МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования

«НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИСТЕТ»

Е.В. Иванова

Изучение и поверка вихревых, электромагнитных и ультразвуковых расходомеров

Методические указания к выполнению лабораторной работы по дисциплине «Технические измерения и приборы» для студентов всех специальностей Энергетического института

Издательство Томского политехнического университета 2015 УДК 621.18.08

Поверка расходомеров.

Методические указания к выполнению лабораторной работы по дисциплине «Технические измерения и приборы» для студентов всех специальностей Энергетического института. – Томск: Изд-во ТПУ, 2015. -12 с.

Составител: доцент Иванова Е.В.	
Рецензент: доцент, канд. техн. наук Оз	ерова И.П.
Методические указания рассмотрен семинаром кафедры автоматизации 2015 г.	ны и рекомендованы методическим теплоэнергетических процессов «»
Заведующий кафедрой АТП, канд. техн. наук, доцент	Озерова И.П.

Цель работы заключается в изучении принципа действия различных типов расходомеров, проведении поверки и определении годности средств измерения расхода.

Задачами лабораторной работы являются:

- изучение принципа действия и устройства расходомеров (в соответствии с заданным вариантом);
 - поверка расходомеров и обработка результатов поверки;
 - определение погрешностей измерения расходомеров.

ТЕОРЕТИЧЕСКИЕ СВЕДЕНИЯ

Расходом вещества называется количество вещества, проходящего через данное сечение канала в единицу времени, а измерительный прибор служащий для измерения расхода – расходомер (ГОСТ 15528).

Массовый расход измеряется в кг/с, объемный - м 3 /с, приборы градуируются часто в т/ч, м 3 /ч.

- В зависимости от метода измерения выпускаются следующие расходомеры:
- 1) переменного перепада давления, основанные на зависимости расхода от перепада давления на СУ вследствие частичного перехода потенциальной энергии потока в кинетическую;
- 2) скоростного напора для измерения расхода по динамическому напору потока с помощью пневмометрических трубок Пито-Прандтля;
- 3) *переменного уровня*, основанные на зависимости свободном истечении ее через отверстие в дне или боковой стенке (расходомеры обтекания, ротометры);
- 4) постоянного перепада давлений, основанные на зависимости расхода вещества от вертикального перемещения тела (поплавка), изменяющего

площадь проходного сечения прибора таким образом, что перепад давлений по обе стороны поплавка остается постоянным.

- 5) *тахометрические* (турбинные, шариковые и т.п.), преобразующие скорость потока в угловую скорость вращения обтекаемого элемента (турбинки, шарика);
- 6) электромагнитные, преобразующие скорость движущейся в магнитном поле электропроводящей жидкости в ЭДС.
- 7) ультразвуковые расходомеры, основанные на эффекте переноса звуковых колебаний движущейся средой.

Существует понятие количества вещества. Количества вещества можно измерить в единицах массы [кг, т], либо в единицах объема [м³, л]. Приборы применяемые для измерения количества вещества называются счетчиками вещества (счетчики). В каждом конкретном случае следует добавлять наименование контролируемой физической величины. Например: «водосчетчик» или «расходомер перегретого пара».

ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ

- 1. Запустить программу «Расходомеры».
- 2. Изучить теоретические сведения о расходомерах, соответсвующих варианту задания.
- 3. Выполнить тест.
- 4. В случае верно выполненного теста (5 верных ответов), перейти на вкладку поверка.
- 5. Заполнить протокол поверки (приложение 1), поверяемые отметки шкалы соответсвуют варианту заданию.
- 6. Определить годность прибора.

ПОРЯДОК ОБРАБОТКИ РЕЗУЛЬТАТОВ ПОВЕРКИ

1. Рассчитать абсолютные погрешности показаний прибора для каждой

поверяемой отметки шкалы при прямом Δ_1 и обратном Δ_2 ходе и вариацию V показаний прибора по формулам

$$\Delta_1 = F_{\pi x} - F_i,$$

$$\Delta_2 = F_{ox} - F_i,$$

$$V = |F_{\pi x} - F_{ox}|,$$

где F_i – значение расхода, соответсвующее поверяемым отметкам шкалы, л/ч;

 F_{nx} и F_{ox} — значения расходов, полученные соответствующие отметкам шкалы при прямом и обратном ходе соответственно, л/ч.

Результаты расчетов занести в протокол поверки.

