

Simulation study of effects induced by final granularity of detector in particle flow deduced from experimental data in relativistic heavy ion collisions for HADES experiment

Speaker: Alexandr Prozorov

Supervisor: Dr. Andrej Kugler

27th of February 2017 TPU – NPI Monthly seminar

- Brief introduction to QGP in relativistic heavy-ion collision
- HADES experiment
- Collision characterization
- Goals and plans for diploma thesis
- First results

Defined as: free movement of quarks and gluons - no longer confined to hadrons (e.g. protons, neutrons)

Normal Nuclear Matter

Quark Gluon Plasma

Quark-gluon plasma

Phase diagram of matter in Temperature-Baryon Density plane. The two distinct phases of normal hadronic matter and QGP are indicated

Setup of HADES experiment

Au+Au collision

ŴF

• Different approaches and one of them is to use flow

In non-central collisions flow of particles is usually described by Fourier decomposition with respect to reaction plane:

$$\frac{dN}{d\varphi} \sim 1 + 2\sum_{n} v_n \cos n(\varphi - \Phi_{RP}), \quad \Phi_{RP} = 0 \text{ for generators itself}$$
Directed flow
$$Ny \text{ purpose} \qquad v_1 = \left\langle \frac{p_x}{p_t} \right\rangle = \left\langle \cos(\varphi') \right\rangle$$

My purpose is to confirm experimental results

Rapidity is a smart way to characterize longitudinal momentum in the beam-direction.

Rapidity is defined a
$$y = rac{1}{2} \ln \left(rac{E+p_z}{E-p_z}
ight)$$

- Create a model of detector to see the dependence between direct flow and different granularity using QMD data Au+Au collisions at 1.23 AGev
 - read QMD input data
 - calculate momenta in CM system
 - study close track pairs
 - study of effects
- Simulate a model using Hgeant software
 - Check current status of the flow
 - Modify granularity

