Per. n 1 emi 12.01.2011

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ

Государственное образовательное учреждение высшего профессионального образования

"НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ"

Проректор-директор ИФВТ ТПУ
В.В. Лопатин

" 2011 г.

3.Г. Бикбаева, В.В. Полисадова, А.А. Панина

МИКРОТВЕРДОСТЬ КЕРАМИЧЕСКИХ МАТЕРИАЛОВ

Методические указания к выполнению лабораторных работ по курсу «Методы и оборудование для диагностики структуры и свойств наноматериалов» для студентов технических и естественно-научных специальностей

> Издательство Томского политехнического университета 2011

УДК 621.763 ББК 35.41:22.251я73 Б60

Бикбаева З.Г.

Б60 Микротвердость керамических материалов: Методические указания к выполнению лабораторных работ по курсу «Методы и оборудование для диагностики структуры и свойств наноматериалов» для студентов технических и естественно-научных специальностей / 3.Г. Бикбаева, В.В. Полисадова, А.А. Панина; Национальный исследовательский Томский политехнический университет. — Томск: Издательство Томского политехнического университета, 2011. — 23 с.

УДК 621.763 ББК 35.41:22.251я73

Методические указания рассмотрены и рекомендованы к изданию методическим семинаром кафедры наноматериалов и нанотехнологий « 15 » ноября 2010 г.

Зав. кафедрой НМНТ доктор технических наук

Председатель методической комиссии ИФВТ

-).Л. Хасанов

О.А. Лесина

Pецензент Кандидат физико-математических наук, доцент, старший научный сотрудник ФТИ НИ ТПУ $B.K.\ Cmpyu$

© ГОУ ВПО «Национальный исследовательский Томский политехнический университет», 2011 © Бикбаева З.Г., Полисадова В.В., Панина А.А., 2011 © Оформление. Издательство Томского политехнического университета, 2011

МИКРОТВЕРДОСТЬ КЕРАМИЧЕСКИХ МАТЕРИАЛОВ

Цель работы: ознакомиться с существующими методами определения твердости и получить практические навыки в определении микротвердости керамических материалов.

Задачи работы:

- изучить основы методов измерения твердости,
- ознакомиться с устройством микротвердомера ПМТ-3,
- освоить принцип работы фотоэлектрического окулярного микрометра ФОМ-2,
- провести юстировку микротвердомера ПМТ-3,
- определить микротвердость предоставленных керамических материалов.

Объекты исследования: образцы оксидных керамических материалов.

Оборудование: микротвердомер ПМТ-3М, микрометр фотоэлектрический окулярный ФОМ-2.

ТЕОРЕТИЧЕСКОЕ СОДЕРЖАНИЕ

Твердость

Твердость — это свойство, отражающее способность поверхностного слоя материала сопротивляться упругой и пластической деформации при внедрении в него другого, более твердого тела (индентора). В отличие от модуля упругости, коэффициента теплового расширения, температуры плавления и других свойств материала твердость не является физической постоянной. Это сложная характеристика, которая зависит от упругих свойств, предела текучести, хрупкости, а кроме того и от метода испытания. Поэтому и в понятие твердости различные авторы вкладывают различный смысл [1-4].

Выбор метода измерения зависит от различных факторов: твердости материала, размеров детали (образца), толщины слоя, твердость которого нужно замерить и т. д. Условия определения твердости, требования к оборудованию, приборам и образцам и т. д. регламентируются государственными стандартами.

В зависимости от скорости приложения нагрузки методы определения твердости делятся на статические и динамические. Статическими называются такие методы, при которых индентор медленно и непрерывно вдавливается в испытуемый материал с определенным усилием. К динамическим относятся те методы, в основе которых лежит измерение величины упругого отскока.

По способу приложения нагрузки различают следующие способы измерения твердости [1]:

- 1. Методы, основанные на вдавливании жесткого наконечника в виде шара, конуса, пирамиды, цилиндра, лезвия в испытуемое тело, обычно с плоской поверхностью. Им родственны методы, базирующиеся на взаимном сдавливании двух цилиндрических образцов, изготовленных из испытуемого материала.
- 2. Методы, основанные на царапании испытуемого тела набором эталонных образцов различной твердости либо жестким наконечником в виде шара, конуса, пирамиды, иглы, лезвия. Твердость, определенная царапанием, характеризует сопротивление разрушению.
- 3. Методы, основанные на колебании маятника, опирающегося жестким наконечником той или иной формы на испытуемое тело. По принципу действия эти методы являются динамическими и рассматриваются обычно вместе с последними.

Следует отметить, что твердость, определенная по отскоку, характеризует упругие свойства материала, в то время как твердость, определенная вдавливанием, – сопротивление пластической деформации [5].

Методы вдавливания (индентирования) являются наиболее простыми, быстрыми, чувствительными и универсальными методами исследования механических свойств различных материалов, покрытий, тонких пленок и т. д., не требующими изготовления специальных образцов и эталонов [6]. В подавляющем большинстве случаев методы индентирования можно считать неразрушающими способами испытания или контроля, допускающими последующую эксплуатацию контролируемого материала или изделия. В простейших случаях по результатам внедрения жесткого индентора определяют твердость материала H.

