Выполнить задачи

Определить теоретическую подачу поршневого насоса простого	$Q = \dots \frac{\pi}{c}$
действия, если диаметр поршня $D=110\text{мм}$, ход поршня $S=320\text{мм}$, а	c
число двойных ходов $n = 70 \text{мин}^{-1}$.	
Определить теоретическую подачу трехплунжерного насоса	$Q = \dots \frac{\Lambda}{ML}$
простого действия, если диаметр плунжера $D=45\text{мм},$ ход	мі
плунжера $S=40\text{мм}$, а число двойных ходов $n=350\text{мин}^{-1}$.	
Определить теоретическую подачу двухпоршневого насоса	<i>Q</i> =
двойного действия, если диаметр поршня $D=80\text{мм}$, диаметр	ми.
штока $d=40\text{мм}$, ход поршня $S=150\text{мм}$, а число двойных ходов	
$n = 100 \text{мин}^{-1}$.	
Трехплунжерный насос простого действия с диаметром плунжера	η=
$D=45{\rm MM}$, ходом плунжера $S=40{\rm MM}$ и числом двойных ходов	
$n = 175 \text{мин}^{-1}$ имеет подачу $Q = 30 \frac{\pi}{\text{мин}}$. Чему равен коэффициент	
подачи насоса?	
Двухпоршневой насос двойного действия с диаметром поршня	η=
D =127 $\mathit{мм}$, диаметром штока d =50 $\mathit{мм}$, ходом плунжера S = 250 $\mathit{мм}$ и	
числом двойных ходов $n = 90 \text{ мин}^{-1}$ имеет подачу $Q = 1000 \frac{\pi}{\text{мин}}$.	
Чему равен коэффициент подачи насоса?	
Коэффициент утечек поршневого насоса равен $\eta_y = 0.94$, а	η=
коэффициент наполнения $\eta_{_{\scriptscriptstyle H}} = 0.98$. Чему равен коэффициент	
подачи насоса?	
Поршневой насос при перекачке воды плотностью $\rho = 1000 \frac{\text{кг}}{\text{м}^3}$	<i>N</i> _{ДВ} =
развивает напор H =900 м и имеет подачу Q =35 л/с. Чему равна	
требуемая мощность двигателя, если гидравлический КПД насоса	
$\eta_{\Gamma} = 0.89$, механический КПД насоса $\eta_{M} = 0.84$,а КПД приводной	

ременной передачи $\eta_{\Pi}=0.92?$ Принять коэффициент запаса $\phi=1,1,$ ускорение свободного падения $g=10\frac{\mathcal{M}}{c^2}$.

Задача 7 (по вариантам)

Поршневой насос двойного действия подает воду в количестве Q из колодца в открытый резервуар на геодезическую высоту $H_{\rm r}$ по трубопроводу длиной l, диаметром d. Коэффициент гидравлического трения λ =0,03 и суммарный коэффициент местных сопротивлений ξ = 20. Определить диаметр цилиндра и мощность электродвигателя, если отношение длины хода поршня к его диаметру S/D=1; число двойных ходов в минуту n; отношение диаметра штока к диаметру поршня d/D=0,15; объемный коэффициент полезного действия η =0,7.

Таблица 8

	Последняя цифра шифра										
	1	2	3	4	5	6	7	8	9	0	
<i>Q</i> , л/с	60	65	70	75	80	85	90	45	50	55	
H_{Γ} , M	30	35	40	45	30	25	20	40	80	100	
<i>L</i> , м	25	50	40	30	35	40	50	55	60	120	
	Предпоследняя цифра шифра										
	1	2	3	4	5	6	7	8	9	0	
d,	150	100	125	175	200	250	300	100	125	150	
<i>п</i> , мин 1	70	80	90	100	120	240	300	96	75	120	