First results

1	UQMD version:	20030	1000 2003	0 output_	file 14											
2	projectile: (m	ass, char) 1	97 79 tar	get: (mas	s, char)	197 7	79									
3	transformation	betas (NN,lab	,pro) 0.0	0000000 0	.6292914 -	0.6292	2914									
4	impact_paramete	r_real/min/ma	x(fm): 6.9	91 0.00 1	0.00 tota	l_cros	ss_section(mbar	m): 3141.5	59							
5	equation_of_state: 0 E_lab(GeV/u): 0.1230E+01 sqrt(s)(GeV): 0.2414E+01 p_lab(GeV/u): 0.1955E+01															
6	event#	1 random seed	: 1391164247	7 (auto)	total_tim	e(fm/o	:): 100 De	lta(t)_0(fm/o	:): 100.0	000						
7	op 0 0 0	0 1	0 0 0	0 0	0 0	0	0 0									
8	op 0 0 0	0 0	0 1 0	1 * 0	0 0	0	2 1									
9	op 0 0 0	1 1	0 0 0	0 0	0 0	0	1 0									
LO	pa 0.1000E+01	0.5200E+00	0.2000E+01	0.3000E+	00 0.000	0E+00	0.3700E+00	0.0000E+00	0.9300E-01	0.3500E+00	0.2500E+00	0.0000E+00	0.5000E+00			
11	pa 0.2700E+00	0.4900E+00	0.2700E+00	0.1000E+	01 0.160	0E+01	0.8500E+00	0.1550E+01	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00			
12	pa 0.9000E+00	0.5000E+02	0.1000E+01	0.1000E+	01 0.100	0E+01	0.1500E+01	0.1600E+01	0.0000E+00	0.2500E+01	0.1000E+00	0.3000E+01	0.2750E+00			
13	pa 0.4200E+00	0.1080E+01	0.8000E+00	0.5000E+	00 0.000	0E+00	0.5500E+00	0.5000E+01	0.8000E+00	0.5000E+00	0.8000E+06	0.1000E+01	0.2000E+01			
L4	pvec: r0	rx	ry		rz		p0	px	ру	I	z	m	ityp 2i3 chg lcl#	ncl or		
15	413	100														
16																
	1090 70	0 358	32 149	333	0	0										20
L7	1090 70 0.10000000E+0	0 358 3 0.35757397	32 149 E+02 -0.41143	333 3918E+02 -	0 0.16112840	0 E+02	0.12371926E+01	0.540360638	2+00 -0.557320	584E+00 -0.219	954213E+00	0.93800002E+00	1 -1 0	144	8	
18	1090 70 0.10000000E+0 0.10000000E+0	0 358 3 0.35757397 3 0.15706573	32 149 E+02 -0.4114: E+02 -0.88087	333 3918E+02 - 7713E+00	0 0.16112840 0.46554875	0 E+02 E+02	0.12371926E+01 0.11187586E+01	0.54036063E	2+00 -0.557320 2+00 0.563138	584E+00 -0.219 856E-02 0.580	954213E+00 572426E+00	0.93800002E+00 0.93800002E+00	1 -1 0 1 1 1	144 50	8 6	0
L7 L8 L9	1090 70 0.10000000E+0 0.10000000E+0 0.10000000E+0	0 358 3 0.35757397 3 0.15706573 3 0.90143089	32 149 E+02 -0.4114; E+02 -0.8808 E+01 0.12774	333 3918E+02 - 7713E+00 4686E+02	0 0.16112840 0.46554875 0.52122105	0 E+02 E+02 E+02	0.12371926E+01 0.11187586E+01 0.12287586E+01	0.540360638 0.165830278 0.633656228	2+00 -0.557320 2+00 0.563138 2-01 0.148178	684E+00 -0.219 856E-02 0.580 800E+00 0.777	954213E+00 572426E+00 719473E+00	0.93800002E+00 0.93800002E+00 0.93800002E+00	1 -1 0 1 1 1 1 1 1	144 50 147	8 6 2	0 0
L7 L8 L9 20	1090 70 0.1000000E+0 0.1000000E+0 0.1000000E+0 0.10000000E+0	0 358 3 0.35757397 3 0.15706573 3 0.90143089 3 0.55012064	32 149 E+02 -0.4114: E+02 -0.8808' E+01 0.12774 E+02 0.65522	333 3918E+02 - 7713E+00 4686E+02 2958E+01	0 0.16112840 0.46554875 0.52122105 0.49560385	0 E+02 E+02 E+02 E+02 E+02	0.12371926E+01 0.11187586E+01 0.12287586E+01 0.17112913E+01	0.540360638 0.165830278 0.633656228 0.101708278	2+00 -0.557320 2+00 0.563138 2-01 0.148178 2+01 0.140520	684E+00 -0.219 856E-02 0.586 800E+00 0.777 449E+00 0.997	954213E+00 572426E+00 719473E+00 723100E+00	0.93800002E+00 0.93800002E+00 0.93800002E+00 0.93800002E+00	1 -1 0 1 1 1 1 1 1 1 -1 0	144 50 147 45	8 6 2 10	0 0 30
L7 L8 L9 20 21	1090 70 0.10000000E+0 0.10000000E+0 0.10000000E+0 0.10000000E+0 0.10000000E+0	0 358 3 0.35757397 3 0.15706573 3 0.90143089 3 0.55012064 3 -0.25736357	32 149 E+02 -0.4114: E+02 -0.8808' E+01 0.1277' E+02 0.65522 E+02 -0.6044	333 3918E+02 - 7713E+00 4686E+02 2958E+01 4285E+01 -	0 0.16112840 0.46554875 0.52122105 0.49560385 0.39453144	0 E+02 E+02 E+02 E+02 E+02 E+02	0.12371926E+01 0.11187586E+01 0.12287586E+01 0.17112913E+01 0.11270308E+01	0.540360638 0.165830278 0.633656228 0.101708278 -0.333509198	2+00 -0.557324 2+00 0.563138 2-01 0.148178 2+01 0.140524 2+00 -0.672910	584E+00 -0.219 856E-02 0.580 800E+00 0.777 449E+00 0.997 011E-01 -0.520	954213E+00 572426E+00 719473E+00 723100E+00 402102E+00	0.93800002E+00 0.93800002E+00 0.93800002E+00 0.93800002E+00 0.93800002E+00	1 -1 0 1 1 1 1 1 1 1 -1 0 1 -1 0	144 50 147 45 224	8 6 2 10 20	0 0 30 20