Методы исследования материалов посредством локального нагружения принято условно разделять на макро-, микро- и наноиндентирование, ориентируясь в основном на характерные размеры области испытаний. Границы между ними размыты и весьма условны. Международный стандарт ISO 14577, принятый несколько лет назад, выделяет в подобных испытаниях три диапазона:

- 1) при макроиндентировании 2 H \leq $P \leq$ 30000 H;
- 2) при микроиндентировании P < 2 H, h > 20 нм;

при наноиндентировании P = 0.1 - 1960 мH, $h \le 20$ нм, где P — сила вдавливания индентора, h — глубина отпечатка.

В лабораторных исследованиях макротвердость определяют при нагрузках свыше 49 Н (5 кг), а микротвердость – при нагрузках от $0,049~{\rm H}$ (5 г) до $4,9~{\rm H}$ (500 г).

Наиболее удобными с практической точки зрения оказались способы измерения твердости по Бринеллю, Роквеллу и Виккерсу (рис. 1).

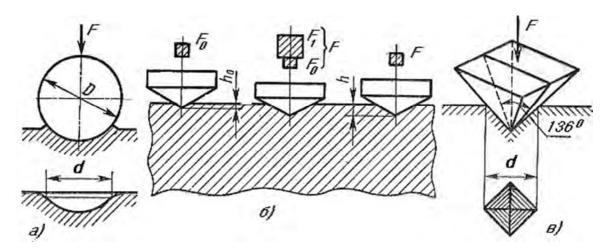


Рис. 1. Схема измерений микротвердости: а) по Бринеллю, б) по Роквеллу, в) по Виккерсу [7]

Твердость по Бринеллю – это способ измерения твердости вдавливанием стального шарика в испытуемый материал (в основном металлы и сплавы). Используется стальной шарик диаметром 10, 5 или 2,5 мм при действии нагрузки от 5000 Н до 30000 Н. Продолжительность выдержки под нагрузкой для черных металлов 10 – 15 секунд, а для цветных металлов 10 – 180 секунд в зависимости от материала и его твердости. Для полимерных материалов твердость, как и их прочность, значительно зависит от длительности приложения нагрузки [5]. Следует отметить, что способ измерения по Бринеллю не является универсальным, его используют для материалов малой и средней твердостью.

Для расчета твердости по Бринеллю (НВ) стандартизованы формулы (1) и (2) [8]. Согласно формуле (1) твердость по Бринеллю (НВ) является отношением нагрузки P к площади поверхности отпечатка. Поскольку после снятия нагрузки на поверхности образуется отпечаток в виде сферической лунки диаметром d, формула (2) одинаково применяется вместе с формулой (1). Число твердости по Бринеллю (НВ) по ГОСТ 9012–59 записывают без единиц измерений [7], например HB 210. $HB = P/F = -2P/\pi D \Big(D - \sqrt{D^2 - d^2} \Big), \tag{1}$

$$HB = P/F = -2P/\pi D(D - \sqrt{D^2 - d^2}), \tag{1}$$

$$HB = P/\pi Dh, \qquad (2)$$

где P — нагрузка на индентор;

F – площадь поверхности отпечатка;

d – диаметр отпечатка, мм;

D – диаметр вдавливаемого шарика, мм;

h – глубина внедрения.

Твердость по Виккерсу. При стандартном методе измерения твердости по Виккерсу (ГОСТ 2999–75) в поверхность образца вдавливают алмазную четырехгранную пирамиду с углом при вершине 136 °. Отпечаток получается в виде квадрата (рис. 1, ϵ). Диагональ отпечатка измеряют после снятия нагрузки. Число твердости HV вычисляют по формуле:

$$HV = H = P/F = kP/d^2 = 1,854P/d^2$$
,

где P — нагрузка на индентор;

F – площадь поверхности отпечатка;

d – диагональ отпечатка, мм;

k – коэффициент, зависящий от формы индентора и для пирамиды Виккерса равный 1,854.

Твердость по Роквеллу. Этот метод измерения твердости (ГОСТ 9013–59) наименее трудоемок. Число твердости отсчитывают непосредственно по шкале твердомера, а определяют его по глубине отпечатка, получаемого в результате вдавливания индентора [5, 7]. Процесс испытания заключается в предварительном приложении небольшой нагрузки для создания надежного контакта индентора с образцом, при этом глубину отпечатка принимают равной нулю. Затем прикладывают и снимают основную нагрузку. Глубину отпечатка измеряют после снятия основной нагрузки, когда предварительная нагрузка еще приложена к образцу.

