Теоретические Основы теплотехники

лектор Зиякаев Григорий Ракитович

Лекция 2

Содержание

- Теплоемкость
- Калорические параметры
- Процессы идеального газа

Теплоемкость- количество теплоты, необходимое для нагрева тела на 1 градус

$$\mu c, \frac{Дж}{кмоль \cdot K}$$
 -мольная теплоемкость

$$c=\frac{\mu c}{\mu},$$

$$c' = \frac{\mu c}{22.4}$$

$$c' = c \cdot \rho$$
,

Теплоемкость **идеальных** газов зависит с температуры

$$c = f(T),$$

Теплоемкость реальных газов зависит от температуры и давления

$$c = f(T, p),$$

Расчетные формулы для удельной теплоты произвольного процесса:

$$q = c_m (t_2 - t_1), \qquad \boxed{\frac{\mathcal{J}\mathcal{H}}{\kappa \varepsilon \cdot {}^{\circ}C} \cdot {}^{\circ}C = \frac{\mathcal{J}\mathcal{H}}{\kappa \varepsilon}}$$

где c_m — средняя теплоемкость в данном интервале температур

Теплоемкость в бесконечно малом интервале температур (т.е. при данной температуре) называется истинной dq

$$c = \frac{dq}{dT},$$

Т.к. теплоемкость является функцией температуры, то истинное значение ее определяется по формуле:

$$c = c_o + a \cdot t + b \cdot t^2 + c \cdot t^3$$

где a,b,c — постоянные коэффициенты для газа

Для технических расчетов пользуются линейной зависимостью

$$c = c_o + a \cdot t$$

Для средней теплоемкости в пределах температур t_1 и t_2

$$c_m = c_o + \frac{a}{2} \cdot \left(t_1 + t_2\right)$$

Теплоемкость зависит от характера процесса подвода теплоты:

- В изохорном процессе изохорная теплоемкость (c_v)
- В изобарном изобарная теплоемкость (c_p)
- В изотермическом $c = \infty$
- В адиабатном *c*=0
- В политропном c_n

Значения истинных теплоемкостей для технически важных газов приведены в справочниках

Связь между изохорной и изобарной теплоемкостями характеризуется законом Майера:

$$c_p - c_v = R, \frac{\Delta \mathbf{x}}{\mathbf{k} \mathbf{r} \cdot \mathbf{K}}$$

$$\mu c_p - \mu c_v = R_\mu = 8314, \frac{Дж}{кмоль \cdot K}$$

Приближенные значения теплоемкости

$$\mu C_p = 20.8 \frac{\kappa \cancel{\square} \cancel{\cancel{>}} \cancel{\cancel{>}} \cancel{\cancel{>}} \cancel{\cancel{>}} - \text{одноатомные газы}$$

$$\mu C_p = 29,1 \frac{\kappa \angle \mathcal{D} \kappa}{\kappa MOЛb \cdot K}$$
 - двухатомные газы

$$\mu C_p = 37, 4 \frac{\kappa \cancel{\square} \varkappa C}{\kappa MOЛb \cdot K}$$
 - трех- и многоатомные газы

Приближенные значения теплоемкости

$$\mu C_p = 20,8 \frac{\kappa \square \varkappa}{\kappa MOЛb \cdot K}$$
 - одноатомные газы

$$\mu C_p = 29,1 \frac{\kappa \cancel{\square} \cancel{\cancel{>}} \cancel{\cancel{>}} \cancel{\cancel{>}} \cancel{\cancel{>}} \cancel{\cancel{>}} -$$
 двухатомные газы

$$\mu C_p = 37, 4 \frac{\kappa \cancel{\square} \cancel{\cancel{>}} \cancel{\cancel{$$

Задача 1

Найти массовую и объемную теплоемкости кислорода при постоянном объеме и давлении, считая c=const

Задача 2

Найти значение истинной мольной теплоемкости азота при постоянном давлении для температуры 800 °C

Задача 3

Вычислить среднюю массовую теплоемкость воздуха при постоянном давлении в пределах 200- 500 °C

