом контурных токов определить токи всех ветвей и (по второму закону Кирхгофа) напряжение на источнике тока.

- 6. Методом узловых потенциалов (напряжений) определить токи всех ветвей и (по второму закону Кирхгофа) напряжение на источнике тока.
- 7. Составить баланс мощностей, вычислив суммарную мощность источников энергии, и суммарную мощность, потребляемую резисторами. Небаланс не должен превышать 1 %.
- 8. Представить схему относительно ветви с сопротивлением R_4 эквивалентным генератором и определить параметры последнего (U_{xx} , R_{r} , $I_{\kappa 3}$). Графически и аналитически определить ток в сопротивлении R_4 .
- 9. Построить потенциальную диаграмму для любого замкнутого контура, не содержащего источника тока.
- 10. Результаты расчета токов по трем методам свести в таблицу и сравнить между собой.

Задача 1.2

Для электрической цепи, схема и параметры которой соответствуют номеру варианта, при параметрах источников $e_1(t) = E_1 \cdot \sqrt{2} \cdot \sin(\omega \cdot t + 90^\circ)$ В, $e_2(t) = E_2 \cdot \sqrt{2} \cdot \sin(\omega \cdot t - 45^\circ)$ В, $J(t) = J \cdot \sqrt{2} \cdot \sin(\omega \cdot t + 30^\circ)$ А, f = 50 Гц выполнить следующее:

- 1. Преобразовать схему, заменив ветви с параллельным и последовательным соединениями резисторов на эквивалентные и в общем (буквенном) виде составить полную систему уравнений состояния цепи по законам Кирхгофа в дифференциальной форме.
- 2. Представить сопротивления ветвей и действующие значения ЭДС и тока источников в комплексной форме и изобразить комплексную схему замещения цепи.
- 3. В полученной схеме любым известным методом рассчитать комплексы действующих значений токов ветвей и напряжения на источнике тока.
- 4. Составить баланс активных и реактивных мощностей источников и потребителей электрической энергии. Небаланс как по активной, так и по реактивной мощностям не должен превышать 3 %.
- 5. Изобразить схему включения ваттметра для измерения активной мощности в ветви с индуктивностью \boldsymbol{L}_5 и определить его показание.
- 6. Построить топографическую векторную диаграмму напряжений, совмещенную с лучевой векторной диаграммой токов, при этом потенциал узла **а** принять равным нулю.

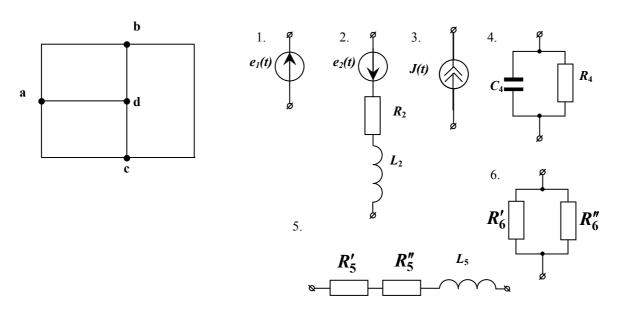


Рис. 1. Граф электрической цепи

Рис. 2. Элементы электрической цепи

Таблица 1 Варианты компоновки электрической цепи

ветвь	ab	ac	bc	bd	da	dc
№ вар.						
1	1	2	3	4	5	6
2	6	1	2	3	4	5
3	5	6	1	2	3	4
4	4	5	6	1	2	3
5	3	4	5	6	1	2
6	2	1	3	4	5	6
7	6	2	1	3	4	5
8	5	6	2	1	3	4
9	4	5	6	2	1	3
10	3	4	5	6	2	1
11	1	2	4	3	5	6
12	6	1	2	4	3	5
13	5	6	1	2	4	3
14	3	5	6	1	2	4
15	4	3	5	6	1	2
16	1	4	3	2	6	5
17	5	1	4	3	2	6
18	6	5	1	4	3	2
19	2	6	5	1	4	3

ветвь	ab	ac	bc	bd	da	dc
№ вар. 20	3	2	6	5	1	4
21	1	3	2	5	4	6
22	6	1	3	2	5	4
23	4	6	1	3	2	5
24	5	4	6	1	3	2
25	2	5	4	6	1	3

Таблица 2 Параметры элементов электрической цепи

№	E_1	E_2	J	R_2	R_4	R' ₅	R ₅ "	R_6'	R '' ₆	L_2	L_5	C_4
вар.	В	В	A	Ом	Ом	Ом	Ом	Ом	Ом	мГн	мГн	мкФ
нечет.	100	50	2	10	8	8	4	12	6	31,9	28,6	398
четн.	50	100	5	15	10	6	6	18	9	47,8	51,0	318,4

МЕТОДИЧЕСКИЕ УКАЗАНИЯ К ЗАДАЧЕ 1.1

Свойства линейных электрических цепей и методы их расчета подробно изложены в [1, 2, 3].

Порядок решения конкретной задачи 1.1 следующий.

1. Допустим, для Вашего варианта из табл. 1 Вы нашли, что структура Вашей цепи следующая (пример условный, на самом деле такой структуры в табл. 1 нет):

ветвь № вар.	ab	ac	bc	bd	da	dc
_	1	6	4	3	5	2

Из табл. 2 находим параметры элементов цепи:

No	E_1	E_2	J	R_2	R_4	R' ₅	R ₅ "	R_6'	R '' ₆	L_2	L_5	C_4
вар.	В	В	Α	Ом	Ом	Ом	Ом	Ом	Ом	мГн	мГн	мкФ
	100	50	2	10	15	6	6	12	6	31,9	51	212,3

По заданному графу построим схему электрической цепи (рис. 3). **Примечание:** поскольку индуктивности и емкость при воздействии на электрическую цепь постоянных сигналов обладают соответственно нулевым сопротивлением и нулевой проводимостью, на схеме они не указаны.

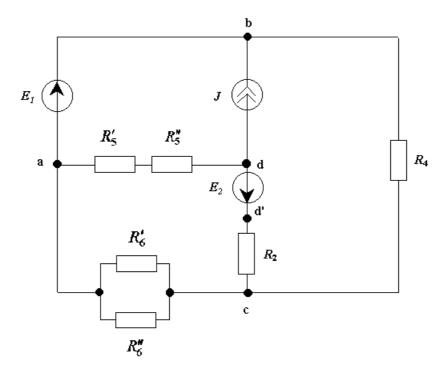


Рис. 3. Схема электрической цепи

2. Преобразуем схему до трех контуров:

В ветви **da** сопротивления включены последовательно, а в ветви **ac** – параллельно, поэтому

$$R_5 = R'_5 + R''_5 = 6 + 6 = 12 \text{ Om};$$

 $R_6 = \frac{R'_6 \cdot R''_6}{R'_6 + R''_6} = \frac{12 \cdot 6}{12 + 6} = 4 \text{ Om}$

3. Выбираем положительные направления токов. В ветвях, содержащих ЭДС — по направлению ЭДС, в остальных ветвях — произвольно. Расчетная трехконтурная схема электрической цепи с указанными направлениями токов в ветвях, напряжения на источнике тока и контурных токов приведена на рис. 4.

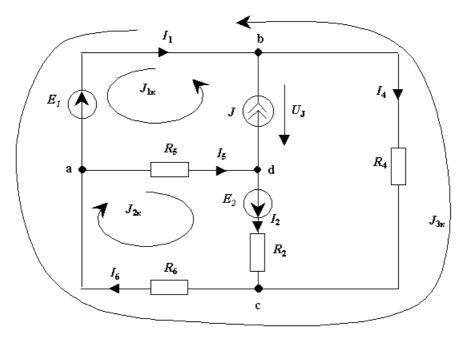


Рис. 4. Расчетная схема

4. В общем (буквенном) виде составляем полную систему уравнений состояния цепи по законам Кирхгофа для расчета токов всех ветвей и напряжения на источнике тока.

Схема содержит $\mathbf{y}=4$ узла и $\mathbf{B}=6$ ветвей. Следовательно, по первому закону Кирхгофа можно составить $\mathbf{y}-1=4-1=3$ независимых уравнения, а по второму закону Кирхгофа - $\mathbf{B}-\mathbf{y}+1=6-4+1=3$ независимых уравнения.

При составлении уравнений по законам Кирхгофа следует руководствоваться следующими правилами. Ток, направленный к узлу, в уравнении по первому закону Кирхгофа учитывается со знаком "+", направленный от узла — со знаком "—". Ток в потребителях электроэнергии (пассивных элементах электрической схемы) течет от узла с более высоким потенциалом к узлу с более низким потенциалом. Поэтому в уравнениях по второму закону Кирхгофа падение напряжения учитывается со знаком «+», если направление тока в пассивном элементе совпадает с направлением обхода контура. Напряжение на источнике тока направлено в противоположную току сторону, поскольку ток в этом элементе протекает от точки с более низким потенциалом к точке с более высоким потенциалом (за счет работы сторонних сил). ЭДС записываются в правой части уравнения, причем со знаком "+" учитываются ЭДС, направление которых совпадает с направлением обхода контура.

Узел **a**: $I_6 - I_1 - I_5 = 0$ Узел **b**: $I_1 - I_4 = -J$

Узел \mathbf{c} : $I_2 + I_4 - I_6 = 0$

Контур 1: $U_J - I_5 \cdot R_5 = E_1$ Контур 2: $I_2 \cdot R_2 + I_6 \cdot R_6 + I_5 \cdot R_5 = E_2$ Контур 3: $I_2 \cdot R_2 - I_4 \cdot R_4 + U_J = E_2$

5. Методом контурных токов определяем токи в ветвях.

