МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования

«НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИСТЕТ»

Ю.К. Атрошенко, Е.В. Кравченко

ИЗУЧЕНИЕ ЦИФРОВЫХ МУЛЬТИМЕТРОВ

Издательство Томского политехнического университета 2014 УДК 006 (076.6) ББК30.10я73 А927

Атрошенко Ю.К.

Изучение цифровых мультиметров. Методические указания к выполнению лабораторных работ / Ю.К. Атрошенко, Е.В. Кравченко; Томский политехнический университет. — Томск: Изд-во Томского политехнического университета, 2014. — 12 с.

В пособии приведены сведения о цифровых мультиметрах, показан ход выполнения лабораторной работы. Лабораторная работа содержит индивидуальные варианты заданий. Методические указания предназначены для студентов, обучающихся по направлениям 140400 (13.03.02) «Электроэнергетика и электротехника».

УДК 006 (076.6) ББК30.10я73

Pецензенты Доктор технических наук, профессор ТГАСУ Mамонтов Γ . \mathcal{A} . Доцент ФГОУ ДПО «Академия стандартизации, метрологии и сертификации (учебная)» Bолошенко A.B.

- © ФГБОУ ВПО НИ ТПУ, 2014
- © Атрошенко Ю.К., Кравченко Е.В.
- © Обложка. Издательство Томского политехнического университета, 2014

Введение

Цель работы заключается в изучении принципа действия и основных органов управления цифрового мультиметра.

Задачами лабораторной работы являются:

- изучение основных функций мультиметра;
- изучение методик измерения мультиметром физических величин;
- проведение экспериментов по измерению сопротивления, постоянного тока и напряжения, а также обработка их результатов.

Общие сведения о цифровых мультиметрах

Цифровые мультиметры предназначены для выполнения следующих функций:

- измерения постоянного и переменного напряжения;
- измерения постоянного и переменного тока;
- измерения сопротивлений;
- измерения электрической емкости конденсаторов;
- выполнения диодного и транзисторного теста;
- звуковой прозвонки;
- измерения температуры;
- измерения частоты.

Схема лицевой панели мультиметра представлена на рисунке 1. Включение питания мультиметра осуществляется с помощью кнопки *1*. Выбор функции мультиметра и предела измерений выполняется с помощью поворота переключателя *6*. Мультиметр имеет четыре входных гнезда, защищенных от перегрузки, превышающей указанные пределы. Во время работы необходимо установить щуп черного цвета в гнездо «СОМ», а щуп красного цвета в гнездо, соответствующее данному режиму измерения. Появление значения «1» на дисплее во время измерений указывает на перегрузку, в этом случае следует выбрать больший предел измерения.

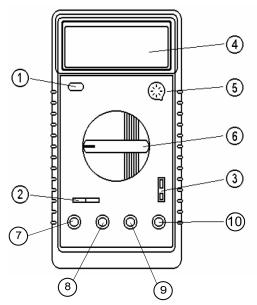


Рис. 1. Схема лицевой панели цифрового мультиметра Mastech MY64: 1—кнопка включения питания; 2—гнездо для измерения подключения электрических конденсаторов; 3—гнездо для измерения температуры; 4—ЖК дисплей; 5—гнездо подключения транзисторов; 6—переключатель функций; 7—гнездо для подключения щупа при измерении силы тока до 10 A; 8—гнездо для подключения щупа при измерении силы тока до 200 мA; 9—гнездо СОМ; 10—гнездо для подключения щупа при измерении напряжения, частоты, сопротивления

Выполнение основных функций

Для измерения напряжения необходимо:

- 1) подключить щуп черного цвета к гнезду 9 (рис. 1), щуп красного цвета к гнезду 10 мультиметра;
- 2) с помощью поворотного переключателя 6 выбрать нужный предел измерения постоянного или переменного напряжения и подключить щупы к контактам источника напряжения;
- 3) при измерении постоянного напряжения на дисплее отразится полярность сигнала.
 - Для измерения силы тока необходимо:
- 1) подключить щуп черного цвета к гнезду 9 (рис. 1), щуп красного цвета к гнезду 7 (для измерения силы тока в диапазоне 200 мА 10 A) или к гнезду 8 (для измерения силы тока до 200 мА);
- 2) с помощью поворотного переключателя 6 выбрать нужный предел измерения и с помощью щупов подключить мультиметр последовательно к исследуемой нагрузке;
- 3) при измерении постоянного напряжения на дисплее отразится полярность сигнала.