Интерполяционные формулы для истинных и средних мольных теплоемкостей газов

Газ	Истинная мольная теплоемкость при $p = \text{const}$ $c_{p\mu}$, кДж/(кмоль · град)	Средняя мольная теплоемкость при $p = \text{const}$ $\frac{c_{p\mu} _{0}^{t}}{c_{p\mu} _{0}^{t}}, \text{кДж/(кмоль} \cdot \text{град)}$				
	В пределах от 0 до	0 1000 °C				
O ₂	29,5802+0,0069706·t	29,2080+0,0040717·t				
N ₂	28,5372+0,0053905·t	28,7340+0,0023488·t				
CO	28,7395+0,0058862·t	28,8563+0,0026808·t				
Воздух	28,7558+0,0057208·t	28,8270+0,0027080·t				
H ₂ O	32,8367+0,0116611·t	33,1494+0,0,0052749·t				
SO ₂	42,8728+0,0132043-t	40,4386+0,0099562·t				
	В пределах от 0 до	0 1500 °C				
H_2	28,3446+0,0031518·t	28,7210+0,0012008·t				
CO ₂	41,3597+0,0144985·t	38,3955+0,0105838·t				

Теплоемкость газовых смесей:

$$c = \sum_{i=1}^{n} c_i \cdot g_i, \left[\frac{\mathbf{\chi}}{\mathbf{K} \mathbf{\Gamma} \cdot \mathbf{K}} \right]$$

$$c' = \sum_{i=1}^{n} c_i \cdot r_i, \left[\frac{\mathbf{\Pi} \mathbf{w}}{\mathbf{w}^3 \cdot \mathbf{K}} \right]$$

$$\mu c = \sum_{i=1}^{n} \mu c_i \cdot r_i, \left[\frac{Дж}{кмоль \cdot K} \right]$$

Задача 4

Найти массовую теплоемкость газовой смеси при постоянном объеме и давлении, считая c=const

Последняя	
цифра	Состав смеси
шифра	
0	$2 \text{ кг O}_2 + 8 \text{ кг N}_2$
1	5 кг CO ₂ + 5 кг CO
2	3 кг СО + 7 кг О₂
3	6 кг N ₂ + 4 кг CO ₂
4	5 кг H ₂ O + 5 кг СО ₂
5	$2 \text{ кг N}_2 + 8 \text{ кг H}_2$
6	4 кг CO + 6 кг H ₂
7	2 кг CO ₂ + 8 кг CO
8	1 кг H_2 + 9 кг N_2
9	5 кг N ₂ + 5 кг CO ₂

Внутренняя энергия

Внутреннюю энергию газа составляет сумма внутренней кинематической и внутренней потенциальной энергии.

В идеальных газах силы взаимодействия между молекулами отсутствуют и поэтому внутренняя энергия идеального газа равно внутренней кинетической энергии, и зависит только от температуры. Внутренняя энергия характеризует состояние газа, т.е. является параметром состояния.

$$u, \left[\frac{\mathcal{J} \mathbb{X}}{\mathsf{K} \Gamma} \right]$$

Энтальпия

Во многих тепловых расчетах используется величина h, называемая энтальпией, которая определяется из выражения:

$$h = u + p \cdot v, \left[\frac{\mathbf{\Pi} \mathbf{w}}{\mathbf{\kappa} \mathbf{\Gamma}} \right]$$

Энтропия

Энтропи́я (от др.-греч. ἐν — «в» и τροπία — «поворот», «превращение») — широко используемый в естественных и точных науках термин. Впервые введён в рамках термодинамики как функция состояния термодинамической системы, определяющая меру необратимого рассеивания энергии.

$$S, \left[\frac{\mathcal{J}_{\mathcal{K}}}{\kappa_{\Gamma} \cdot K}\right]$$

Энтальпия

Во многих тепловых расчетах используется величина h, называемая энтальпией, которая определяется из выражения:

$$h = u + p \cdot v, \left[\frac{\mathbf{\Pi} \mathbf{w}}{\mathbf{\kappa} \mathbf{\Gamma}} \right]$$

Энтропия

Энтропи́я (от др.-греч. ἐν — «в» и τροπία — «поворот», «превращение») — широко используемый в естественных и точных науках термин. Впервые введён в рамках термодинамики как функция состояния термодинамической системы, определяющая меру необратимого рассеивания энергии.

$$S, \left[\frac{\mathcal{J}_{\mathcal{K}}}{\kappa_{\Gamma} \cdot K}\right]$$

Энтропия идеального газа является функцией состояния s = f(p,T) и рассчитывается по формуле

$$s = s^0 - R \cdot \ln\left(\frac{p}{p_0}\right),$$

где $p_0 = 1$ бар , $s^0 -$ табличные значения для различных газов

Изменения калорических параметров рассчитываются через табличные значения по формулам

$$\Delta u = u_2 - u_1$$
 $\Delta h = h_2 - h_1$ $\Delta s = s_2^0 - s_1^0 - R \cdot \ln\left(\frac{p_2}{p_1}\right)$