Выбираем независимые контуры. В рассматриваемой схеме их три (рис. 4). При этом, поскольку ветвь **bd** содержит идеальный источник тока, эта ветвь может входить только в один контур. Ток этого контура равен току источника: $J_{1\kappa} = J = 2$ А. Для остальных контурных токов составляем уравнения:

$$\begin{cases} \boldsymbol{J}_{1\kappa} \cdot \boldsymbol{R}_5 + \boldsymbol{J}_{2\kappa} \cdot (\boldsymbol{R}_2 + \boldsymbol{R}_5 + \boldsymbol{R}_6) - \boldsymbol{J}_{3\kappa} \cdot \boldsymbol{R}_6 = \boldsymbol{E}_2 \\ \boldsymbol{J}_{1\kappa} \cdot 0 - \boldsymbol{J}_{2\kappa} \cdot \boldsymbol{R}_6 + \boldsymbol{J}_{3\kappa} \cdot (\boldsymbol{R}_4 + \boldsymbol{R}_6) = -\boldsymbol{E}_1 \end{cases}$$

После переноса в правую часть постоянных коэффициентов уравнения примут вид:

$$\begin{cases}
\boldsymbol{J}_{2\kappa} \cdot (\boldsymbol{R}_2 + \boldsymbol{R}_5 + \boldsymbol{R}_6) - \boldsymbol{J}_{3\kappa} \cdot \boldsymbol{R}_6 = \boldsymbol{E}_2 - \boldsymbol{J} \cdot \boldsymbol{R}_5 \\
- \boldsymbol{J}_{2\kappa} \cdot \boldsymbol{R}_6 + \boldsymbol{J}_{3\kappa} \cdot (\boldsymbol{R}_4 + \boldsymbol{R}_6) = -\boldsymbol{E}_1
\end{cases}$$

Численно

$$\begin{cases} \boldsymbol{J}_{2\kappa} \cdot (10 + 12 + 4) - \boldsymbol{J}_{3\kappa} \cdot 4 = 50 - 2 \cdot 12 \\ -\boldsymbol{J}_{2\kappa} \cdot 4 + \boldsymbol{J}_{3\kappa} \cdot (15 + 4) = -100 \end{cases}$$

Или, окончательно

$$\begin{cases} 26\boldsymbol{J}_{2\kappa} - 4\boldsymbol{J}_{3\kappa} = 26 \\ -4\boldsymbol{J}_{2\kappa} + 19\boldsymbol{J}_{3\kappa} = -100 \end{cases}$$

В матричной форме уравнения будут иметь вид:

$$\begin{pmatrix} 26 & -4 \\ -4 & 19 \end{pmatrix} \times \begin{pmatrix} \boldsymbol{J}_{2K} \\ \boldsymbol{J}_{3K} \end{pmatrix} = \begin{pmatrix} 26 \\ -100 \end{pmatrix}$$

После расчета получим:

$$J_{2\kappa} = 0.197 \text{ A}; J_{3\kappa} = -5.22 \text{ A}.$$

Определяем токи ветвей:

$$I_2 = J_{2\kappa} = 0.197 \text{ A}; I_1 = -J_{1\kappa} - J_{3\kappa} = 5.22 - 2 = 3.22 \text{ (A)}; I_4 = -J_{3\kappa} = 5.22 \text{ A};$$

$$I_5 = J_{1\kappa} + J_{2\kappa} = 2 + 0,197 = 2,197 \text{ A};$$

 $I_6 = J_{2\kappa} - J_{3\kappa} = 0,197 + 5,22 = 5,418 \text{ A}.$

Согласно второму закону Кирхгофа,

$$\boldsymbol{U_J} - \boldsymbol{I_5} \cdot \boldsymbol{R_5} + \boldsymbol{I_1} \cdot \boldsymbol{0} = \boldsymbol{E_1}.$$

Отсюда

$$U_J = I_5 \cdot R_5 + E_1 = 2,197 \cdot 12 + 100 = 126,364 \text{ B}.$$

6. Определим токи в ветвях схемы методом узловых потенциалов. Между узлами **a** и **b** включена ветвь с идеальным источником ЭДС без

сопротивления. Поэтому в качестве базисного ($\phi = 0$) удобно принять узел **a**, тогда

$$\varphi_a = 0$$
; $\varphi_b = E_1 = 100 \text{ B}.$

Для узлов \mathbf{c} и \mathbf{d} составляем узловые уравнения:

$$\begin{cases}
\varphi_c \cdot \left(\frac{1}{R_2} + \frac{1}{R_4} + \frac{1}{R_6}\right) - \varphi_d \cdot \frac{1}{R_2} - \varphi_b \cdot \frac{1}{R_4} = \frac{E_2}{R_2} \\
- \varphi_c \cdot \frac{1}{R_2} + \varphi_d \cdot \left(\frac{1}{R_5} + \frac{1}{R_2}\right) = -J - \frac{E_2}{R_2}
\end{cases}$$

Перенеся слагаемое $\varphi_b \cdot \frac{1}{R_4}$ в правую часть уравнения и

подставив известные числовые значения, получаем:

$$\begin{cases} \varphi_c \cdot \left(\frac{1}{10} + \frac{1}{15} + \frac{1}{4}\right) - \varphi_d \cdot \frac{1}{10} = \frac{50}{10} + 100 \cdot \frac{1}{15} \\ - \varphi_c \cdot \frac{1}{10} + \varphi_d \cdot \left(\frac{1}{12} + \frac{1}{10}\right) = -2 - \frac{50}{10} \end{cases}$$

В матричной форме уравнения будут иметь вид:

$$\begin{pmatrix} 0,4166 & -0,1 \\ -0,1 & 0,1833 \end{pmatrix} \times \begin{pmatrix} \varphi_c \\ \varphi_d \end{pmatrix} = \begin{pmatrix} 11,666 \\ -7 \end{pmatrix}$$

После расчета получим:

$$\varphi_c = 21,676 \text{ B}; \ \varphi_d = -26,363 \text{ B}.$$

Токи в ветвях схемы определятся по обобщенному закону Ома:

$$I_2 = \frac{\varphi_d - \varphi_c + E_2}{R_2} = \frac{-26,363 - 21,676 + 50}{10} = 0,196 \text{ A}$$

$$I_4 = \frac{\varphi_b - \varphi_c}{R_4} = \frac{100 - 21,676}{15} = 5,22$$
 A

$$I_5 = -\frac{\varphi_d}{R_5} = \frac{26,363}{12} = 2,196$$
 A

$$I_6 = \frac{\varphi_c}{R_6} = \frac{21,676}{4} = 5,419$$
 A

$$U_J = \varphi_b - \varphi_d = 100 + 26,363 = 126,363$$
 B

По первому закону Кирхгофа для узла а

$$I_1 = I_6 - I_5 = 5,419 - 2,196 = 3,223 \text{ A}.$$

7. Составляем уравнение баланса мощности.

Мощность источников:

 $P_u = E_1 \cdot I_1 + E_2 \cdot I_2 + U_J \cdot J = 100 \cdot 3,323 + 50 \cdot 0,196 + 126,363 \cdot 2 = 584,826$ Вт Мощность потребителей:

$$P_n = I_2^2 \cdot R_2 + I_4^2 \cdot R_4 + I_5^2 \cdot R_5 + I_6^2 \cdot R_6 =$$

$$= 0.196^2 \cdot 10 + 5.22^2 \cdot 15 + 2.196^2 \cdot 12 + 5.429^2 \cdot 4 = 584.44 \text{ Bt.}$$

Погрешность расчета (небаланс) составила

$$\delta = \left| \frac{P_u - P_n}{P_u} \right| \cdot 100\% = \left| \frac{584,826 - 584,44}{584,826} \right| \cdot 100\% = 0,066\%.$$

Таким образом, небаланс в пределах допуска ($\delta \le 1 \%$).

8. Определим ток I_4 методом эквивалентного генератора.

Изобразим схему относительно ветви **bc** в виде эквивалентного генератора в режиме холостого хода (рис. 5).

Из схемы рис. 5 определим ЭДС эквивалентного генератора $\boldsymbol{E}_{\mathrm{r}} = \boldsymbol{U}_{\mathrm{xx}}$

Согласно второму закону Кирхгофа,

$$U_{xx} + I_{6xx} \cdot R_6 = E_1$$
, откуда $E_r = U_{xx} = E_1 - I_{6xx} \cdot R_6$.

Для определения тока I_{6xx} воспользуемся методом контурных токов.

$$J_{2\kappa} \cdot (R_2 + R_5 + R_6) = E_2 - J \cdot R_5$$
 $J_{2\kappa} \cdot (10 + 12 + 4) = 50 - 2 \cdot 12 = 26$
 $J_{1\kappa} = J = 2 \text{ A}$ $J_{6\kappa\kappa} = J_{2\kappa} = 1 \text{ A}$. $E_{\Gamma} = U_{\kappa\kappa} = 100 - 1 \cdot 4 = 96 \text{ B}$.

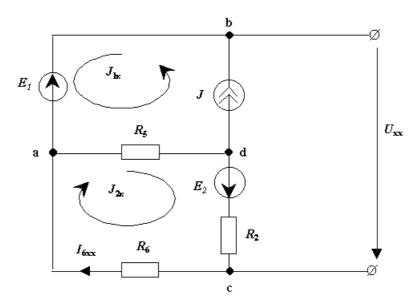


Рис. 5. Эквивалентный генератор в режиме холостого хода

Для определения сопротивления эквивалентного генератора $R_{\rm r}$ изобразим вспомогательную схему, в которой источники электрической

энергии замещены их внутренними сопротивлениями: $R_E = 0$; $R_J = \infty$ (рис. 6).

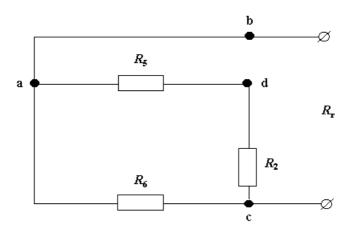


Рис. 6. К определению сопротивления эквивалентного генератора

Сопротивление эквивалентного генератора

$$R_{\Gamma} = \frac{R_6 \cdot (R_5 + R_2)}{R_6 + R_5 + R_2} = \frac{4 \cdot (12 + 10)}{4 + 12 + 10} = 3,384 \,\mathrm{Om}$$
.

По формуле Тевенена-Гельмгольца определяем ток в нагрузке

$$I_4 = \frac{E_r}{R_r + R_4} = \frac{96}{3,384 + 15} = 5,22$$
 A.

Напряжение на сопротивлении \mathbf{R}_4 по закону Ома составит $\mathbf{U}_4 = \mathbf{I}_4 \cdot \mathbf{R}_4 = 5,22 \cdot 15 = 78,3 \text{ B}.$

Ток короткого замыкания эквивалентного генератора $I_{\rm K3}$ определится как $I_{\rm K3}=\frac{E_\Gamma}{R_\Gamma}=\frac{96}{3,384}=28,4$ A.