- Для измерения частоты необходимо:
- 1) подключить щуп черного цвета к гнезду 9 (рис. 1), щуп красного цвета к гнезду 10 мультиметра;
- 2) установить поворотный переключатель 6 в положение «КНz» и подключить щупы к клеммам источника сигнала. Для измерения сопротивления необходимо:
- 1) подключить щуп черного цвета к гнезду 9 (рис. 1), щуп красного цвета к гнезду 10 мультиметра;
- 2) с помощью поворотного переключателя 6 выбрать нужный предел измерения и с помощью щупов подключить мультиметр последовательно к исследуемой нагрузке;
- 3) при измерении величины сопротивления, включенного в схему, необходимо убедиться в том, что питание схемы отключено. Для измерения электрической емкости конденсаторов необходимо:
- 1) с помощью поворотного переключателя 6 (рис. 1) выбрать нужный предел измерения электрической емкости;
- 2) необходимо убедиться в том, что электрический конденсатор полностью разряжен.
 - Для проверки диодов необходимо:
- 1) подключить щуп черного цвета к гнезду 9 (рис. 1), щуп красного цвета к гнезду 10 мультиметра;
- 2) установить переключатель функций 6 (рис.1) в положение → и подключить щуп красного цвета к аноду, щуп черного цвета к катоду измеряемого диода.
 - Для проверки транзисторов необходимо:
- 1) установить поворотный переключатель 6 (рис. 1) в положение $\langle h_{FE} \rangle$;
- 2) определить тип проводимости (PNP/NPN) проверяемого транзистора и местоположение эмиттера, коллектора и базы. Установить выводы транзистора в соответствующие гнезда 5 (рис. 1) мультиметра;
- 3) на дисплее отразится коэффициент h_{FE} транзистора при токе базы $10~\mu A$ и напряжении коллектор-эмиттер 3,2 В. Для «прозвонки» соединений необходимо:
- 1) подключить щуп черного цвета к гнезду 9 (рис. 1), щуп красного цвета к гнезду 10 мультиметра;
- 2) установить переключатель функций 6 в положение **Д** и подключить щупы мультиметра к клеммам проверяемой цепи. Звуковой сигнал прозвучит, если существует электрический контакт между клеммами (т.е. сопротивление менее 50 Ом).

Для измерения температуры необходимо установить переключатель функций 6 в положение «°С», на дисплее отразится температура окружающей среды.

Технические характеристики мультиметра приведены в табл. 1, табл. 2 и табл. 3.

Таблица 1 Технические характеристики мультиметра при измерении постоянного и переменного напряжения, сопротивления, частоты и электрической емкости конденсаторов

Диапазон	Разрешающая способность	Точность измерения		
Постоянное напряжение				
200 mV	0,1 mV	$\pm 0.5\% \pm 1 \text{ D}$		
2 V	1 mV	$\pm 0.5\% \pm 1 \text{ D}$		
20 V	10 mV	$\pm 0.5\% \pm 1 \text{ D}$		
200 V	0,1 V	$\pm 0.5\% \pm 1 \text{ D}$		
1000 V	1 V	$\pm 0.5\% \pm 2 \text{ D}$		
	Переменное напряя	кение		
200 mV	0,1 mV	$\pm 1.2 \% \pm 3 D$		
2 V	1 mV	± 0,8 % ± 3 D		
20 V	10 mV	± 0,8 % ± 3 D		
200 V	0,1 V	± 0,8 % ± 3 D		
1000 V	1 V	$\pm 1.2 \% \pm 3 D$		
	Сопротивление	e		
200 Om	0,1 Om	$\pm 0.8 \% \pm 3 D$		
2 kOm	1 Om	$\pm 0.8 \% \pm 1 D$		
20 kOm	10 Om	± 0,8 % ± 1 D		
200 kOm	100 Om	± 0,8 % ± 1 D		
2 MOm	1 kOm	± 0,8 % ± 1 D		
20 MOm	10 kOm	± 0,8 % ± 2 D		
200 MOm	100 kOm	$\pm 5 \% (-10 единиц) \pm 10 D$		
Частота				
2 kHz	1 Hz	± 2 % ± 5 D		
20 kHz	10 Hz	$\pm 1.5 \% \pm 5 D$		
Электрическая емкость				
2 nF	1 pF	± 4 % ± 3 D		
20 nF	10 pF	± 4 % ± 3 D		
200 nF	0,1 nF	± 4 % ± 3 D		
2 μF	1 nF	± 4 % ± 3 D		
20 μF	10 nF	$\pm 4\% \pm 3$ D		