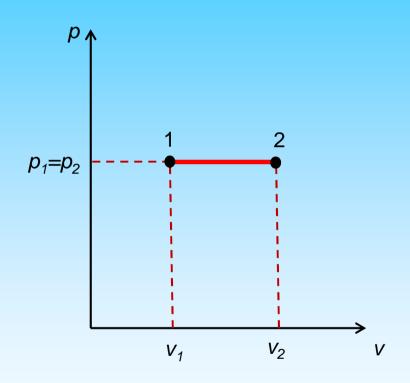
Или через теплоемкости

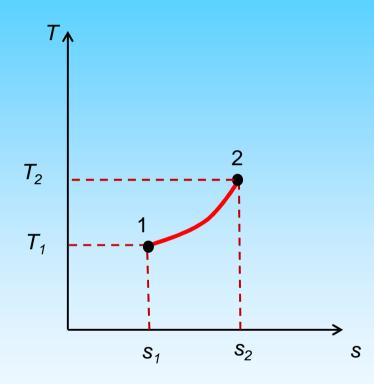
$$\Delta u = c_v \left(T_2 - T_1 \right)$$

$$\Delta h = c_p \left(T_2 - T_1 \right)$$

$$\Delta s = c_p \ln \left(\frac{T_2}{T_1} \right) - R \cdot \ln \left(\frac{p_2}{p_1} \right)$$

Изобарный p=const


Связи параметров:
$$\frac{v_2}{v_1} = \frac{T_2}{T_1}$$


$$\omega = p \cdot (v_2 - v_1), \quad \frac{\kappa \Delta w}{\kappa \Gamma}$$

$$l = 0, \left[\frac{\kappa \angle \chi}{\kappa \Gamma} \right]$$

$$l = 0, \left[\frac{\kappa Дж}{\kappa \Gamma}\right]$$

$$q = \Delta h = c_p \cdot (t_2 - t_1), \left[\frac{\kappa Дж}{\kappa \Gamma}\right]$$

$$\Delta s = c_p \ln \left(\frac{T_2}{T_1} \right)$$

Изохорный v=const

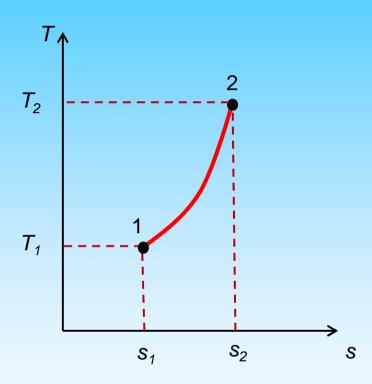
Связи параметров:
$$\frac{p_2}{p_1} = \frac{T_2}{T_1}$$

Работа изменения объема:

$$\omega = 0$$

Внешняя работа:


$$l = v \cdot (p_1 - p_2)$$

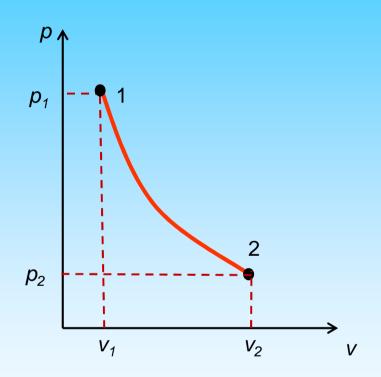

Теплота:

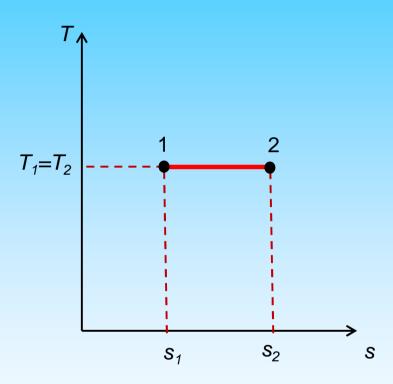
$$q = \Delta u = c_v \cdot (t_2 - t_1)$$

Изменение энтропии:

$$\Delta s = c_p \ln \left(\frac{T_2}{T_1} \right) - R \cdot \ln \left(\frac{p_2}{p_1} \right)$$