Определим ток I_4 графически. Для этого построим в одних осях внешнюю характеристику эквивалентного генератора и вольтамперную характеристику нагрузки (сопротивления R_4). Внешняя характеристика является линейной и пересекает оси координат в точках U_{xx} и I_{K3} , а вольтамперная характеристика нагрузки также линейна и строится по закону Ома — $U_4 = I_4 \cdot R_4$. При этом достаточно задать два значения тока, например $I_4 = 0$ и $I_4 = 1A$. Точка пересечения характеристик будет рабочей точкой генератора, нагруженного на сопротивление R_4 , а ее проекция на оси координат — искомыми током и напряжением (рис. 7). Получаем графические значения $U_4 \approx 78$ B, $I_4 \approx 5.2$ A.

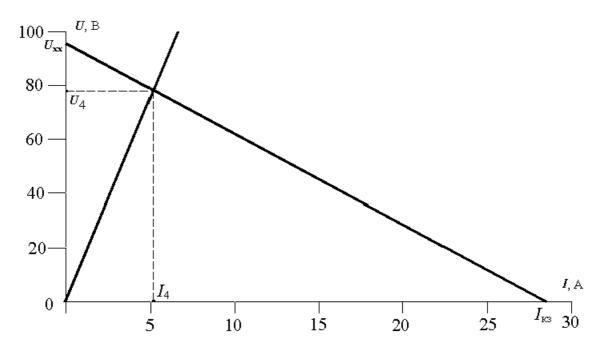


Рис. 7. Графическое определение тока I_4 и напряжения на сопротивлении R_4

Построим потенциальную диаграмму для контура **add'c** (рис. 3), не содержащего источника тока.

Принимаем $\varphi_a = 0$ Тогда $\varphi_d = \varphi_a - I_5 \cdot R_5 = 0 - 2,197 \cdot 12 = -26,364 \text{ (B)}$ $\varphi_{d'} = \varphi_d + \mathbf{E}_2 = -26,364 + 50 = 23,636 \text{ (B)}$ $\varphi_c = \varphi_{d'} - I_2 \cdot R_2 = 23,636 - 0,197 \cdot 10 = 21,666 \text{ (B)}$ $\varphi_a = \varphi_c - I_6 \cdot R_6 = 21,666 - 5,418 \cdot 4 \approx 0$.

Диаграмма приведена на рис. 8.

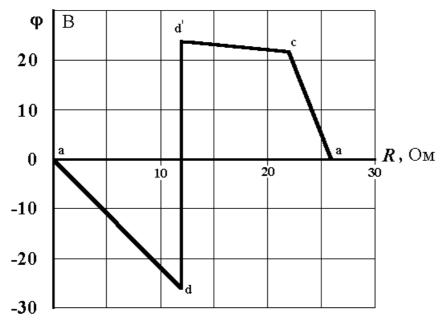


Рис. 8. Потенциальная диаграмма для контура add'ca

МЕТОДИЧЕСКИЕ УКАЗАНИЯ К ЗАДАЧЕ 1.2

- 1. Изобразим схему электрической цепи для условного варианта, рассмотренного в методических указаниях к задаче 1.1 (рис. 9).
- 2. В общем (буквенном) виде составляем полную систему уравнений состояния цепи по законам Кирхгофа для расчета токов всех ветвей и напряжения на источнике тока.

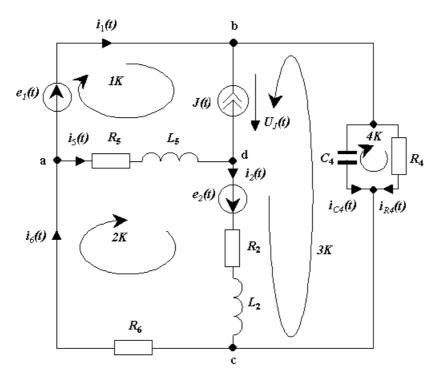


Рис. 9. Схема электрической цепи переменного тока

Схема содержит $\mathbf{y}=4$ узла и $\mathbf{g}=7$ ветвей. Следовательно, по первому закону Кирхгофа можно составить $\mathbf{y}-1=4-1=3$ независимых уравнения, а по второму закону Кирхгофа $\mathbf{g}-\mathbf{y}+1=7-4+1=4$ независимых уравнения.

Узел а :	$\boldsymbol{i_6} - \boldsymbol{i_1} - \boldsymbol{i_5} = 0$
Узел b :	$\boldsymbol{i_1-i_{R4}-i_{C4}}=-\boldsymbol{J}$
Узел d :	$\boldsymbol{i_5} - \boldsymbol{i_2} = \boldsymbol{J}$
Контур 1:	$U_J - i_5 \cdot R_5 - L_5 \frac{di_5}{dt} = e_1$
Контур 2:	$\mathbf{i}_5 \cdot \mathbf{R}_5 + \mathbf{L}_5 \frac{d\mathbf{i}_5}{dt} + \mathbf{i}_2 \cdot \mathbf{R}_2 + \mathbf{L}_2 \frac{d\mathbf{i}_2}{dt} + \mathbf{i}_6 \cdot \mathbf{R}_6 = \mathbf{e}_2$

Контур 3:
$$i_2 \cdot R_2 + L_2 \frac{di_2}{dt} - i_{R4} \cdot R_4 + u_J = e_2$$
 Контур 4:
$$\frac{1}{C} \cdot \int i_{C4} \cdot dt - i_{R4} \cdot R_4 = 0$$

Определим реактивные сопротивления индуктивностей и емкости:

$$x_{L_2} = \omega \cdot L_2 = 314,159 \cdot 0,0319 = 10 \text{ Om}$$

$$x_{L_5} = \omega \cdot L_5 = 314,159 \cdot 0,051 = 16 \text{ Om}$$

$$x_{C_4} = \frac{1}{\omega \cdot C_4} = \frac{1}{314,159 \cdot 212,3 \cdot 10^{-6}} = 15 \text{ Om}$$

Здесь и далее $\omega = 2 \cdot \pi \cdot f = 2 \cdot 3,14159 \cdot 50 = 314,159$ рад/с — круговая частота источников ЭДС и тока.

$$\underline{Z}_2 = R_2 + j \cdot x_{L_2} = 10 + j \cdot 10 = 14, 1 \cdot e^{j \cdot 45^{\circ}}$$
 Om

$$\underline{Z}_{4} = \frac{R_{4} \cdot (-\boldsymbol{j} \cdot \boldsymbol{x}_{C_{4}})}{R_{4} - \boldsymbol{j} \cdot \boldsymbol{x}_{C_{4}}} = \frac{15 \cdot (-\boldsymbol{j} \cdot 15)}{15 - \boldsymbol{j} \cdot 15} = 7,5 - \boldsymbol{j} \cdot 7,5 = 10,575 \cdot \boldsymbol{e}^{-\boldsymbol{j} \cdot 45^{\circ}} \text{ Om}$$

$$Z_5 = R_5 + j \cdot x_{L_5} = 12 + j \cdot 16 = 20 \cdot e^{j \cdot 53,13^{\circ}}$$
 Om

$$\underline{\boldsymbol{Z}}_6 = \boldsymbol{R}_6 = 4 \text{ Om}$$

Комплексы действующих значений ЭДС и тока источников:

$$\underline{E}_1 = 100 \cdot e^{j \cdot 90^{\circ}} = (0 + j \cdot 100)$$
 B

$$\underline{E}_2 = 50 \cdot e^{-j \cdot 45^{\circ}} = (35,46 - j \cdot 35,46)$$
 B; $\underline{J} = 2 \cdot e^{j \cdot 30^{\circ}} = (1,73 + j \cdot 1)$ A

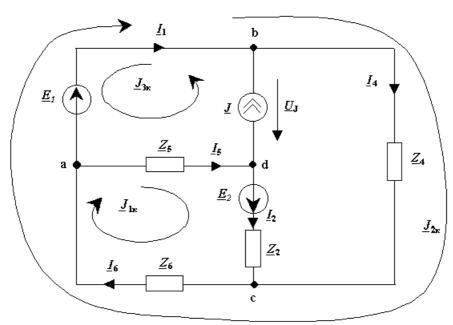


Рис. 10. Расчетная комплексная схема замещения электрической цепи

Расчетная схема с комплексными источниками ЭДС и тока и комплексными сопротивлениями ветвей показана на рис.10.

Токи в ветвях схемы определим методом контурных токов. Через ветвь с источником тока проходит контурный ток $\underline{J}_{3\kappa}$, поэтому $\underline{J}_{3\kappa} = \underline{J} = 2 \cdot e^{j \cdot 30^{\circ}}$ А.

Для контурных токов $\underline{J}_{1\kappa}$ и $\underline{J}_{2\kappa}$ составим систему уравнений:

$$\begin{cases}
\underline{J}_{1\kappa} \cdot (\underline{Z}_2 + \underline{Z}_5 + \underline{Z}_6) + \underline{J}_{2\kappa} \cdot \underline{Z}_6 = \underline{E}_2 - \underline{J} \cdot \underline{Z}_5 \\
\underline{J}_{1\kappa} \cdot \underline{Z}_6 + \underline{J}_{2\kappa} \cdot (\underline{Z}_4 + \underline{Z}_6) = \underline{E}_1
\end{cases}$$

Или, численно:

$$\begin{cases}
\underline{\boldsymbol{J}}_{1\kappa} \cdot (26 + \boldsymbol{j} \cdot 26) + \underline{\boldsymbol{J}}_{2\kappa} \cdot (4 + \boldsymbol{j} \cdot 0) = 30,675 - \boldsymbol{j} \cdot 75,172 \\
\underline{\boldsymbol{J}}_{1\kappa} \cdot (4 + \boldsymbol{j} \cdot 0) + \underline{\boldsymbol{J}}_{2\kappa} \cdot (11,4 - \boldsymbol{j} \cdot 7,5) = 0 + \boldsymbol{j} \cdot 100
\end{cases}$$

Решив систему, получим:

$$\underline{J}_{K} = -1,066 - \mathbf{j} \cdot 2,9 = 3,09 \cdot e^{\mathbf{j} \cdot 250^{\circ}} \text{ A};$$

$$\underline{J}_{2\kappa} = -4.23 + j.7.0 = 8.18 \cdot e^{j121.14^{\circ}} \text{ A}.$$

Токи в ветвях схемы определятся как

$$\underline{I}_{1} = \underline{J}_{2\kappa} - \underline{J}_{3\kappa} =
= -4.23 + \mathbf{j} \cdot 7.0 - 1.73 - \mathbf{j} \cdot 1.0 = -5.96 + \mathbf{j} \cdot 6.0 = 8.46 \cdot e^{j134.8^{\circ}} \text{ A};$$

$$\underline{I}_2 = \underline{J}_{1\kappa} = -1,066 - \mathbf{j} \cdot 2,9 = 3,09 \cdot e^{j250^{\circ}} \text{ A};$$

$$\underline{I}_4 = \underline{J}_{2\kappa} = -4.23 + \mathbf{j} \cdot 7.0 = 8.18 \cdot e^{j121.14^{\circ}} \text{ A};$$

$$\underline{\boldsymbol{I}}_{5} = \underline{\boldsymbol{J}}_{1K} + \underline{\boldsymbol{J}}_{3K} =$$

=
$$-1,066 - \mathbf{j} \cdot 2,9 + 1,73 + \mathbf{j} \cdot 1,0 = 0,66 - \mathbf{j} \cdot 1,9 = 2,01 \cdot e^{-j70.8^{\circ}}$$
 A;
 $\underline{\mathbf{I}}_{6} = \underline{\mathbf{J}}_{1\kappa} + \underline{\mathbf{J}}_{2\kappa} =$

=
$$-1,066 - \mathbf{j} \cdot 2,9 - 4,23 + \mathbf{j} \cdot 7,0 = -5,3 + \mathbf{j} \cdot 4,1 = 6,7 \cdot e^{j142.2^{\circ}}$$
 A.