Таблица 2 Технические характеристики мультиметра при измерении постоянного и переменного тока

Постоянный ток					
Диапазон	Разрешающая спо-	Точность Падение напр. п			
	собность		измерении		
2 mA	1 μΑ	$\pm 0.8 \% \pm 1 D$	110 mV / mA		
2 mA	10 μΑ	$\pm 0.8 \% \pm 1 D$	15 mV / mA		
200 mA	0,1 mA	$\pm 1,5 \% \pm 1 D$	5 mV / mA		
10 A	10 mA	$\pm 2.0 \% \pm 5 D$	0,03 mV / mA		
Переменный ток					
2 mA	1 μΑ	$\pm 1\% \pm 3$ D	110 mV / mA		
2 mA	10 μΑ	$\pm 1 \% \pm 3 D$	15 mV / mA		
200 mA	0,1 mA	$\pm 1.8 \% \pm 3 D$	5 mV / mA		
10 A	10 mA	$\pm 3 \% \pm 7 D$	0,03 mV / mA		

Таблица 3 Технические характеристики мультиметра при измерении температуры

Температура				
Пууангазаху	Разрешающая способность	Точность		
Диапазон, °С		-20 °C	0 °C	400 °C
		0 °C	400 °C	1000 °C
-20 1000	1 °C	$\pm 5\% \pm 4$ D	$\pm 1 \% \pm 3 D$	±2 %

Порядок выполнения работы

1. Измерение сопротивления

- 1. Установить регулятор сопротивления переменного резистора R_x Наборного поля в среднее положение.
- 2. Установить переключатель режима работы мультиметра в положение 20 кОм.
- 3. Соединить проводником гнездо 9 мультиметра (рис. 1) с контактом К22.1 переменного резистора Наборного поля.
- 4. Подключить с помощью щупа красного цвета гнездо 10 мультиметра (рис. 1) к контакту К23.1 переменного резистора Наборного поля.
- 5. На экране отразится измеренное значение сопротивления.

- 6. Отключить щуп красного цвета мультиметра от контакта К23.1 переменного резистора. Спустя 10 секунд повторно подключить щуп красного цвета мультиметра к контакту К23.1.
- 7. Провести не менее 10 повторных измерений, результаты которых занести в таблицу (табл. 4).
- 8. Нарисовать электрическую схему измерения.

Таблица 4 Результаты измерений

Номер эксперимента	Полученное значение	
1		
2		
3		
10		
$M_{ m x}$		
D_{x}		
$\sigma_{\scriptscriptstyle m X}$		

2. Измерение постоянного напряжения

- 1. Установить регулятор «Установка U+» регулятора Р2 панели «Блок питания» в среднее положение.
- 2. Установить переключатель режима работы мультиметра в положение измерения постоянного напряжения, предел измерения 20 В.
- 3. Соединить проводником гнездо 9 мультиметра (рис. 1) с общим контактом К7 панели «Блок питания».
- 4. Подключить с помощью красного щупа гнездо 10 мультиметра (рис. 1) к контакту К8 «0...+15В» панели «Блок питания».
- 5. На экране мультиметра отразится измеренное значение напряжения.
- 6. Отключить щуп красного цвета мультиметра от контакта К8 «0...+15В». Спустя 10 секунд повторно подключить щуп красного цвета мультиметра к контакту К8 «0...+15В». Провести не менее 10 повторных измерений, результаты которых занести в таблицу (табл. 4).
- 7. Нарисовать электрическую схему измерения.