Изотермический t=const


Связи параметров:
$$\frac{p_2}{p_1} = \frac{v_1}{v_2}$$


$$\omega = R \cdot T \cdot \ln \left(\frac{p_1}{p_2} \right)$$

$$l = R \cdot T \cdot \ln\left(\frac{p_1}{p_2}\right)$$

$$q = R \cdot T \cdot \ln\left(\frac{p_1}{p_2}\right)$$

$$\Delta s = -R \cdot \ln \left(\frac{p_2}{p_1} \right)$$

Адиабатный (без теплообмена с окружающей средой)

$$p \cdot v^k = \text{const}$$

Связи параметров:
$$\frac{p_2}{p_1} = \left(\frac{v_1}{v_2}\right)^k \qquad \frac{T_2}{T_1} = \left(\frac{p_2}{p_1}\right)^{\frac{k-1}{k}} \qquad \frac{T_2}{T_1} = \left(\frac{v_1}{v_2}\right)^{k-1}$$

$$k = \frac{c_p}{c_v} = \frac{\mu c_p}{\mu c_v}$$

$$k = 1,67$$
 - одноатомные газы

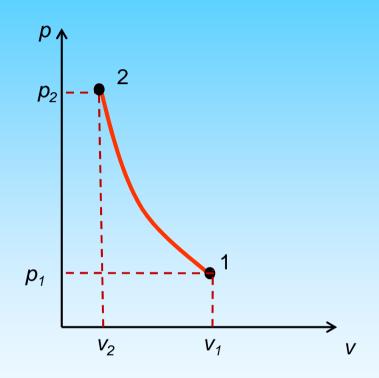
$$k = 1, 4$$
 - двухатомные газы

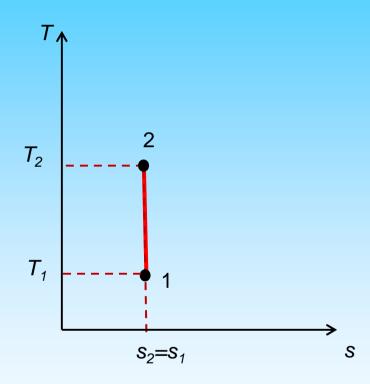
$$k = 1,29$$
 - трех- и многоатомные газы

Работа изменения объема:

$$\omega = \frac{1}{k-1} R \left(T_1 - T_2 \right)$$

Внешняя работа:


$$l = k \cdot \omega$$


Теплота:

$$q = 0$$

Изменение энтропии:

$$\Delta s = 0$$

Политропный
$$p \cdot v^n = \text{const}$$

n=0 – изобарный процесс

n=1 – изотермический процесс

n=k — адиабатный процесс

 $n=\infty$ — изохорный процесс

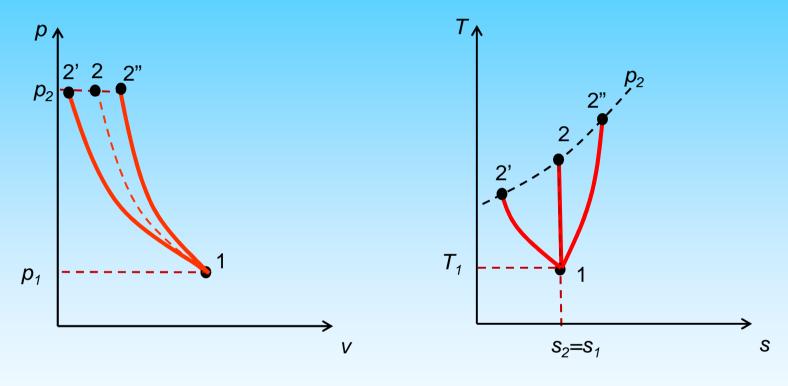
Связи параметров:
$$\frac{p_2}{p_1} = \left(\frac{v_1}{v_2}\right)^n \qquad \frac{T_2}{T_1} = \left(\frac{p_2}{p_1}\right)^{\frac{n-1}{n}} \qquad \frac{T_2}{T_1} = \left(\frac{v_1}{v_2}\right)^{n-1}$$

Работа изменения объема:

$$\omega = \frac{1}{n-1} R \left(T_1 - T_2 \right)$$

Внешняя работа:

$$l = n \cdot \omega$$


Теплота:

$$q = c_n \left(T_2 - T_1 \right)$$

$$c_n = c_v \frac{n - k}{n - 1}$$

Изменение энтропии:

$$\Delta s = c_p \ln \left(\frac{T_2}{T_1} \right) - R \cdot \ln \left(\frac{p_2}{p_1} \right)$$

- 1-2' политропное сжатие 1 < n < k
- 1-2" политропное сжатие n > k

Для процесса изменения состояния идеального газа 1-2 рассчитать:

- термические параметры р, v, Т в начальном и конечном состояниях;
 - изменение калорических параметров Ац, АЬ, Аѕ;
- теплоту (q) и работу процесса (w, l).