Согласно второму закону Кирхгофа,

$$\underline{U}_J - \underline{I}_5 \cdot \underline{Z}_5 = \underline{E}_1.$$

Отсюда

$$\underline{U}_{J} = \underline{I}_{5} \cdot \underline{Z}_{5} + \underline{E}_{1} = \mathbf{j} \cdot 100 + 2,01 \cdot e^{-j70.8^{\circ}} \cdot 20 \cdot e^{j53.13^{\circ}} =$$

$$= \mathbf{j} \cdot 100 + 38,3 - \mathbf{j} \cdot 87,8 = 38,3 + \mathbf{j} \cdot 87,8 = 95,79 \cdot e^{j66.43^{\circ}} \text{ B.}$$

4. Составим баланс активной и реактивной мощностей.

Полная мощность источников составит:

$$\underline{S}_{\text{M}} = P_{\text{M}} + j \cdot Q_{\text{M}} = \underline{E}_{1} \cdot \underline{f}_{1} + \underline{E}_{2} \cdot \underline{f}_{2} + \underline{U}_{J} \cdot \underline{f}_{5} =
= 100 \cdot e^{j \cdot 90^{\circ}} \cdot 8,46 \cdot e^{-j \cdot 134,8^{\circ}} + 50 \cdot e^{-j45^{\circ}} \cdot 3,09 \cdot e^{-j250^{\circ}} +
+ 95,79 \cdot e^{j66,43^{\circ}} \cdot 2 \cdot e^{-j30^{\circ}} =$$

$$600,3 - j \cdot 596,12 + 65,3 + j \cdot 140 + 154,14 + j \cdot 113,76 = 819,73 - j \cdot 342,3$$
 BA

Здесь $\hat{\underline{I}}$ – сопряженный комплекс тока

Таким образом, активная мощность источников энергии составит $\boldsymbol{P}_{\text{u}} = 819,73 \; \text{Вт};$ реактивная мощность — $\boldsymbol{Q}_{\text{u}} = -342,3 \; \text{ВАр}.$

Активная мощность потребителей

$$P_{\text{II}} = I_2^2 \cdot R_2 + I_4^2 \cdot R_4 + I_5^2 \cdot R_5 + I_6^2 \cdot R_6 =$$

= $3.09^2 \cdot 10 + 8.18^2 \cdot 7.5 + 2.01^2 \cdot 12 + 6.7^2 \cdot 4 = 825.36 \text{ BT}$

Реактивная мощность потребителей

$$Q_{\Pi} = I_2^2 \cdot x_2 - I_4^2 \cdot x_4 + I_5^2 \cdot x_5 =$$

= 3.09² ·10 - 8.18² ·7.5 + 2.01² ·16 = -341.7 BAp

Погрешность расчета (небаланс) составила:

по активной мощности

$$\delta_{\mathbf{P}} = \left| \frac{\mathbf{P}_{\text{M}} - \mathbf{P}_{\text{H}}}{\mathbf{P}_{\text{M}}} \right| \cdot 100\% = \left| \frac{819,73 - 825,36}{819,73} \right| \cdot 100\% = 0,68\%$$

по реактивной мощности

$$\delta_{\mathbf{Q}} = \left| \frac{\mathbf{Q}_{\text{M}} - \mathbf{Q}_{\text{\Pi}}}{\mathbf{Q}_{\text{M}}} \right| \cdot 100\% = \left| \frac{-342,3 + 341,7}{-342,3} \right| \cdot 100\% = 0,17\%$$

Таким образом, небаланс как по активной, так и по реактивной мощности в пределах допуска ($\delta \le 1$ %).

5. Изобразим схему включения ваттметра для измерения активной мощности в ветви, содержащей сопротивление \underline{Z}_5 . Очевидно, что для измерения мощности, потребляемой сопротивлением \underline{Z}_5 , необходимо, чтобы обмотка напряжения ваттметра была включена параллельно, а токовая обмотка — последовательно с сопротивлением \underline{Z}_5 (рис. 11).

Напряжение на обмотке ваттметра:

$$\underline{U}_W = \underline{\phi}_a - \underline{\phi}_d = \underline{I}_5 \cdot \underline{Z}_5 = 2,01 \cdot e^{-j70.8^{\circ}} \cdot 20 \cdot e^{j53.13^{\circ}} = 40,2 \cdot e^{-j17.67^{\circ}}$$
 В. Ток, протекающий через токовую обмотку ваттметра, равен:

$$\underline{I}_W = \underline{I}_5 = 2.01 \cdot e^{-j70.8^{\circ}} \text{ A};$$

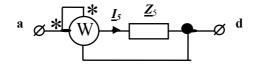


Рис. 11. Схема включения ваттметра

Показание ваттметра

$$P_W = U_W I_{W} \cos(\varphi_W - \varphi_i) = 40.2 \cdot 2.01 \cdot \cos(-17.67^{\circ} + 70.8^{\circ}) = 48.48 \text{ Bt.}$$

6. Построим топографическую векторную диаграмму напряжений, и лучевую векторную диаграмму токов, при этом

потенциал узла **а** примем равным нулю. Для этого изобразим комплексную схему замещения цепи с указанными на ней направлениями напряжений (рис. 12).

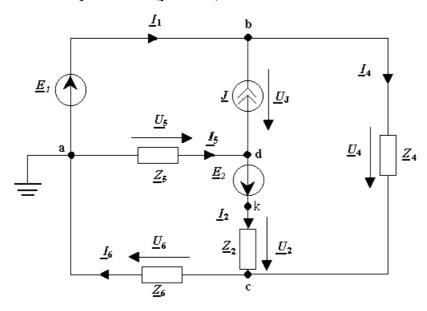


Рис. 12. К построению векторных диаграмм

На векторной диаграмме вектора напряжений направлены в точку высшего потенциала от которой течет ток, т.е. противоположно положительным направлениям напряжений на схеме: \underline{U}_2 - направлено из точки \mathbf{c} в точку \mathbf{k} ; \underline{U}_4 - направлено из точки \mathbf{c} в точку \mathbf{b} : \underline{U}_5 - направлено из точки \mathbf{d} в точку \mathbf{a} ; \underline{U}_6 - направлено из точки \mathbf{a} в точку \mathbf{c} , \underline{U}_J направлено из точки \mathbf{d} в точку \mathbf{b} . \underline{E}_1 направлено из точки \mathbf{a} в точку \mathbf{b} , \underline{E}_2 - из точки \mathbf{d} в точку \mathbf{k} .

По закону Ома определим комплексные напряжения на сопротивлениях схемы:

$$\underline{U}_{2} = \underline{I}_{2} \cdot \underline{Z}_{2} = 3.09 \cdot e^{j250^{\circ}} \cdot 14.1 \cdot e^{j45^{\circ}} = 43.57 \cdot e^{j295^{\circ}} \text{ B.}$$

$$\underline{U}_{4} = \underline{I}_{4} \cdot \underline{Z}_{4} = 8.18 \cdot e^{j121.14^{\circ}} \cdot 10.575 \cdot e^{-j45^{\circ}} = 86.5 \cdot e^{j76.14^{\circ}} \text{ B.}$$

$$\underline{U}_{5} = \underline{I}_{5} \cdot \underline{Z}_{5} = 2.01 \cdot e^{-j70.8^{\circ}} \cdot 20 \cdot e^{j53.13^{\circ}} = 40.2 \cdot e^{-j17.67^{\circ}} \text{ B.}$$

$$\underline{U}_{6} = \underline{I}_{6} \cdot \underline{Z}_{6} = 6.7 \cdot e^{j142.2^{\circ}} \cdot 4 = 26.8 \cdot e^{j142.2^{\circ}} \text{ B.}$$

$$\underline{U}_{J} = 95.79 \cdot e^{j66.43^{\circ}} \text{ B.}$$

Векторная лучевая диаграмма токов и топографическая диаграмма напряжений показаны на рис.13.

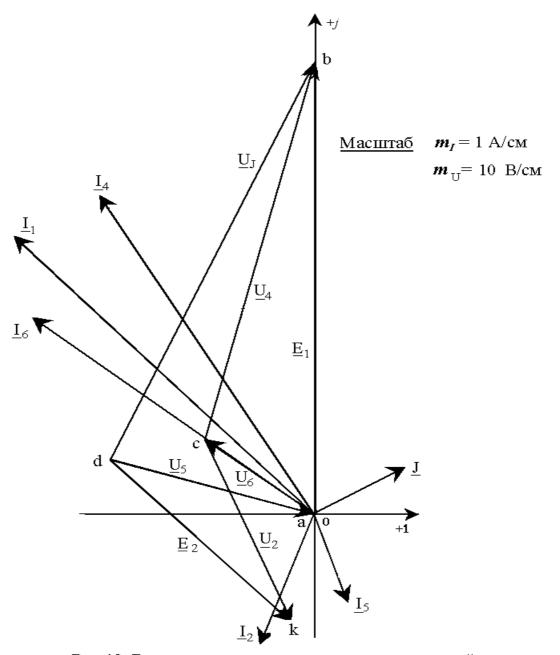


Рис.13. Векторные диаграммы токов и напряжений

4.3. Контрольная работа № 2

Работа состоит из трех задач:

- 2.1. Расчет трехфазной цепи;
- 2.2. Расчет цепи с несинусоидальными периодическими напряжениями и токами;
 - 2.3. Определение параметров четырехполюсника.

