

TPU – NPI Monthly seminar

«Software design for a detector of

ionizing radiation»

 Speaker:
 5th year student Kseniia Larina, TPU, Tomsk

Work chief:Ing. David Chvátil, NPI of the CASIng. Pavel Krist, Ph.D., NPI of the CASScience advisor:RNDr. Ivana Krausová, Ph.D., NPI of the CAS

28th April 2017

- Transfer to the computer and graphical visualization of energy spectra;
- 2. Comparison of two methods of obtaining energy spectra;
- 3. Implementation of false signal filtration;
- Dosimetric calibration of the detector using alpha particles from radiation sources ²⁵²Cf, ²⁴¹Am, ²³⁹Pu;
- 5. Next steps and conclusion.

Transfer to the computer of energy spectra

ÛF

Transmission stages:

TOMSK POLYTECHNIC UNIVERSITY Graphical visualization of energy spectra

Example of the energy spectrum

Comparison of two methods of obtaining energy spectra

Spectrum of the photons from ¹³⁷Cs (peak detector)

Comparison of two methods of obtaining energy spectra

Spectrum of the photons from ¹³⁷Cs (time over threshold detector)

Two filtration equations are obtained: for pulses with a duration less than 14.5 μ s - equation (1), and more than 14.5 μ s - equation (2).

$$V = 10.63 * T - 47.82, \tag{1}$$

$$V = 70.34 * T - 913,7,$$
 (2)

Result of the false signal filtration

Result of the filtration for the radiation source ¹³⁷Cs

Type of experiment	N _{TOTAL} , particles	N _{LOST} , particles	δ _{LOST} , %
Without filtration	34456	0	0
With filtration	28406	5776	20,33

The quality of pulse recording has been significantly improved. This plays an important role in recalculating the energy spectrum into radiation dose.

Dosimetric calibration of the detector using alpha particles

- Calibration is important for the correct conversion of the energy spectrum into an absorbed dose D.
- For this purpose it is necessary to determine the channel width of the energy spectrum.
- Since high-energy particles are present in cosmic rays, commercially available radionuclide sources of α-radiation have been chosen for this calibration: californium-252, americium-241, plutonium-239.

General information about radiation sources

Radiation source	Particle type	Energy, keV	Intensity, %
²⁵² Cf		6118,24	84,20
	α	6075,77	15,70
²⁴¹ Am	α	5485,56	84,50
		5442,80	13,00
	γ	59,54	35,90
²³⁹ Pu	α	5156,59	73,30
		5144,30	15,10
		5105,50	11,50

- In the detector the original photodiodes TEMD5080X01 with an epoxy layer was replaced by a photodiode S2744-09 without a protective epoxy layer.
- The spectra was recorded with the minimum distance between the radiation source and the photodiode.

Energy spectra of α particles from the radiation source ²⁵²Cf

Energy spectra of α particles from the radiation source ²⁴¹Am

Energy spectra of α particles from the radiation source ²³⁹Pu

Comparing the energy of α particles from different sources with their peaks, it is possible to calculate the amount of energy per channel of the energy spectrum.

Radiation source		Channel	Channel	Average channel
	Energy, keV	number of	width,	width,
		the peak	keV/channel	keV/channel
²⁵² Cf	6118,24	80	76,48	
²⁴¹ Am	5485,56	72	76,19	76,17
²³⁹ Pu	5156,59	68	75,83	

Between the radiation source and the sensitive surface of the photodiode there is a gap filled with air (0.2 mm) due to the construction of the photodiode.

Model of silicon PIN-photodiode S2744-09 - side view

Using the SRIM program, the value of energy loss by α -particles (6 MeV) in air was calculated. This value equals 80.78 keV/mm. Thus, the energy loss in the gap of the photodiode can be calculated from the equation (3):

$$E_{loss} = 80,78 \frac{keV}{mm} \cdot 0,2 \ mm = 16,16 \ keV \tag{3}$$

Subtracting the energy loss from the initial source energies, the corrected value of the average channel width of the energy spectrum was obtained.

			Channel	Old average	New average
Radiation	Energy,	Channel	width,	channel	channel
source	keV	number	keV/chan	width,	width,
			nel	keV/channel	keV/channel
²⁵² Cf	6102,08	80	76,28		
²⁴¹ Am	5469,40	72	75,96	76,17	75,96 ≈ 76
²³⁹ Pu	5140,43	68	75,60		

The relationship between the absorbed energy in photodiode and the channel number is described by the equation (4):

$$\varepsilon_i = i \cdot \Delta \varepsilon, \tag{4}$$

where *i* is the channel number, $\Delta \varepsilon = 76 keV/ch$ is the channel width.

Conclusion

Progress (from 27.03 to 28.04):

- ✓ Data transfer and graphical visualization of spectra are configured.
- Two methods of measuring particles energy are compared. The second method is considered the worst.
- \checkmark Filtration of the false signals is implemented and tested.
- Dosimetric calibration of the detector using 6 MeV alpha particles is carried out.
 The channel width of the energy spectrum equals 76 keV/channel.

Next steps:

- To calibrate the detector with 1 and 3 MeV protons in the Tandetron laboratory;
- To calculate the absorbed dose D and ambient dose equivalent H*(10);
- > To carry out final experiments in the Cyclotron and Microtron laboratory.
- To compare the data with the commercially available Liulin detector with silicon diode;