В зависимости от комбинации «индентор – нагрузка» различают 11 шкал определения твердости по методу Роквеллу (A, B, C, D, E, F, G, H, K, N, T) [9]. Однако наиболее широкое распространение получили шкалы A, B, C (таблица 1), в основе которых используются два типа инден-

Таблица 1 Основные шкалы твердости по Роквеллу

Шкала	Индентор	Нагрузка, кгс
A	Алмазный конус с углом 120° при вершине	60 кгс
В	Шарик диаметром 1/16 дюйма из карбида вольфрама (или закаленной стали)	100 кгс
С	Алмазный конус с углом 120° при вершине	150 кгс

торов: конический алмазный наконечник с углом при вершине 120° и шарик из карбида вольфрама или закаленной стали диаметром 1/16 дюйма (1,5875 мм). Возможные нагрузки – 60, 100 и 150 кгс.

По шкале A измеряют твердость в пределах 70÷85, чему приблизительно соответствуют числа твердости HV 390÷900, по шкале $B-25\div100~(HV~60\div240)$), по шкале $C-20\div67~(HV~240\div900)$.

Твердость по Роквеллу также выражается в условных единицах и записывается как *HB* и *HV*: *HRC* 65, *HRA* 80 и т. д. [10].

Как видно из вышесказанного, различают два подхода измерения макротвердости: по глубине (кинетическое индентирование) и поперечному размеру остаточного отпечатка. Однако уровень информации качественно возрастает, если осуществлять измерение обоими способами одновременно, определяя восстановленную и невосстановленную твердость. Восстановленная твердость вычисляется с учетом упругих деформаций в отпечатке, исходя из его глубины, измеренной под нагрузкой, а невосстановленная твердость рассчитывается по поперечному размеру разрушенного отпечатка. Другими словами, восстановленная твёрдость определяется как отношение нагрузки к площади или объему отпечатка, а невосстановленная твёрдость определяется как отношение силы сопротивления внедрению индентора к площади или объему внедренной в материал части индентора.

Различия между восстановленной H и невосстановленной H_h твердостью обусловлены встречным влиянием двух факторов — величиной упругих деформаций в отпечатке и высотой валика выдавленного материала по контуру отпечатка (навала). Упругие деформации уменьшают значения невосстановленной твердости в сравнении с восстановленной, а навал увеличивает это значение.

Сопоставляя восстановленную твердость с невосстановленной по формуле (3) можно получить дополнительную информацию об упругих деформациях испытуемого материала по контуру отпечатка:

$$H_h/H = h - w_k/h, (3)$$

где h – глубина отпечатка, w_k – упругие деформации по контуру отпечатка [11].

Микротвердость

Наряду с вышеперечисленными методами измерения макротвердости широкое распространение получил метод измерения микротвердости. По известной терминологии Б.В. Мота **микротвердость** – это твердость при микровдавливании [11]. Данный метод предназначен для оценки твердости очень малых (микроскопических) объемов материа-

лов. Его применяют для измерения твердости мелких деталей, покрытий. Главная ценность метода — оценка твердости отдельных фаз и структурных составляющих образца, а также разницы в твердости отдельных участков этих составляющих, что очень важно при решении многих металловедческих задач и чего нельзя сделать другими методами [10]. Кроме того, использование малых нагрузок позволяет применять метод статистического вдавливания для определения микротвердости хрупких материалов, в частности, алмазов. В таблице 2 представлены некоторые области применения метода измерения микротвердости [12].

 Таблица 2

 Некоторые области применения метода микротвердости [12]

NoNo	Область	Схема измерений	Краткая методика
п/п	применения		
1	Оценка микротвердости отдельных структурных составляющих сплава (например, стали с ферритноперлитной структурой)		Используется металлографический шлиф с выявленной травлением структурой. Отпечатки наносятся в отдельные структурные составляющие сплава с последующим измерением и определением микротвердости.
2	Оценка градиента микротвердости по толщине поверхностного слоя (в частности, после поверхностного упрочнения)	Расстояние от поверхности — — — — — — — — — — — — — — — — — — •	Используется поперечный или косой металлографический шлиф. Отпечатки наносятся от поверхности вглубь через определенные интервалы с последующим их измерением и определением микротвердости по толщине поверхностного слоя.
3	Оценка разброса значений микро-твердости в металле или сплаве (служит косвенной оценкой прочностной микронеоднородности материала)		На исследуемой поверхности металлографического шлифа наносится произвольно не менее 20 отпечатков с последующим их измерением, определением микротвердости и статистической обработкой полученных результатов.

Продолжение табл. 2

4	Оценка анизотропии прочностных свойств монокристалла	(При нанесении каждого отпечатка индентор поворачивается на определенный угол. Анизотропия свойств оценивается по отношению диагоналей полученных отпечатков.
5	Оценка микро- неоднородности пластической деформации по локальным объ- емам металла или сплава		Вдоль образующей цилиндрического образца для испытаний на растяжение, через равные интервалы «І» наносится не менее 100 отпечатков микротвердости (реперных точек) при малой нагрузке на индентор (0,0196 – 0,049 Н), измеряются расстояния между ними после деформации образца с последующей статистической обработкой полученных данных.