Задача 2.1

На рис.14 приведена схема симметричной трехфазной цепи для нечетных вариантов; на рис.15 — для четных. Параметры схем приведены в табл. 4. Начальную фазу ЭДС $\underline{\textbf{\textit{E}}}_{4}$ в обеих схемах принять равной нулю.

Требуется: рассчитать все токи, определить мгновенное значение напряжение между точками \boldsymbol{a} и \boldsymbol{b} , построить топографическую векторную диаграмму напряжений, совмещенную с лучевой векторной диаграммой токов, рассчитать активную мощность трехфазной цепи.

Указание: Нагрузку, соединенную треугольником, при расчете преобразовать в эквивалентную звезду.

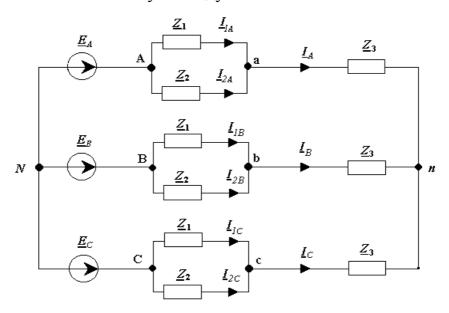


Рис. 14. Схема трехфазной цепи (нечетные варианты)

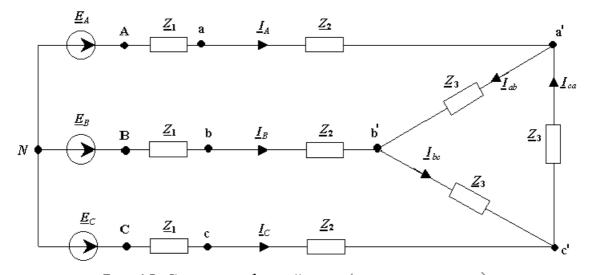


Рис. 15. Схема трехфазной цепи (четные варианты)

Таблица 4 **Параметры схемы трехфазной цепи**

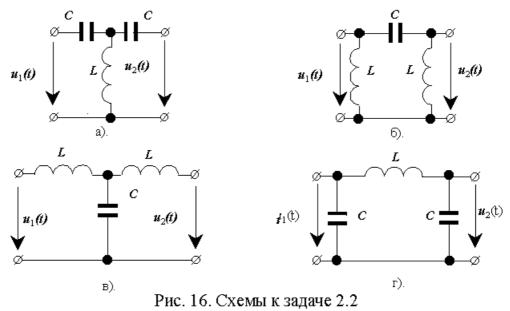
№	$\underline{\boldsymbol{E}}_{\mathcal{A}}$	$\underline{\boldsymbol{Z}}_1$	Z ₂	Z ₃
вар.				
1	100	100	j 100	−j 100
2	200	100	−j 100	j 100
3	150	50	j 50	−j 50
4	150	50	−j 50	j 50
5	500	j 200	200	−j 200
6	300	−j 200	200	j 200
7	400	150	j 150	−j 150
8	300	150	−j 150	j 150
9	200	60	j 60	−j 70
10	100	60	−j 60	j 70
11	150	80	j 80	−j 70
12	300	80	−j 80	j 70
13	200	120	j 120	−j 140

№	$\underline{\boldsymbol{E}}_{\!\mathcal{A}}$	$\underline{\boldsymbol{Z}}_1$	Z ₂	Z ₃
вар.				
14	400	120	<i>−j</i> 120	j 140
15	500	160	j 160	−j 140
16	600	160	−j 160	j 140
17	300	j 100	−j 50	100
18	400	j 200	−j 100	200
19	200	−j 100	j 50	100
20	500	−j 200	j 100	200
21	1000	j 300	−j 150	300
22	1500	−j 300	j 150	300
23	1200	j 300	−j 150	400
24	1000	<i>−j</i> 300	j 150	400
25	800	j 400	−j 200	300

ЗАДАЧА 2.2

На рис.16 изображены схемы, на вход которых воздействует одно из периодических напряжений $u_1(t)$. Графики напряжений приведены на рис.17. Схемы нагружены на активное сопротивление нагрузки $R_{\rm H}$. Численные значения амплитуды напряжения U_m , периода T, параметров схемы L, C и величины сопротивления нагрузки приведены в табл.5. Требуется:

- 1. Разложить напряжение $u_1(t)$ в ряд Фурье до пятой гармоники включительно, используя табличные разложения, приведенные в учебниках, и пояснения, которые даны в указаниях к данной задаче.
- 2. Обозначив сопротивления элементов схемы в общем виде как $R_{\rm H}$, $j x_L$, $-j x_C$, вывести формулу для напряжения на нагрузке \underline{U}_{2m} через комплексную амплитуду входного напряжения \underline{U}_{1m} . Полученное выражение пригодно для каждой гармоники, следует лишь учитывать,


что
$$x_L = k \cdot \omega \cdot L$$
; $x_C = \frac{1}{k \cdot \omega \cdot C}$, где k – номер гармоники.

- 3. Используя формулу п. 2, определить комплексную амплитуду напряжения на выходе (на нагрузке) для 0, 1-й и 3-й гармоник ряда Фурье в схемах рис.16 в, г; для 1-й, 3-й и 5-й гармоник в схемах рис.16 а, б.
- 4. Записать мгновенное значение напряжения на нагрузке в виде ряда Фурье.

5. Построить друг под другом линейчатые спектры входного (U_1) и выходного (U_2) напряжений.

Таблица 5

	Исходные данные к задаче 2.2											
$N_{\underline{0}}$	L,	<i>C</i> ,	Т , мс	U_m ,	R_{H} ,	Схема,	График,					
вар.	мΓн	мкФ		В	Ом	рис. 16	рис. 17					
1	1,44	0,8	0,48	12	35,4	б).	e).					
2	11	4	2	100	65,7	в).	д).					
3	0,5	0,4	0,167	50	27	г).	г).					
4	0,4	0,5	0,159	50	36,4	a).	б).					
5	0,7	0,24	0,134	45	41,4	б).	в).					
6	5	1	0,625	25	86,5	в).	e).					
7	5,6	2,28	1,20	48,5	38,6	г).	д).					
8	2,52	1,4	0,63	17	55,0	a).	д).					
9	4,2	1,44	0,8	40	41,4	б).	г).					
10	20	1	1,67	80	185	в).	в).					
11	1	1	0,314	100	25	г).	e).					
12	20	8	5,88	30	59	a).	e).					
13	1,5	0,3	0,354	33,4	64,5	б).	a).					
14	2,58	1,43	0,484	75	49,6	в).	3).					
15	3	0,9	0,565	40	44,7	г).	a).					
16	5,4	3	1,34	12,78	55,2	a).	ж).					
17	6,25	12,4	3,13	40	17,5	б).	б).					
18	6,25	10	2,5	70	31,5	в).	в).					
19	0,5	0,4	0,167	110	27	г).	e).					
20	0,7	0,875	0,277	70	36,4	a).	г).					
21	1,6	0,89	0,536	18,85	35,4	б).	б).					
22	9,57	3,48	1,74	104,6	65,7	в).	a).					
23	0,55	0,44	0,184	33,4	27	г).	a).					
24	0,357	0,447	0,142	150	36,4	a).	г).					
25	0.62	0,212	0,118	15	41,4	б).	a).					

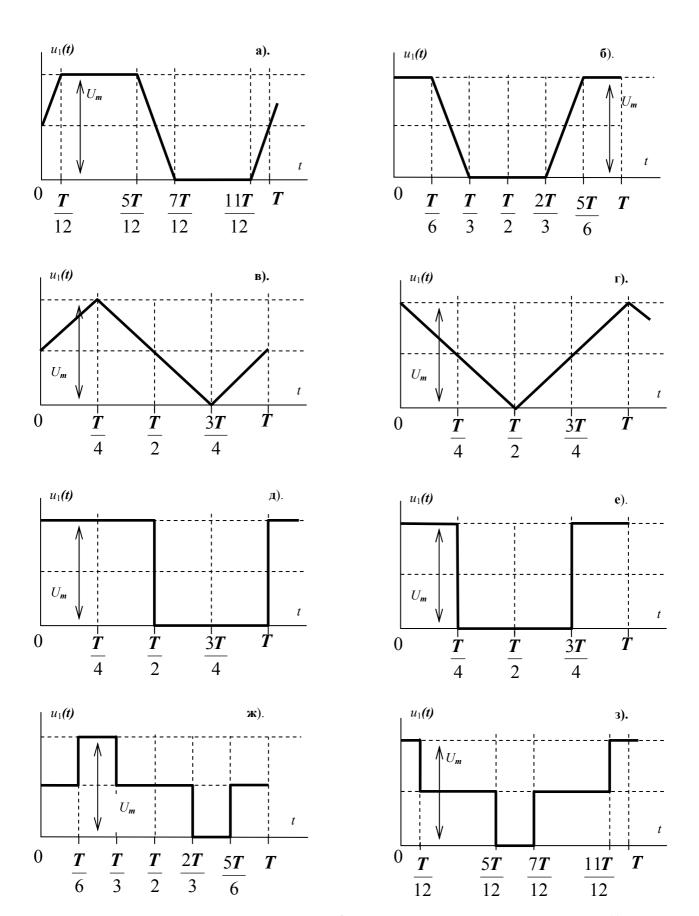


Рис. 17. К задаче 2.2. Графики периодических напряжений $u_1(t)$.

Задача 2.3

- 1. Используя схему и ее параметры из задачи 2.2, составить уравнения четырехполюсника в одной из матричных форм записи (<u>A</u>, <u>Z</u>, <u>Y</u>, <u>G</u>, <u>H</u>). Требуемая форма записи для каждого варианта приведена в табл. 6. Записать формулы для определения элементов матриц сначала в общем (буквенном), а затем в числовом виде.
- 2. Используя уравнения связи, проверить правильность определения коэффициентов. Определить меру передачи $\underline{\Gamma}$, коэффициенты затухания a и фазы b, характеристическое сопротивление \underline{Z}_c .
- 3. Для сопротивления $R_{\rm H}$ из условия задачи 2.2 определить ток \underline{I}_2 в нагрузке, приняв напряжение на нагрузке \underline{U}_2 = 100 В. Подставив \underline{U}_2 , \underline{I}_2 в основные уравнения четырехполюсника, определить входные напряжения и ток \underline{U}_1 , \underline{I}_1 .