3. Измерение постоянного тока

- 1. Установить регулятор «Установка U+» регулятора Р2 панели «Блок питания» в среднее положение.
- 2. Установить переключатель режима работы мультиметра в положение измерения постоянного тока, предел измерения 20 мА.
- 3. Соединить проводником гнездо 9 мультиметра (рис. 1) с общим контактом К7 панели «Блока питания».
- 4. Соединить проводником контакты К5.1 резистора *R*1 наборного поля с контактом К8 «0...+15» панели «Блок питания».
- 5. Подключить с помощью щупа красного цвета гнездо 8 мультиметра (рис. 1) к контакту К6.1 резистора *R*1 панели «Наборное поле».
- 6. На экране мультиметра отразится измеренное значение тока.
- 7. Отключить щуп красного цвета мультиметра от контакта К6.1 резистора *R*1 панели «Наборное поле». Спустя 10 секунд повторно подключить щуп красного цвета мультиметра к контакту К6.1 резистора *R*1 наборного поля. Провести не менее 10 повторных измерений, результаты которых занести в таблицу (табл. 4).
- 8. Нарисовать электрическую схему измерения.

Порядок обработки экспериментальных данных

Провести статистическую обработку полученных экспериментальных данных:

1. Рассчитать математическое ожидание по формуле:

$$M_{x} = \frac{1}{N} \sum_{i=1}^{N} x_{i} . {1}$$

2. Рассчитать дисперсию экспериментальных данных по формуле:

$$D_{x} = \frac{1}{N-1} \sum_{i=1}^{N} (x_{i} - M_{x})^{2}.$$
 (2)

3. Рассчитать среднеквадратичное отклонение экспериментальных данных по формуле:

$$\sigma_{x} = \pm \sqrt{D_{x}} . {3}$$

4. Рассчитать коэффициент асимметрии по формуле:

$$A = \frac{\frac{1}{N-1} \sum_{i=1}^{N} (x_i - M_x)^3}{\sigma_x^3}.$$
 (4)

5. Рассчитать коэффициент эксцесса по формуле:

$$A = \frac{\frac{1}{N-1} \sum_{i=1}^{N} (x_i - M_x)^4}{\sigma_x^4} - 3.$$
 (5)

6. Рассчитать коэффициент вариации по формуле:

$$V = \frac{\sigma_x}{M_x} \cdot 100 \%. \tag{6}$$

здесь x_i — значение результата в i-ом опыте; N — число экспериментов.

Сделать вывод по полученным оценкам экспериментальных данных.

Содержание отчета

Отчет по лабораторной работе должен содержать следующие разделы:

- 1) описание основных функций и технических характеристик цифрового мультиметра;
- 2) порядок проведения и результаты экспериментов;
- 3) порядок обработки полученных экспериментальных данных;
- 4) ответы на контрольные вопросы.

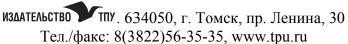
Контрольные вопросы

- 1. К каким гнездам необходимо подключить щупы мультиметра для измерения напряжения, силы тока?
- 2. Какова погрешность измерения мультиметром температуры t=20 °C?
- 3. На какую отметку необходимо установить переключатель режима работы для измерения величины силы тока 18 мА, 2 А?
- 4. Какими слагаемыми определяется допускаемая основная погрешность измерения мультиметра?
- 5. Что характеризуют определяемые в работе статистические оценки экспериментальных данных?

Учебное издание

АТРОШЕНКО Юлиана Константиновна КРАВЧЕНКО Евгений Владимирович

Подписано к печати 12.11.2013. Формат 60х84/16. Бумага «Снегурочка». Печать XEROX. Усл.печ.л. 9,01. Уч.-изд.л. 8,16. Заказ . Тираж 5 экз.


Национальный исследовательский Томский политехнический университет

Система менеджмента качества

Издательства Томского политехнического университета сертифицирована

NATIONAL QUALITY ASSURANCE по стандарту BS EN ISO 9001:2008