Метод измерения микротвердости стандартизован ГОСТ 9450–76. В качестве индентора используют правильную четырехгранную алмазную пирамиду с углом при вершине 136 °. Эта пирамида плавно вдавливается в образец при нагрузках 0.05-5 Н. Число микротвердости H_{μ} представляет собой частное от деления нагрузки P на условную площадь боковой поверхности полученного отпечатка F:

$$H_{\mu} = P/F$$
.

Так как для четырехгранной пирамиды с углом между противоположными гранями при вершине 136 $^{\circ}$

$$F = d^2/2\sin 68^\circ = d^2/1,854$$
,

то

$$H_u = 1.854 P/d^2$$
, [kgc/mm²],

где d – среднее арифметическое длины обеих диагоналей отпечатка после снятия нагрузки, мм [13].

По ГОСТу число микротвердости (кгс/мм 2) записывают без единицы измерения с указанием нагрузки в кгс, например, 120HV0,01 (120- число твердости, 0,01- нагрузка) [10].

Фактически метод микротвердости — это разновидность метода Виккерса и отличается от него только использованием меньших нагрузок и соответственно меньшим размером отпечатка. Поэтому физический смысл числа микротвердости аналогичен HV. Для гомогенных однофазных материалов с крупным зерном $H_{\mu} \approx HV$. Для сталей приблизительное соотношение твердости HV и микротвердости H_{μ} связано выражением:

$$HV = (0.7 - 0.8)H_{\mu},$$

(HV измерено при нагрузке 20-62 кгс, H_{μ} – при 50-100 кгс) [1].

Следует отметить, что при переходе от макротвердости к измерению микротвердости обычно наблюдается некоторое повышение чисел твердости. Поскольку величина микротвердости зависит в известной степени от условий полировки и других факторов, универсальной пропорциональности между макро— и микротвердостью ожидать нельзя. Часто наблюдаемые отклонения от этого равенства, особенно в области P < 0.05 - 0.1 Н, объясняются в основном большими погрешностями измерения микротвердости. Источники этих погрешностей — вибрации, инструментальные ошибки в измерении длины диагонали отпечатка, неидентичность условий ручного нагружения, искажения структуры поверхностного слоя и др. По мере уменьшения нагрузки все погрешности возрастают. Поэтому не рекомендуется работать с нагрузками, которые дают отпечатки с d < 8 - 9 мкм.

Чтобы свести ошибки измерения к минимуму, величину нагрузки при испытании на микротвердость выбирают таким образом, чтобы диагональ отпечатка была не менее чем в 1,5 раза меньше толщин исследуемого материала или слоя. При этом глубина отпечатка должна быть меньше толщины испытуемого материала и слоя не менее чем в 10 раз [14]. Кроме того микротвердость определяют на образцах с тщательно отшлифованной или даже полированной поверхностью, а при необходимости подвергают травлению реактивами. Для определения микротвердости некоторых неметаллических материалов (например, гипса) используют темнопольное освещение отпечатков [14].

Для измерения микротвердости используется прибор типа ПМТ-3, разработанный М.М. Хрущевым и Е.С. Берковичем [15, 16]. На рис. 2 показан общий вид микротвердомера ПМТ-3.

На чугунном основании I закреплена колонна 3 с резьбой, а на ней – кронштейн с микроскопом и нагружающим устройством. Для установки кронштейна на требуемой высоте служат гайка 4 и стопорный винт. Микроскоп состоит из тубуса 8, окуляр-микрометра 7, (в приборе

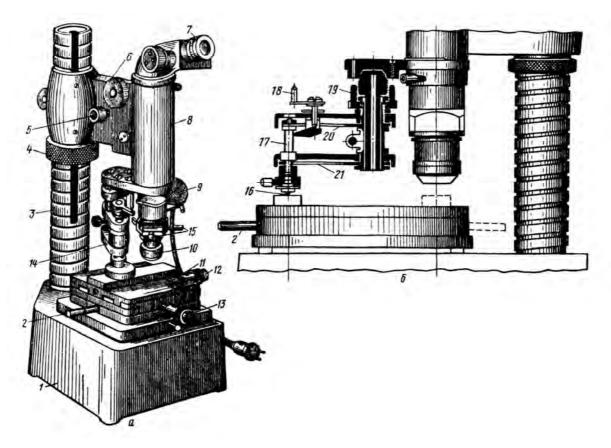


Рис. 2. Прибор ПМТ-3 для измерения микротвердости: а– общий вид; б – схема механизма нагружения [19]

ПМТ-3М 7 — микрометр фотоэлектрический окулярный), сменного объектива 10 и осветительного устройства 9. Для грубой наводки на резкость микроскоп можно перемещать по высоте относительно кронштейна винтом 6, связанным с реечным устройством. Прежде чем вращать винт 6, необходимо ослабить винт, расположенный на правой части кронштейна. Для тонкой наводки на резкость микроскоп перемещают в вертикальном направлении вращением микрометрического винта 5. К нижней части тубуса микроскопа прикреплен механизм нагружения 14.