Таблица 6 **Формы записи уравнений четырехполюсника (к задаче 2.3)**

Последняя цифра номера варианта	1, 6	2, 7	3, 8	4, 9	5, 0
Форма записи уравнений	<u>Y</u>	<u>G</u>	<u>Z</u>	<u>H</u>	<u>A</u>

МЕТОДИЧЕСКИЕ УКАЗАНИЯ К ЗАДАЧЕ 2.1

Трехфазная цепь и примеры ее расчета подробно рассмотрены в [1], глава 10. Симметричной трехфазной системой ЭДС называют систему из трех гармонических ЭДС одинаковой амплитуды и частоты, начальные фазы которых различаются на 120°. Если при этом такая система нагружена на три одинаковых комплексных сопротивления, то вся цепь будет симметричной.

Условия симметрии трехфазной цепи:

 $\underline{\boldsymbol{Z}}_{A} = \underline{\boldsymbol{Z}}_{B} = \underline{\boldsymbol{Z}}_{C} = \underline{\boldsymbol{Z}};$

$$e_{A}(t) = \sqrt{2} \cdot E \cdot \sin(\omega \cdot t + \alpha);$$
 $e_{B}(t) = \sqrt{2} \cdot E \cdot \sin(\omega \cdot t + \alpha - 120^{\circ});$
 $e_{C}(t) = \sqrt{2} \cdot E \cdot \sin(\omega \cdot t + \alpha + 120^{\circ})$
В комплексной форме:
 $\underline{E}_{A} = E \cdot e^{j \cdot \alpha};$
 $\underline{E}_{B} = \underline{a}^{2} \cdot \underline{E}_{A} = E \cdot e^{j \cdot (\alpha - 120^{\circ})};$
 $\underline{E}_{C} = \underline{a} \cdot \underline{E}_{A} = E \cdot e^{j \cdot (\alpha + 120^{\circ})};$
Здесь $\underline{a} = e^{j \cdot 120^{\circ}} -$ фазовый оператор.

Расчет симметричной трехфазной цепи производится на одну фазу, например, фазу А.

Для схемы рис.14 необходимо определить эквивалентное сопротивление фазы:

$$\underline{Z} = \underline{Z}_3 + \frac{\underline{Z}_1 \cdot \underline{Z}_2}{\underline{Z}_1 + \underline{Z}_2}$$

Далее определяются линейные токи:

$$\underline{I}_{A} = \frac{\underline{E}_{A}}{Z}; \ \underline{I}_{B} = \underline{a}^{2} \cdot \underline{I}_{A}; \ \underline{I}_{C} = \underline{a} \cdot \underline{I}_{A}$$

По правилу разброса (определение токов в параллельных ветвях) получаем:

$$\underline{I}_{1A} = \underline{I}_{A} \cdot \frac{\underline{Z}_{2}}{\underline{Z}_{1} + \underline{Z}_{2}}; \quad \underline{I}_{2A} = \underline{I}_{A} \cdot \frac{\underline{Z}_{1}}{\underline{Z}_{1} + \underline{Z}_{2}}$$

Токи в фазах А, В и С симметричны, поэтому

$$\underline{I}_{1B} = \underline{a}^2 \cdot \underline{I}_{1A}; \ \underline{I}_{2B} = \underline{a}^2 \cdot \underline{I}_{2A};$$

$$\underline{I}_{1C} = \underline{a} \cdot \underline{I}_{1A}; \ \underline{I}_{2C} = \underline{a} \cdot \underline{I}_{2A}$$

При расчете схемы рис.15 необходимо преобразовать треугольник сопротивлений в эквивалентную звезду. Поскольку нагрузка симметрична,

$$\underline{Z}_{a} = \underline{Z}_{b} = \underline{Z}_{c} = \frac{\underline{Z}_{3}}{3}$$

Сопротивления фаз
$$\underline{Z}_{A} = \underline{Z}_{B} = \underline{Z}_{C} = \underline{Z}_{1} + \underline{Z}_{2} + \frac{\underline{Z}_{3}}{3} = \underline{Z}_{C}$$

После определения линейных токов

$$\underline{I}_{A} = \frac{\underline{E}_{A}}{Z}; \ \underline{I}_{B} = \underline{a}^{2} \cdot \underline{I}_{A}; \ \underline{I}_{C} = \underline{a} \cdot \underline{I}_{A}$$

определяем фазные токи в нагрузке:

$$\underline{I}_{ab} = \frac{\underline{I}_{A}}{\sqrt{3}} \cdot e^{j \cdot 30^{\circ}}; \ \underline{I}_{bc} = \underline{a}^{2} \cdot \underline{I}_{ab}; \ \underline{I}_{ca} = \underline{a} \cdot \underline{I}_{ab}$$

Напряжение между заданными точками **a** и **b** определяется по второму закону Кирхгофа. Например, для схемы рис.14

$$\underline{U}_{ab} = \underline{I}_{A} \cdot \underline{Z}_{3} - \underline{I}_{B} \cdot \underline{Z}_{3} = (\underline{I}_{A} - \underline{I}_{B}) \cdot \underline{Z}_{3}$$

Активная мощность, вырабатываемая в трехфазной цепи

$$P = E_{A} \cdot I_{A} \cdot \cos \varphi_{A} + E_{B} \cdot I_{B} \cdot \cos \varphi_{B} + E_{C} \cdot I_{C} \cdot \cos \varphi_{C}.$$

Если трехфазная цепь симметрична, то

 $P = 3 \cdot E_{\rm A} \cdot I_{\rm A} \cdot \cos \phi_{\rm A}$, где $\phi_{\rm A}$ – угол сдвига между фазными током и напряжением.

Пример построения векторной диаграммы для симметричной трехфазной цепи приведен в [1], пример 10.1. Лучевую векторную диаграмму токов строят на комплексной плоскости из начала координат. Для построения топографической векторной диаграммы напряжений удобно в начало координат поместить точку N нейтрали генератора. Из точки N строятся векторы фазных ЭДС генератора. Векторы падений напряжения на сопротивлениях нагрузки направлены на диаграмме в сторону повышения потенциала (если смотреть по схеме, то навстречу току). Приведем пример построения векторной диаграммы для схемы рис.14.

Линейные напряжения:

$$\underline{U}_{AB} = \underline{E}_{A} \cdot \sqrt{3} \cdot e^{j30^{\circ}} = 173 \cdot e^{j120^{\circ}} \quad B; \quad \underline{U}_{BC} = \underline{a}^{2} \cdot \underline{U}_{AB} = 173 \cdot e^{j0^{\circ}} B; \\
\underline{U}_{CA} = \underline{a} \cdot \underline{U}_{AB} = 173 \cdot e^{j240^{\circ}} B.$$

Падения напряжений и ток в фазе А:

$$\underline{E}_{A} = 100 \cdot e^{j90^{\circ}} B; \quad \underline{I}_{A} = 10 \cdot e^{j60^{\circ}} A; \quad \underline{U}_{a} = \underline{I}_{A} \cdot \underline{Z}_{3} = 86,6 \cdot e^{j60^{\circ}} B$$

$$\underline{U}_{1A} = \underline{U}_{2A} = \underline{I}_{1A} \cdot \underline{Z}_{1} = \underline{I}_{2A} \cdot \underline{Z}_{2} = 50 \cdot e^{j150^{\circ}} B;$$

Напряжения и токи в фазах B и C сдвинуты относительно напряжений и тока в фазе A на $\mp 120^0$.

Диаграмма приведена на рис. 18. Следует отметить, что в данной схеме вследствие ее симметрии нейтральные точки генератора N и нагрузки n имеют одинаковый потенциал и на диаграмме совпадают.

МЕТОДИЧЕСКИЕ УКАЗАНИЯ К ЗАДАЧЕ 2.2

Разложение несинусоидальных функций в ряд Фурье подробно описано в [5], гл. 4.4. Например, для кривой рис.17з с учетом постоянной составляющей $\frac{1}{2} \cdot U_{\rm m}$ получим:

$$u_1(t) = \frac{U_m}{2} + \frac{2 \cdot U_m}{\pi} \cdot \left(\sin \frac{\omega T}{12} \cdot \cos \omega t + \frac{1}{3} \cdot \sin \frac{3\omega T}{12} \cdot \cos 3\omega t + \frac{1}{5} \cdot \sin \frac{5\omega T}{12} \cdot \cos 5\omega t \right)$$

здесь
$$\frac{\omega T}{12} = \alpha = 30^{\circ}$$
 – начальная фаза кривой, поэтому $\frac{3\omega T}{12} = 90^{\circ}$;

$$\frac{5\omega T}{12}$$
 = 150°. В результате получаем формулу для разложения $u_1(t)$ до пятой гармоники включительно:

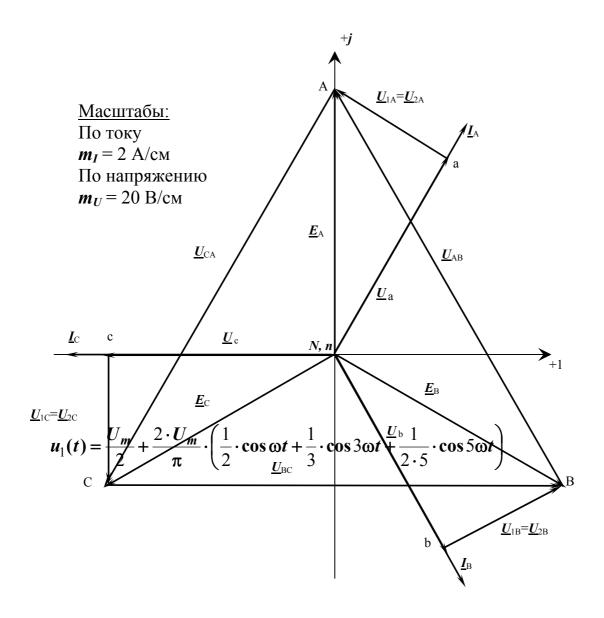


Рис. 18. Векторные диаграммы токов и напряжений для схемы рис. 14

Кривая рис.17ж запаздывает относительно кривой рис.17з на время $\frac{1}{4} \cdot T$, поэтому для нее разложение будет выглядеть следующим образом:

$$u_{1}(t) = \frac{U_{m}}{2} + \frac{2 \cdot U_{m}}{\pi} \cdot \left[\frac{1}{2} \cdot \cos \omega \left(t - \frac{T}{4} \right) + \frac{1}{3} \cdot \cos 3\omega \left(t - \frac{T}{4} \right) + \frac{1}{10} \cdot \cos 5\omega \left(t - \frac{T}{4} \right) \right] =$$

$$= \frac{U_{m}}{2} + \frac{2 \cdot U_{m}}{\pi} \cdot \left(\frac{1}{2} \cdot \sin \omega t + \frac{1}{3} \cdot \sin 3\omega t + \frac{1}{10} \cdot \sin 5\omega t \right)$$