2. Определить пределы допускаемой основной абсолютной погрешности и вариации показаний прибора по формулам:

$$\Delta$$
доп = $\pm {}^{\gamma} \left(F_{\text{вп}} - F_{\text{нп}} \right) / 100,$
Vдоп = $0.5 \cdot {}^{\gamma} \left(F_{\text{вп}} - F_{\text{нп}} \right) / 100,$

где $F_{\text{вп}}$, $F_{\text{нп}}$ — значения расходов, соответствующие верхнему и нижнему пределам измерений прибора, л/ч;

- $^{\gamma}$ предел допускаемой основной приведенной погрешности прибора, %.
- 3. Сравнить максимальные значения основной абсолютной погрешности и вариации показаний прибора с пределами допускаемых основной абсолютной погрешности и вариации показаний. Если выполняются условия

$$|\Delta \max| \le \Delta$$
доп , $V_{max} \le V_{\partial on}$,

то метрологические характеристики прибора соответствуют его паспортным данным и в протоколе поверки делают запись «Прибор годен для измерений». Если хотя бы одно из условий не соблюдается, то метрологические характеристики прибора не соответствуют его паспортным

данным и в протоколе делают запись «Прибор не годен для измерений».

ВАРИАНТЫ ИНДИВИДУАЛЬНЫХ ЗАДАНИЙ

Варианты индивидуальных заданий приведены в табл. 1.

Таблица 1 – Варианты исходных данных

№ варианта	Типы расходомеров	Поверяемые отметки шкалы
1	Вихревой	20; 40; 60; 80; 100; 120; 140; 160; 180; 200
1	Ультразвуковой	100; 150; 200; 250; 300; 350; 400; 450; 500; 550
2	Электромагнитный	20; 40; 60; 80; 100; 120; 140; 160; 180; 200
2	Ультразвуковой	90; 180; 270; 360; 450; 540; 630; 720; 810; 900
	Вихревой	100; 200; 300; 400; 500; 600; 700; 800; 900; 1000
3	Электромагнитный	500; 1000; 1500; 2000; 2500; 3000; 3500; 4000; 4500; 5000
4	Вихревой 100; 150; 200; 250; 300; 350; 400;	100; 150; 200; 250; 300; 350; 400; 450; 500; 550
4	Ультразвуковой	20; 40; 60; 80; 100; 120; 140; 160; 180; 200
	Электромагнитный	90; 180; 270; 360; 450; 540; 630; 720; 810; 900
5	Ультразвуковой	500; 1000; 1500; 2000; 2500; 3000; 3500; 4000; 4500; 5000
6	Вихревой	90; 180; 270; 360; 450; 540; 630; 720; 810; 900
6	Электромагнитный	150; 300; 450; 600; 750; 900; 1050; 1200; 1350; 1500
7	Вихревой	500; 1000; 1500; 2000; 2500; 3000; 3500; 4000; 4500; 5000
	Ультразвуковой	100; 300; 500; 700; 900; 1100; 1300; 1500; 1700; 1900
8	Электромагнитный	100; 200; 300; 400; 500; 600; 700; 800; 900; 1000
0	Ультразвуковой	150; 300; 450; 600; 750; 900; 1050; 1200; 1350; 1500
9	Вихревой	150; 300; 450; 600; 750; 900; 1050; 1200; 1350; 1500
7	Электромагнитный	100; 150; 200; 250; 300; 350; 400; 450; 500; 550
10	Вихревой	100; 300; 500; 700; 900; 1100; 1300; 1500; 1700; 1900
10	Ультразвуковой	100; 200; 300; 400; 500; 600; 700; 800; 900; 1000

СОДЕРЖАНИЕ ОТЧЕТА

Отчет по лабораторной работе должен содержать:

- 1. Теоретические сведения о расходомерах.
- 2. Порядок проведения лабораторной работы.
- 3. Протокол поверки на отдельном листе.
- 4. Вывод.

5. Ответы на контрольные вопросы.

КОНТРОЛЬНЫЕ ВОПРОСЫ

- 1. Объясните принцип действия вихревого, электромагнитного и ультразвукового расходомера.
- 2. Какие существуют ограничения на применение ультразвуковых расходомеров?

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

1. Иванова Г.М., Кузнецов Н.Д., Чистяков В.С. Теплотехнические измерения и приборы: учебник для вузов: – 3-е изд., – М.: МЭИ, 2007. – 460 с.

ПРОТОКОЛ

Γ		рибора типа _л/ч,				предел изг	мерения
Ī		л, проводилась					класса
		·		•			
			РЕЗУЛЬТ.	АТЫ ПОВЕР	КИ		
	Отметки	Выходной	Отсчет по эталонному		Абсолютная		
	шкалы,	сигнал	прибору, л/ч		погрешность прибора,		Вариа-
	л/ч	расходомера,				л/ч	
		мВ	Прямой	Обратный	Прямой	Обратный	
			ход	ход	ход	ход	
		U_0	F_{nx}	Fox	Δ_1	Δ_2	V
	F_1						
	F ₂						
	F ₁₀						
Ι	огрешності Іредел допу	ускаемой основной прибора ускаемой ибора	л/ч.	прибора Максималы	иальная погре л/ ная вариация л	[/] Ч.	
_							