На рис. 2, δ показана его схема. Грузики в виде дисков с прорезями надевают на стержень 17, в нижнем конце которого крепится оправка с алмазным индентором 16. Стержень подвешен к кронштейну на двух плоских пружинах 20 и 21. На повороте рукоятки 18 на себя стержень 17 освобождается и перемещается под действием грузов вниз, вдавливая индентор в поверхность образца.

На основании прибора установлен предметный столик 11, который может перемещаться в двух взаимно перпендикулярных направлениях при помощи микрометрических винтов 12 и 13. Кроме того столик

можно поворачивать рукояткой 2 вокруг своей оси на 180°. Для нанесения отпечатка испытуемый образец устанавливают под микроскопом и выбирают на нем место, в котором необходимо измерить микротвердость. Затем перемещают образец так, чтобы выбранное место оказалось под острием алмазной пирамиды (поворотом предметного столика на 180° до упора). После вдавливания индентора и снятия нагрузки с образца последний вновь переводят под микроскоп и измеряют длину диагонали отпечатка. Для обеспечения точного замера микротвердости прибор должен быть тщательно юстирован. Задача юстировки – точное совмещение оптической оси с осью нагружения при повороте предметного столика на 180°. Иными словами, необходимо добиться, чтобы отпечаток наносился именно на том месте, которое было выбрано под микроскопом. Центрирующее устройство, позволяющее перемещать объектив в горизонтальной плоскости, приводится в действие винтами 15 (рис. 2).

Схема центровки приведена на рис. 3 [14]. Сначала устанавливают перекрытие нитей окуляр-микрометра точно в центре поля зрения микроскопа. Затем перемещением предметного столика с образцом подводят под перекрестие выбранное для испытаний место 9 (рис. 3, a) и наносят отпечаток. Но если прибор не отцентрирован, отпечаток получится в стороне от перекрестия (рис. 3, δ). Центрованными винтами 15 (рис. 2) перемещают перекрестие до тех пор, пока оно не совпадет с центром получившегося отпечатка A (рис. 3, δ). Затем опять перемещают столик (микрометрическими винтами) так, чтобы перекрестие пришлось на то место, где нужно сделать отпечаток (рис. 3, δ). Вновь сделанный отпечаток должен быть точно в заданном месте (рис. 3, δ). Если этого не произойдет, все операции повторяют сначала.

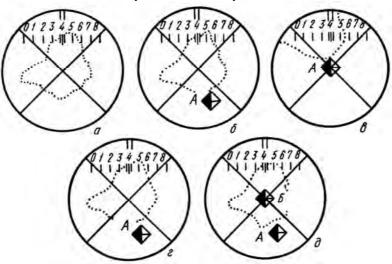


Рис. 3. Схема центровки прибора ПМТ-3 [14]

Операции центровки часто приходится выполнять и в процессе работы, после предварительной настройки прибора.

Вторая задача юстировки — правильная установка по высоте механизма нагружения. При этом острие алмаза должно касаться поверхности образца, а микроскоп сфокусирован на эту поверхность (рис. 3, δ). Юстировка по высоте осуществляется гайкой 19. Необходимо добиться такого положения, чтобы без нагрузки на поверхности мягкого металла (например, алюминия или олова) не появлялось отпечатка, а при нагрузке 0,005 Н появился очень маленький отпечаток. Юстировку по высоте можно проводить на эталоне точно известной твердостью (например, на кристалле NaCl). Поднимая или опуская нагружающий механизм, необходимо добиться отпечатка с такой диагональю, которая бы соответствовала микротвердости эталона [17].

Эталонный образец *NaCl* используется и для юстировки по высоте механизма нагружения. Требования к эталону: однородность по микротвердости, большое постоянство микротвердости, единая подготовка поверхности для измерений (скол по спайности), прозрачность и возможность оптического контроля в поляризованном свете. В качестве эталонного материала принята каменная соль, которая удовлетворяет всем перечисленным требованиям [1].

Теоретически форма отпечатка от вдавливания четырехгранной алмазной пирамиды с квадратным основанием должна представлять квадрат, если вдавливание происходило в веществе, обладающем совершенной пластичностью (рис. 1, ε). На практике большинство минералов сочетают комплекс пластично-упругих характеристик, поэтому получаются квадратоподобные или ромбовидные отпечатки. На рис. 4 представлен отпечаток индентора Виккерса на поверхности

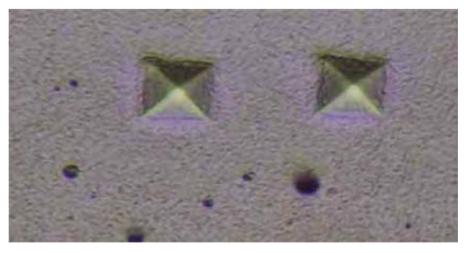


Рис. 4. Отпечатки индентора Виккерса на поверхности керамического образца

керамического образца. Ромбовидные отпечатки образуются на плоскостях и срезах таких минералов, у которых наблюдается анизотропия упругих сил во взаимно перпендикулярных направлениях [1].