Вывод формулы напряжения на выходе схемы \underline{U}_{2m} через параметры схемы и напряжение на ее входе \underline{U}_{1m} покажем на примере схемы рис.19:

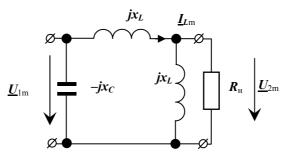


Рис. 19. Схема для расчета комплексных амплитуд гармоник напряжения \underline{U}_{2m}

Согласно второму закону Кирхгофа,

$$\underline{\boldsymbol{U}}_{1m} = \underline{\boldsymbol{U}}_{2m} + \underline{\boldsymbol{I}}_{Lm} \cdot \boldsymbol{j} \boldsymbol{x}_{L};$$

C другой стороны,
$$\underline{\boldsymbol{I}}_{Lm} = \frac{\underline{\boldsymbol{U}}_{1m}}{\boldsymbol{Z}_{2KB}}$$
, где

$$\underline{\boldsymbol{Z}}_{\scriptscriptstyle \mathrm{SKB}} = \boldsymbol{j} \cdot \boldsymbol{x}_L + \frac{\boldsymbol{j} \cdot \boldsymbol{x}_L \cdot \boldsymbol{R}_{\scriptscriptstyle \mathrm{H}}}{\boldsymbol{j} \cdot \boldsymbol{x}_L + \boldsymbol{R}_{\scriptscriptstyle \mathrm{H}}} = \frac{2 \cdot \boldsymbol{j} \cdot \boldsymbol{x}_L \cdot \boldsymbol{R}_{\scriptscriptstyle \mathrm{H}} - \boldsymbol{x}_L^2}{\boldsymbol{j} \cdot \boldsymbol{x}_L + \boldsymbol{R}_{\scriptscriptstyle \mathrm{H}}} \, .$$

Тогда $\underline{I}_L = \underline{U}_{1m} \cdot \frac{j \cdot x_L + R_H}{2 \cdot j \cdot x_L \cdot R_H - x_L^2}$. Подставляя это выражение в

уравнения для $\underline{\textit{U}}_{2m}$, получим:

$$\underline{U}_{2m} = \underline{U}_{1m} \cdot \left[1 - \frac{(j \cdot x_L + R_H) \cdot j \cdot x_L}{2 \cdot j \cdot x_L \cdot R_H - x_L^2} \right] = \underline{U}_{1m} \cdot \frac{j \cdot R_H}{2 \cdot j \cdot R_H - x_L} = \underline{U}_{1m} \cdot \frac{2 \cdot R_H^2 + j \cdot R_H \cdot x_L}{4 \cdot R_H^2 + x_L^2}$$

Выведенная формула справедлива только для гармоник, начиная с первой. Ее нельзя применить для расчета постоянной составляющей

выходного напряжения, поскольку при ее выводе производилось деление на x_L , которое для постоянной составляющей равно 0.

При выводе формулы можно использовать любые известные методы расчета, например, метод контурных токов.

При определении комплексных амплитуд гармонических составляющих необходимо учитывать, что

$$x_L^{(k)} = k \cdot \omega \cdot L = k \cdot x_L^{(1)};$$

$$x_C^{(k)} = \frac{1}{k \cdot \omega \cdot C} = \frac{x_C^{(1)}}{k},$$

где k — номер гармоники; $x_L^{(1)}$, $x_C^{(1)}$, $x_L^{(k)}$, $x_C^{(k)}$ — реактивные сопротивления индуктивности и емкости для первой и k-й гармоник соответственно.

Допустим, что на схему рис. 19, элементы которой имеют параметры: C = 10,61 мкФ; L = 159 мГн, $R_{\rm H} = 100$ Ом, воздействует напряжение, записываемое рядом Фурье ($\omega = 314$ с⁻¹):

$$u_1(t) = 40 + 30 \cdot \cos \omega t + 20 \cdot \cos 3\omega t + 10 \cdot \cos 5\omega t$$

Тогда:

$$U_{1m}^{(0)} = 40 \,\mathrm{B}, \quad \underline{U}_{1m}^{(1)} = 30 \cdot e^{j90^{\circ}} \,\mathrm{B}, \quad \underline{U}_{1m}^{(3)} = 20 \cdot e^{j90^{\circ}} \,\mathrm{B}, \quad \underline{U}_{1m}^{(5)} = 10 \cdot e^{j90^{\circ}} \,\mathrm{B}.$$

Определим реактивные сопротивления для отдельных гармоник: при ${\pmb k}=0$ (для постоянной составляющей) получаем ${\pmb x}_L^{(0)}=0,\ {\pmb x}_C^{(0)}=\infty$,

$$x_L^{(1)} = 1.314.0,159 \approx 50 \text{ Om}, x_C^{(1)} = \frac{1}{1.314.10.61.10^{-6}} \approx 300 \text{ Om};$$

$$x_L^{(3)} = 3 \cdot x_L^{(1)} = 150 \text{ Om}, x_C^{(3)} = \frac{x_C^{(1)}}{3} = 100 \text{ Om};$$

$$x_L^{(5)} = 5 \cdot x_L^{(1)} = 250 \text{ Om}, x_C^{(5)} = \frac{x_C^{(1)}}{5} = 60 \text{ Om}.$$

поэтому в данной схеме $U_{2m}^{(0)} = 0$;

Определим гармонический состав выходного напряжения. Как уже указывалось выше, постоянной составляющей на выходе схемы не будет: $\underline{U}_{2m}^{(0)} = 0$.

Комплексные амплитуды гармоник, начиная с первой, определятся как:

$$\underline{U}_{2m}^{(1)} = \underline{U}_{1m}^{(1)} \cdot \frac{2 \cdot R_{H}^{2} + j \cdot R_{H} \cdot x_{L}^{(1)}}{4 \cdot R_{H}^{2} + x_{L}^{(1)^{2}}} = 14,55 \cdot e^{j76^{\circ}} \text{ B},$$

$$\underline{U}_{2m}^{(3)} = \underline{U}_{1m}^{(3)} \cdot \frac{2 \cdot R_{H}^{2} + j \cdot R_{H} \cdot x_{L}^{(3)}}{4 \cdot R_{H}^{2} + x_{L}^{(3)^{2}}} = 8,00 \cdot e^{j53^{\circ}} \text{ B},$$

$$\underline{U}_{2m}^{(5)} = \underline{U}_{1m}^{(5)} \cdot \frac{2 \cdot R_{H}^{2} + j \cdot R_{H} \cdot x_{L}^{(5)}}{4 \cdot R_{H}^{2} + x_{L}^{(5)^{2}}} = 3,12 \cdot e^{j39^{\circ}} \text{ B},$$

Примечание. Емкостное сопротивление для расчета данной конкретной схемы не понадобилось, что вовсе не означает, что оно не понадобится для расчета схем другой конфигурации. Поэтому в примере приведена методика расчета такого сопротивления для всех гармоник воздействующего напряжения.

Итак, мгновенное значение напряжения на нагрузке запишется в виде

$$u_2(t) = 14,55 \cdot \sin(\omega \cdot t + 76^\circ) + 8,00 \cdot \sin(3 \cdot \omega \cdot t + 53^\circ) + 3,12 \cdot \sin(5 \cdot \omega \cdot t + 39^\circ)B$$

Линейчатые амплитудно-частотные спектры входного и выходного напряжений приведены на рис. 20.

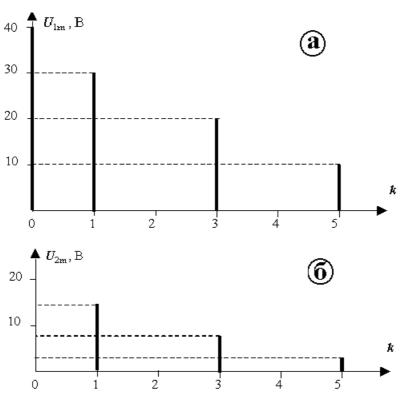


Рис. 20. Линейчатый амплитудно-частотный спектр входного (а) и выходного (б) напряжений

МЕТОДИЧЕСКИЕ УКАЗАНИЯ К ЗАДАЧЕ 2.3

Уравнения четырехполюсника в матричной форме и примеры определения элементов матриц приведены в [2], §§ 6.1-6.4 и в [4], задачи 4.1, 4.2, 4.8, 4.11, 4.13, 4.15.