L7 L8 L9 20 21 22	1090 70 0.100000000000000 0.1000000000000 0.100000000	0 358 3 0.35757397 3 0.15706573 3 0.90143089 3 0.55012064 3 -0.25736357 3 0.10563890	32 149 E+02 -0.4114: E+02 -0.8808' E+01 0.1277' E+02 0.65522 E+02 -0.60444 E+02 0.53008	333 3918E+02 - 7713E+00 4686E+02 2958E+01 4285E+01 - 8522E+00	0 0.16112840 0.46554875 0.52122105 0.49560385 0.39453144 0.56782218	0 E+02 E+02 E+02 E+02 E+02 E+02 E+02	0.12371926E+01 0.11187586E+01 0.12287586E+01 0.17112913E+01 0.11270308E+01 0.13021491E+01	0.540360638 0.165830278 0.633656228 0.101708278 -0.333509198 -0.124341278	2+00 -0.557320 2+00 0.563138 2-01 0.148178 2+01 0.140520 2+00 -0.672910 2+00 -0.179350	684E+00 -0.219 856E-02 0.586 800E+00 0.77 449E+00 0.99 011E-01 -0.524 447E+00 0.916	954213E+00 572426E+00 719473E+00 723100E+00 402102E+00 581236E+00	0.93800002E+00 0.93800002E+00 0.93800002E+00 0.93800002E+00 0.93800002E+00 0.89856478E+00	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	144 50 147 45 224 0	8 2 10 20 0	0 30 20 0
L7 L8 L9 20 21 22 23	1090 70 0.100000000000000 0.1000000000000 0.100000000	0 358 3 0.35757397 3 0.15706573 3 0.90143089 3 0.55012064 3 -0.25736357 3 0.10563890 3 -0.32419850	32 149 E+02 -0.4114; E+02 -0.8808; E+01 0.12774 E+02 0.6552; E+02 -0.60444 E+02 0.53008; E+02 0.21273	333 3918E+02 - 7713E+00 4686E+02 2958E+01 4285E+01 - 8522E+00 1454E+02 -	0 0.16112840 0.46554875 0.52122105 0.49560385 0.39453144 0.56782218 0.97317388	0 E+02 E+02 E+02 E+02 E+02 E+02 E+02 E+0	0.12371926E+01 0.11187586E+01 0.12287586E+01 0.17112913E+01 0.1270308E+01 0.13021491E+01 0.10811268E+01	0.540360638 0.165830278 0.633656228 0.101708278 -0.333509198 -0.124341278 -0.425092198	2+00 -0.55732(2+00 0.56313) 2-01 0.148175 2+01 0.14052(2+00 -0.672910 2+00 -0.17935(2+00 0.286662)	684E+00 -0.219 856E-02 0.586 800E+00 0.777 449E+00 0.997 011E-01 -0.524 447E+00 0.916 268E+00 -0.162	954213E+00 572426E+00 719473E+00 723100E+00 402102E+00 581236E+00 L59265E+00	0.93800002E+00 0.93800002E+00 0.93800002E+00 0.93800002E+00 0.93800002E+00 0.89856478E+00 0.93800002E+00	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	144 50 147 45 224 0 218	8 2 10 20 0 8	0 30 20 0 30
L7 L8 L9 20 21 22 23 24	1090 70 0.1000000E+0 0.1000000E+0 0.1000000E+0 0.1000000E+0 0.1000000E+0 0.1000000E+0 0.1000000E+0	0 358 3 0.35757397 3 0.15706573 3 0.90143089 3 0.55012064 3 0.25736357 3 0.10563890 3 -0.32419850 3 0.13218519	32 149 E+02 -0.4114: E+02 -0.8808' E+01 0.1277' E+02 0.6552; E+02 -0.6044 E+02 0.53000 E+02 0.2127' E+02 -0.4092;	333 3918E+02 - 7713E+00 4686E+02 2958E+01 4285E+01 - 8522E+00 1454E+02 - 3778E+01	0 0.161128401 0.465548751 0.521221051 0.495603851 0.394531441 0.567822181 0.973173881 0.571020011	0 E+02 E+02 E+02 E+02 E+02 E+02 E+02 E+0	0.12371926E+01 0.11187586E+01 0.12287586E+01 0.17112913E+01 0.11270308E+01 0.13021491E+01 0.10811268E+01 0.13019747E+01	0.54036063 0.16583027 0.633656227 -0.33350919 -0.33350919 -0.12434127 0.12434279 0.12456687	2+00 -0.557324 2+00 0.563133 2+01 0.148173 2+01 0.140524 2+00 -0.672910 2+00 0.179354 2+00 0.286662 2+00 -0.709835	584E+00 -0.219 556E-02 0.584 800E+00 0.777 449E+00 0.997 011E-01 -0.524 447E+00 0.914 268E+00 -0.163 521E-01 0.893	954213E+00 572426E+00 719473E+00 723100E+00 402102E+00 581236E+00 L59265E+00 L48103E+00	0.93800002E+00 0.93800002E+00 0.93800002E+00 0.93800002E+00 0.93800002E+00 0.8956478E+00 0.93800002E+00 0.93800002E+00	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	144 50 147 45 224 0 218 2	8 2 10 20 0 8 7	0 30 20 30 30 0

UrQMD input data

Speaker: Alexandr Prozorov Supervisor: Dr. Andrej Kugler

First results(1)

Distribution of particles per cell of detector no close track rejection

Distribution of particles per cell of detector with final granularity

First results(2)

Experimental Data

First results(3)

First results(3)

Conclusion

From 2 to 25 Feb.

- A model of detector was created to see the dependence direct flow on granularity
 - -used Ubuntu 16/04 OS and root package 5.34/34
 - read UrQMD input data
 - study close track pairs
 - study of effeciency

Next steps:

- Improve model using more input data
- Compare with experimental data
- Monte Carlo model using Hgeant 2.4-9
 -solve problem of installation

Thank you for your attention *****