При измерении твердости и микротвердости должны быть выдержаны минимально допускаемые расстояния между отпечатками и толщиной образца. Условия нанесения отпечатков указаны в таблице 3. Нагружение индентора во время вдавливания нужно вести медленно и плавно, чтобы не исказились размеры отпечатка. Продолжительность выдержки под нагрузкой должна составлять не менее 5 секунд. Однако для хрупких минералов может быть сокращено до 5 с [1].

Таблица 3 *Условия нанесения отпечатков [11]*

Измеряемая	Расстояние		
	между центрами	от центра отпечат-	Толщина образца
твердость	отпечатков	ка до края образца	
H_{μ}	(2,53) d	2,5 d	1,5 d

В ряде материалов вблизи поверхности (при глубинах до 1мкм) наблюдается высокая чувствительность микротвердости к скорости вдавливания, поэтому в описании методики проведения экспериментов указывается допустимая скорость вдавливания и время выдержки нагрузки на индентор.

Учитывая поверхностный эффект повышения микротвердости при переходе к малым нагрузкам, необходимо использовать устойчивые значения микротвердости материалов при достаточно больших нагрузках. Для определения устойчивых значений микротвердости (в пределах ошибки измерений) необходимо исследовать нагрузочную кривую: микротвердость — нагрузка индентирования. В качестве примера такая зависимость представлена для керамических образцов $ZrO_2-Y_2O_3$ и B_4C (таблетки диаметром 10-14 мм, высотой 2 мм) (таблица 4).

Таблица 4 Зависимость микротвердости от нагрузки индентирования для керамик ZrO_2 — Y_2O_3 и B_4C

Р, г	100	150	200	300	500
H_{μ} , ГПа для ZrO_2 – Y_2O_3	14,42	14,92	13,49	12,69	12,71
H_{μ} , ГПа для $\mathrm{B_4C}$	_	_	34,85	35,07	34,62

МЕТОДИКА ВЫПОЛНЕНИЯ РАБОТЫ

ВНИМАНИЕ, СТУДЕНТ!

Работа с прибором ПМТ-3М требует особой аккуратности. Все перемещения должны выполняться медленно, плавно без рывков и лишних усилий.

ЗАПРЕЩАЕТСЯ ПЕРЕМЕЩАТЬ ОБРАЗЕЦ ИЛИ СТОЛ ПРИ НАНЕСЕНИИ ОТПЕЧАТКА (ПОД НАГРУЗКОЙ)!

Измерение микротвердости выполняется на специально подготовленном шлифе в следующей последовательности:

- 1. Проведите юстировку микротвердомера с использованием эталонного образца NaCl.
 - 2. Поместите на столик микротвердомера испытуемый образец.
 - 3. Поместите на утолщенную часть штока груз.
- 4. Выберите место для нанесения отпечатка. Расстояние от центра отпечатка до края предмета должно быть не менее двойного размера отпечатка. Расстояние между центрами соседних отпечатков должно превышать размер отпечатка более чем в 3 раза.
- 5. Плавно поверните предметный столик против часовой стрелки до упора, не допуская толчков при подведении к упору.
- 6. Медленно и плавно произведите укол алмазной пирамидкой при выбранной нагрузке. Для этого поворачивайте рукоятку 18 (рисунок 3) приблизительно на 180 ° в течение 10-15 с. После выдержки в течение 10 с под нагрузкой поверните рукоятку в исходное положение.
 - 7. Поверните предметный столик в прежнее положение.
- 8. Для измерения диагоналей отпечатков используйте микрометр фотоэлектрический окулярный ФОМ-2.
- 9. С помощью цифровых клавиш или клавиш «>>», «<<» электронно-вычислительного устройства фотоэлектрического окулярного микрометра введите номер задачи «5». На экране появится сообщение:

Choose a task

5. Microhard, by V

10. Нажмите клавишу «Enter». На экране появится сообщение: Parameter 1/3

V=0

11. Введите значение увеличения объектива и нажмите клавишу «Enter». На экране появится сообщение:

$$P=0$$

12. Введите значение величины выбранной нагрузки в ньютонах (1 кгс = 9,8 H). По окончанию ввода значения параметра нажмите клавишу «Enter». На экране появится сообщение:

$$HV=0$$

13. Подвижный штрих окулярного микрометра установите перпендикулярно к измеряемой диагонали отпечатка, подведите его к краю этой диагонали и нажмите клавишу «BEG». На экране появится сообщение:

Imprn. 01 Diag. 1
$$01 Q = 0$$
,

указывающее, что производится измерение величины диагонали отпечатка — «01» и количества импульсов, соответствующих величине диагонали в плоскости изображения, — «Q» (1 импульс = 4 мкм).