Независимо от ориентации токов относительно выходных зажимов, основные уравнения четырехполюсника в матричной форме имеют вид:

$$\begin{pmatrix} \underline{\boldsymbol{U}}_{1} \\ \underline{\boldsymbol{I}}_{1} \end{pmatrix} = \begin{pmatrix} \underline{\boldsymbol{A}}_{11} & \underline{\boldsymbol{A}}_{12} \\ \underline{\boldsymbol{A}}_{21} & \underline{\boldsymbol{A}}_{22} \end{pmatrix} \cdot \begin{pmatrix} \underline{\boldsymbol{U}}_{2} \\ \underline{\boldsymbol{I}}_{2} \end{pmatrix} - \underline{\boldsymbol{A}} \text{-форма};$$

$$\begin{pmatrix} \underline{\boldsymbol{I}}_{1} \\ \underline{\boldsymbol{I}}_{2} \end{pmatrix} = \begin{pmatrix} \underline{\boldsymbol{Y}}_{11} & \underline{\boldsymbol{Y}}_{12} \\ \underline{\boldsymbol{Y}}_{21} & \underline{\boldsymbol{Y}}_{22} \end{pmatrix} \cdot \begin{pmatrix} \underline{\boldsymbol{U}}_{1} \\ \underline{\boldsymbol{U}}_{2} \end{pmatrix} - \underline{\boldsymbol{Y}} \text{-форма};$$

$$\begin{pmatrix} \underline{\boldsymbol{U}}_{1} \\ \underline{\boldsymbol{U}}_{2} \end{pmatrix} = \begin{pmatrix} \underline{\boldsymbol{Z}}_{11} & \underline{\boldsymbol{Z}}_{12} \\ \underline{\boldsymbol{Z}}_{21} & \underline{\boldsymbol{Z}}_{22} \end{pmatrix} \cdot \begin{pmatrix} \underline{\boldsymbol{I}}_{1} \\ \underline{\boldsymbol{I}}_{2} \end{pmatrix} - \underline{\boldsymbol{Z}} \text{-форма};$$

$$\begin{pmatrix} \underline{\boldsymbol{U}}_{1} \\ \underline{\boldsymbol{I}}_{2} \end{pmatrix} = \begin{pmatrix} \underline{\boldsymbol{H}}_{11} & \underline{\boldsymbol{H}}_{12} \\ \underline{\boldsymbol{H}}_{21} & \underline{\boldsymbol{H}}_{22} \end{pmatrix} \cdot \begin{pmatrix} \underline{\boldsymbol{I}}_{1} \\ \underline{\boldsymbol{U}}_{2} \end{pmatrix} - \underline{\boldsymbol{H}} \text{-форма};$$

$$\begin{pmatrix} \underline{\boldsymbol{I}}_{1} \\ \underline{\boldsymbol{U}}_{2} \end{pmatrix} = \begin{pmatrix} \underline{\boldsymbol{G}}_{11} & \underline{\boldsymbol{G}}_{12} \\ \underline{\boldsymbol{G}}_{21} & \underline{\boldsymbol{G}}_{22} \end{pmatrix} \cdot \begin{pmatrix} \underline{\boldsymbol{U}}_{1} \\ \underline{\boldsymbol{I}}_{2} \end{pmatrix} - \underline{\boldsymbol{G}} \text{-форма};$$

Для обратимых четырехполюсников справедливы уравнения связи:

$$\underline{\mathbf{A}}_{11} \cdot \underline{\mathbf{A}}_{22} - \underline{\mathbf{A}}_{12} \cdot \underline{\mathbf{A}}_{21} = 1; \quad \underline{\mathbf{Y}}_{21} = \underline{\mathbf{Y}}_{12}; \quad \underline{\mathbf{Z}}_{21} = \underline{\mathbf{Z}}_{12}; \quad \underline{\mathbf{H}}_{21} = -\underline{\mathbf{H}}_{12}; \quad \underline{\mathbf{G}}_{21} = -\underline{\mathbf{G}}_{12}.$$

Матричные коэффициенты могут быть найдены при расчете схемы замещения четырехполюсника. Любой сколь угодно сложный по внутреннему строению четырехполюсник может быть представлен Т-или П-схемой замещения (рис. 21).

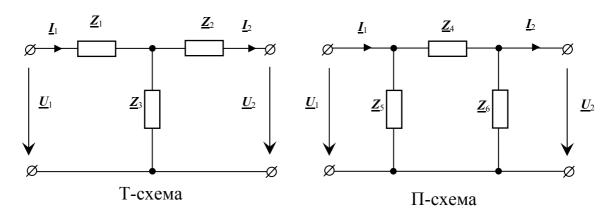


Рис. 21. Т- и П-схемы замещения четырехполюсника

Например, для Т-схемы по законам Кирхгофа можно записать:

$$\underline{I}_{1} = \underline{I}_{2} + \frac{\underline{U}_{2} + \underline{I}_{2} \cdot \underline{Z}_{2}}{\underline{Z}_{3}} = \underline{U}_{2} \cdot \frac{1}{\underline{Z}_{3}} + \underline{I}_{2} \cdot \left(1 + \frac{\underline{Z}_{2}}{\underline{Z}_{3}}\right)$$

$$\underline{U}_{1} = \underline{U}_{2} + \underline{I}_{2} \cdot \underline{Z}_{2} + \underline{I}_{1} \cdot \underline{Z}_{1} = \underline{U}_{2} \cdot \left(1 + \frac{\underline{Z}_{1}}{\underline{Z}_{3}}\right) + \underline{I}_{2} \cdot \left(\underline{Z}_{1} + \underline{Z}_{2} + \frac{\underline{Z}_{1} \cdot \underline{Z}_{2}}{\underline{Z}_{3}}\right)$$

Отсюда получаем выражения для коэффициентов А-формы:

$$\underline{\mathbf{A}}_{11} = 1 + \frac{\underline{\mathbf{Z}}_1}{\underline{\mathbf{Z}}_3}; \ \underline{\mathbf{A}}_{12} = \underline{\mathbf{Z}}_1 + \underline{\mathbf{Z}}_2 + \frac{\underline{\mathbf{Z}}_1 \cdot \underline{\mathbf{Z}}_2}{\underline{\mathbf{Z}}_3}; \ \underline{\mathbf{A}}_{21} = \frac{1}{\underline{\mathbf{Z}}_3}; \ \underline{\mathbf{A}}_{22} = 1 + \frac{\underline{\mathbf{Z}}_2}{\underline{\mathbf{Z}}_3}$$

Аналогичные выражения можно получить и для П-схемы:

$$\underline{\mathbf{A}}_{11} = 1 + \frac{\underline{\mathbf{Z}}_4}{\underline{\mathbf{Z}}_6}; \ \underline{\mathbf{A}}_{12} = \underline{\mathbf{Z}}_4; \ \underline{\mathbf{A}}_{21} = \frac{\underline{\mathbf{Z}}_4 + \underline{\mathbf{Z}}_5 + \underline{\mathbf{Z}}_6}{\underline{\mathbf{Z}}_5 \cdot \underline{\mathbf{Z}}_6}; \ \underline{\mathbf{A}}_{22} = 1 + \frac{\underline{\mathbf{Z}}_4}{\underline{\mathbf{Z}}_5}$$

Из коэффициентов $\underline{\mathbf{A}}$ -формы можно получить коэффициенты всех остальных форм записи уравнений четырехполюсника:

$$\underline{\mathbf{Y}}_{11} = \frac{\underline{\mathbf{A}}_{22}}{\underline{\mathbf{A}}_{12}}; \ \underline{\mathbf{Y}}_{12} = \underline{\mathbf{Y}}_{21} = -\frac{1}{\underline{\mathbf{A}}_{12}}; \ \underline{\mathbf{Y}}_{22} = \frac{\underline{\mathbf{A}}_{11}}{\underline{\mathbf{A}}_{12}};
\underline{\mathbf{Z}}_{11} = \frac{\underline{\mathbf{A}}_{11}}{\underline{\mathbf{A}}_{21}}; \ \underline{\mathbf{Z}}_{12} = \underline{\mathbf{Z}}_{21} = \frac{1}{\underline{\mathbf{A}}_{21}}; \ \underline{\mathbf{Z}}_{22} = \frac{\underline{\mathbf{A}}_{22}}{\underline{\mathbf{A}}_{21}};
\underline{\mathbf{H}}_{11} = \frac{\underline{\mathbf{A}}_{12}}{\underline{\mathbf{A}}_{22}}; \ \underline{\mathbf{H}}_{12} = \frac{1}{\underline{\mathbf{A}}_{22}}; \ \underline{\mathbf{H}}_{21} = -\frac{1}{\underline{\mathbf{A}}_{22}}; \ \underline{\mathbf{H}}_{22} = \frac{\underline{\mathbf{A}}_{21}}{\underline{\mathbf{A}}_{22}};
\underline{\mathbf{G}}_{11} = \frac{\underline{\mathbf{A}}_{21}}{\underline{\mathbf{A}}_{11}}; \ \underline{\mathbf{G}}_{12} = -\frac{1}{\underline{\mathbf{A}}_{11}}; \ \underline{\mathbf{G}}_{21} = \frac{\underline{\mathbf{A}}_{12}}{\underline{\mathbf{A}}_{12}};$$

Для симметричного четырехполюсника в режиме согласованной нагрузки, когда $\underline{Z}_{1\text{вх}} = \underline{Z}_{1\text{вх}} = \underline{Z}_{\text{с}}$, можно определить характеристическое сопротивление $\underline{Z}_{\text{с}} = \sqrt{\frac{\underline{A}_{12}}{\underline{A}_{21}}}$ и меру передачи:

$$\underline{\Gamma} = \ln \left(\underline{\mathbf{A}}_{11} + \sqrt{\underline{\mathbf{A}}_{12} \cdot \underline{\mathbf{A}}_{21}} \right) = \boldsymbol{a} + \boldsymbol{j} \cdot \boldsymbol{b} ,$$

здесь a [Нп] — коэффициент затухания; b [рад] — коэффициент фазы.

5. УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

5.1. Литература обязательная

- 1. Основы теории цепей / Г.В. Зевеке, П.А. Ионкин и др. М.: Энергоатомиздат, 1989. 526 с.
- 2. Бессонов Л.А. Теоретические основы электротехники. Электрические цепи. М.: Высшая школа, 1996. 559 с.
- 3. Купцов А.М. Основы теории цепей. Часть 1. Томск: Изд. ТПУ, 1999.– 132 с.
- 4. Сборник задач и упражнений по ТОЭ/ Под. ред. П.А. Ионкина. М.: Энергоатомиздат, 1982. 768 с.
- 5. Бронштейн И.Н., Семендяев К.А. Справочник по математике для инженеров и учащихся втузов. М.: Наука, 1986. 544 с.

5.2. Учебно-методические пособия

6. Руководство к лабораторным работам по теоретическим основам электротехники/ В.Д. Эськов, Г.В.Носов, Ю.Н.Исаев — Томск: Изд. ТПУ, 2001.-52 с.

ТЕОРЕТИЧЕСКИЕ ОСНОВЫ ЭЛЕКТРОТЕХНИКИ. Часть 1

Рабочая программа, методические указания и контрольные задания № 1 и № 2

Составители: Петр Николаевич Бычков, Сергей Владимирович Пустынников, Раиса Николаевна Сметанина

Рецензент: В.Д. Эськов к.т.н., доцент каф. ТОЭ АЭЭФ

Подписано к печати Формат 60х84/16. Бумага офсетная. Плоская печать. Усл.печ.л. 2,33. Уч.-изд.л. 2,11. Тираж экз. Заказ . Цена свободная. Издательство ТПУ. 634050, Томск, пр. Ленина, 30.