Исходные данные для расчета приведены в табл. 1 по вариантам.

Для двух-, трех- и многоатомных газов теплоемкость принять постоянной: для воздуха и азота (N2) µс_v=20,8 кДж/кмоль-К, для углекислого газа (CO₂) и метана (CH₄) µс_v=29,1 кДж/кмоль-К.

Результаты расчета представить в виде табл. 2 и 3. Показать процессы в р-v- и T-s- диаграммах.

Параметры	t ₁ =30°C,	$v = 0.111 \text{ m}^3/\text{KT},$	t ₁ =10 °C, p	$v_1 = 1.834 \text{M}^3/\text{Kr}$, $v_2 = 20 \text{ Gap}$	p ₁ =3 6ap,	p=2 6ap, u	$t_1 = 20$ °C,	t ₁ =10°C, v	, t=80°C, p ₂ =20 6ap	p ₁ =3 6ap, t ₂ =265,9 °C	p=2 6ap, v ₂ =	$v = 0,111 \text{ M}^3/\text{KT}, p_2 = 7,71 \text{ 6ap}$	t ₁ =10°C,		M^3/KT , $t=80$ °C, $v_2=0,0917$ M^3/KT
p=2 6ap,		p ₁ =5 6ap,	лтр. p ₁ =10 бар,	p ₁ =1 6ap,	ia- v ₁ =0,32 м³/кт, iый	$v_1 = 0,434 \text{ M}^3/\text{KT},$	top- p ₁ = 5 бар, ій	arp. v₁=0,588 M³/кг,	ерм. p ₁ =1 бар,	та- t ₁ =50°С,	5ар- t _i =160°С, ıй	t ₁ =20 °C,	политр. $p_1=10$ бар, $n=0,8$	0323/rg.	
кт/кмоль Процесс	29 изобар-	44 изохор-	4 политр. $n=1,3$	16 изотерм.	28 адиа-	29 изобар-	44 изохор-	4 политр. n=1,75	16 изотерм.	28 адиа-	29 изобар-	44 изохор-	4 политр. $n=0,8$	16 изотерм.	
вар Газ	1 B03-	2 CO ₂	3 He	4 CH4	S N ₂	6 воз-	7 CO ₂	8 He	9 CH4	10 N ₂	11 B03-	12 CO ₂	13 He	14 CH4	-

Газовые смеси

Расчет параметров и процессов смеси идеальных газов

Смесь газов с начальной температурой $T_1 = 300$ К сжимается от давления $p_1 = 0.1$ МПа до давления p_2 . Сжатие может происходить по изотерме, по адиабате и по политропе с показателем политропы n.

Определить для каждого из трех процессов сжатия конечную температуру T_2 и объем v_2 смеси, изменение внутренней энергии ΔU , энтальпии ΔH и энтропии смеси ΔS , а также теплоту Q и работу L. Результаты расчетов занести в таблицу 2 и изобразить процессы сжатия в p-v и T-s — диаграммах. Данные, необходимые для решения задачи, выбрать из таблицы 1. Примечание: расчет провести приняв теплоемкость постоянной.

Последняя цифра шифра	Состав смеси	n	Предпоследняя цифра шифра	<i>p</i> ₂ , МПа
0	$2 \text{ кг O}_2 + 8 \text{ кг N}_2$	1,25	0	0,9
1	5 кг CO ₂ + 5 кг CO	1,3	1	1,0
2	3 кг СО + 7 кг О₂	1,4	2	0,85
3	6 кг N ₂ + 4 кг CO ₂	1,5	3	0,8
4	5 кг Н ₂ О + 5 кг СО ₂	1,4	4	0,95
5	$2 \text{ кг N}_2 + 8 \text{ кг H}_2$	1,3	5	0,9
6	4 кг CO + 6 кг H ₂	1,2	6	0,85
7	2 кг CO ₂ + 8 кг CO	1,1	7	0,9
8	1 кг H_2 + 9 кг N_2	0,9	8	0,8
9	5 кг N ₂ + 5 кг CO ₂	0,8	9	0,7

Процессы	V_2	T_2	ΔU	ΔH	ΔS	Q	L
Процессы	\mathbf{M}^3	К	кДж	кДж	кДж/К	кДж	кДж
Изотермический							
адиабатный $k =$							
Политропный $n =$							