14. Вращая барабан микрометрического винта микрометра и наблюдая в окуляр, подведите подвижный штрих к противоположному краю диагонали. Нажмите клавишу «BEG». На экране появится сообщение:

Imprn. 01 Diag. 1
$$01 D = 212$$
,

верхняя строка которого указывает на то, что произведено измерение одной диагонали первого отпечатка, а нижняя строка индицирует порядковый номер измерения и величину измеренной диагонали D (значение приведено для примера), рассчитанную по формуле:

$$D = WQ/V$$
,

где W — цена импульса, мкм (W = 4), Q — число импульсов, V — увеличение объектива.

15. Повторите измерение этой диагонали (пп. 13 и 14) не менее 3 раз. Нажмите клавишу «Enter». На экране появится сообщение:

Imprn. 01 Diag. 1
$$D = 294$$
,

указывающий на порядковый номер отпечатка — «01» и среднее арифметическое значение длины одной диагонали D (значение приведено для примера).

16. Разверните микрометр так, чтобы его подвижный штрих был расположен перпендикулярно второй диагонали отпечатка и измерьте вторую диагональ аналогично первой.

17. Нажмите клавишу «Enter». На экране появится сообщение:

Imprint 01
$$D = 270$$
,

указывающий на порядковый номер отпечатка — «01» и значение D (значение приведено для примера), рассчитанное по формуле:

$$D = (D_{1cp} + D_{2cp})/2,$$

где $D_{1 {
m cp}}$ — среднее арифметическое значение длины первой диагонали, мкм; $D_{2 {
m cp}}$ — среднее арифметическое значение длины второй диагонали, мкм.

- 18. Нажмите клавишу «Enter». При этом на экране выведется значение микротвердости H_{μ} по Виккерсу, рассчитанное для данного отпечатка.
- 19. Значения микротвердости, полученное в единицах твердости, переведите в ГПа.
- 20. Проведите измерение микротвердости материала не менее чем по 10 отпечаткам и оцените среднеквадратичную погрешность измерений по формуле:

$$S_n = \sqrt{\frac{\sum_{i=1}^{n} (\langle x \rangle - x_i)^2}{n(n-1)}},$$

где $\langle x \rangle = \frac{1}{n} \sum_{i=1}^{n} x_i$, x_i – результат i – го измерения, n – число наблюдений.

ПОРЯДОК ОФОРМЛЕНИЯ ОТЧЕТА

Отчет по лабораторной работе оформляется в соответствие с требованиями СТО ТПУ 2.5.01–2006 и ГОСТ 7.9–95 (ИСО 214–76).

В отчете приводятся:

- 1. Цели и задачи лабораторной работы.
- 2. Краткое описание методики измерения микротвердости материалов, ее сущность, назначение и область применения.
- 3. Порядок выполнения работы. В этом разделе необходимо отразить:
- используемое оборудование,
- используемые материалы исследования,
- схему механизма нагружения,
- схему измерения отпечатка микротвердости,
- методику оценки среднеквадратичной погрешности измерений.
- 4. Нижеперечисленные результаты экспериментальных данных, оформленные в виде таблицы:
- длину первой и второй диагонали для каждого отпечатка,
- среднюю длину диагонали для каждого отпечатка,
- значение микротвердости в единицах твердости для каждого отпечатка.
- значение микротвердости в ГПа для каждого отпечатка,
- среднестатистическую погрешность измерений.
 - 5. Выводы по лабораторной работе.

В приложении А приведена форма титульного листа отчета по лабораторной работе.

После оформления отчета студент готовится к защите выполненной лабораторной работы и сдает ее преподавателю.

КОНТРОЛЬНЫЕ ВОПРОСЫ

- 1. Дайте определение понятиям твердость и микротвердость.
- 2. Перечислите основные виды испытаний на твердость.
- 3. Какие свойства материала характеризует твердость, определенная методами индентирования?
- 4. Охарактеризуйте условия испытаний на твердость по Бринеллю, Роквеллу и Виккерсу.
- 5. Что представляет собой восстановленная твердость?
- 6. Чем обусловлены различия между восстановленной и невосстановленной твердостью?
- 7. Имеется ли взаимосвязь между значениями твердости и микротвердости материала?
- 8. К какому виду испытаний относят измерение микротвердости?
- 9. Какой индентор используют при микроиндентировании?
- 10. Какие задачи могут решаться с помощью измерения микротвердости?
- 11. В чем заключается различие между методами измерения твердости и микротвердости материала?
- 12. Объясните причину искажения формы отпечатка.
- 13. Перечислите источники погрешностей измерения микротвердости.
- 14. Какие требования к условиям испытаний нужно выполнить, чтобы свести ошибки измерения к минимуму?
- 15. Назовите задачи юстировки микротвердомера. Опишите, процесс проведения юстировки.
- 16. Какие требования предъявляются к эталонному образцу?
- 17. Каковы минимальные допускаемые расстояния между отпечатками и толщиной образца?

СПИСОК ЛИТЕРАТУРЫ

- 1. Григорович В.К. Твердость и микротвердость металлов / Григорович В.К. М.: Наука, 1976. 230 с.
- 2. Гогоберидзе Д.Б. Твердость и методы ее измерения / Гогоберидзе Д.Б. М.: Машгиз, 1952. 318 с.
- 3. Кузнецов В.Д. Физика твёрдого тела. Том 1, глава 8. Томск: Изд. «Красное знамя», 1937. 419 с.
- 4. Williams S.R. Hardness and Hardness Measurements / Williams S.R. Cleaveland: ASM, 1942.
- 5. Геллер Ю.А. Материаловедение / Геллер Ю.А., Рахштадт А.Г. М.: Металлургия, 1989. 454 с.
- 6. Левашов Е.А. Обеспечение единства измерений физикомеханических и трибологических свойств наноструктурных поверхностей [Электронный ресурс]. Режим доступа: http://www.nanometer.ru/2009/02/11/nanometrologia_58090.html, свободный. Загл. с экрана.
- 7. Материаловедение: Учебник для вузов / Б.Н. Арзамасов, В.И. Макарова, Г.Г. Мухин и др. 7-е изд., стереотип. М.: Изд-во МГТУ им. Н.Э. Баумана, 2005. 648 с.
- 8. Булычев С.И. Испытание материалов непрерывным вдавливанием индентора / Булычев С.И., Алехин В.П. М.: Машиностроение, 1990. 224 с.
- 9. ISO 6508-1:2005 Metallic materials. Rockwell hardness test. Part 1: Test method (scales A, B, C, D, E, F, G, H, K, N, T).
- 10. Механические свойства металлов: Учебник для вузов / В.С. Золоторевский. 3-е изд. перераб. и доп. М.: МИСИС, 1998. 400 с.
- 11. Актуальные вопросы физики микровдавливания / под ред. : Ю.С. Боярской. Кишинев: Штиинца, 1989. 195 с.
- 12. Микротвердость материалов: Методические указания к лабораторной работе / Сост. С.Н. Паршев, Н.Ю. Полозенко. ВолгГТУ, Волгоград, 2004. 15 с. [Электронный ресурс]. Режим доступа: http://sopromat.vstu.ru/metod/lab/lab_16.pdf, свободный. Загл. с экрана.
- 13. Головин Ю.И. Наноиндентирование как средство комплексной оценки физико—механических свойств материалов в субмикрообъемах // Заводская лаборатория. Диагностика материалов. 2009. T.75. N = 1. C.45 59.
- 14. Харитонов Л.Г. Определение микротвердости / Харитонов Л.Г. М.: Металлургия, 1967. 45 с.

- 15. Хрущев М.М. Микротвердость, определяемая методом вдавливания / Хрущев М.М., Беркович Е.С. М.: Изд-во Академии наук СССР, 1943. 193 с.
- 16. Хрущев М.М. Приборы ПМТ-2 и ПМТ-3 для испытания на микротвердость / Хрущев М.М., Беркович Е.С. М.: Изд-во Академии наук СССР, 1950. 63 с.
- 17. Масленникова Г.Н. Керамические материалы / Масленникова Г.Н., Мамаладзе Р.А. и др. М.: Стройиздат, 1991. 320 с.

ПРИЛОЖЕНИЕ А

Форма титульного листа отчета по лабораторной работе

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ

Государственное образовательное учреждение высшего профессионального образования "НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ"

Институт —		
Направление (специальность) – _	Наименование	_
Кафелра –		
Кафедра — Наименование выпускающей	і кафедры	
МИКРОТВЕРДОСТЬ КЕРА	MUNECKNX W	ΔΤΕΡИΔΠΩ Β
WINN O'BLI HOO'B KLI AN		
	ož nobona No	
Отчет по лабораторн	-	_
по курсу «Методы	• •	
для диагностики структуры и	и своиств наномат	ериалов»
TX		
Исполнитель		ио т
Студент, номер группы	,	И.О. Фамилия
	(дата)	
T.		
Преподаватель	,	*** 0 *
(должность, ученая степень, звание)		И.О. Фамилия
	(дата)	

Томск – 20 ___

Учебное издание

БИКБАЕВА Зульфа Гадильзановна ПОЛИСАДОВА Валентина Валентиновна ПАНИНА Александра Анатольевна

МИКРОТВЕРДОСТЬ КЕРАМИЧЕСКИХ МАТЕРИАЛОВ

Методические указания к выполнению лабораторных работ по курсу «Методы и оборудование для диагностики структуры и свойств наноматериалов» для студентов технических и естественно—научных специальностей

Отпечатано в Издательстве ТПУ в полном соответствии с качеством предоставленного оригинал—макета

Подписано к печати	.2011. Формат (60х84/16. Бумага «Снегурочка»:
Печать XEROX	. Усл. печ. л	Уч.–изд. л
Зака	вз Тираж	К ЭКЗ.

Национальный исследовательский Томский политехнический университет Система менеджмента качества

Томского политехнического университета сертифицирована NATIONAL QUALITY ASSURANCE по стандарту ISO 9001:2008

издательство тпу. 634050, г. Томск, пр. Ленина, 30 Тел./факс: 8(3822)56–35–35, www.tpu.ru