ЛЕКЦИЯ 5 Специальные типы *RC*-цепей 1. Фазирующие цепи

Фазирующей называется электрическая цепь, предназначенная для инвертирования гармонического сигнала, т.е. обеспечения фазового сдвига между входным и выходным напряжениями $\pm 180^{\circ}$. Фазирующие цепи (ФЦ) широко используются в электронике в качестве цепей положительной обратной связи (ПОС) при построении различных схем *RC*-автогенераторов синусоидальных сигналов.

Наиболее просто задача инвертирования гармонического сигнала решается путем последовательного соединения простейших Г-образных фазосдвигающих *RC*-цепей, выходной сигнал которых снимается либо с резистора, либо с конденсатора.

Поскольку каждое *RC*-звено на предельных частотах ($\omega = 0$ или $\omega = \infty$ в зависимости от типа цепи) вносит фазовый сдвиг $\pm \pi/2$, теоретически для получения $\varphi_{K_U} = \pm \pi$ достаточно двух звеньев. Однако при этом, как известно, выходное напряжение каждого звена, а, следовательно, и всей схемы, равно нулю, следовательно, двухзвенная **фазирующая** цепь не может быть использована на практике. Таким образом, для получения $\varphi_{K_U} = \pm \pi$ при конечном значении выходного сигнала необходимо, как минимум, три однотипных *RC*-звена.

А. Фазирующая цепь R-параллель

Классическая трехзвенная фазирующая *RC*-цепь 1-го типа (с конденсатором на входе), обеспечивающая положительный $\varphi_{K_U} = +\pi$, показана на рис. 5.1.

Рис. 5.1. Классическая трехзвенная фазирующая цепь R-параллель

В большинстве практических случаев параметры элементов всех звеньев выбирают одинаковыми, обеспечивая равенство: $R_1 = R_2 = R_3 = R$; $C_1 = C_2 = C_3 = C$. На техническом жаргоне эту цепь называют «*R*-параллель» с учетом специфики соединения резисторов звеньев, имеющих общую точку с «земляной» шиной.

Логический (физический) анализ ФЦ R-параллель

Для упрощения и упорядочивания анализа пронумеруем элементы

и введем обозначения токов и напряжений, действующих в схеме. Схема, подготовленная для анализа, показана на рис. 5.2.

Рис. 5.2. Схема с введенными обозначениями, подготовленная для анализа

Запишем законы Кирхгофа, выполняющиеся в исследуемой цепи. Согласно первому закону Кирхгофа справедливо:

$$\dot{I}_{_{BX}} = \dot{I}_1 + \dot{I}_2; \ \dot{I}_2 = \dot{I}_3 + \dot{I}_4; \Rightarrow \dot{I}_{_{BX}} = \dot{I}_1 + \dot{I}_3 + \dot{I}_4 \ .$$
 (5.1)

По ІІ закону Кирхгофа для напряжений:

$$\dot{U}_{\rm BX} = \dot{U}_{C1} + \dot{U}_{R1}; \ \dot{U}_{R1} = \dot{U}_{C2} + \dot{U}_{R2}; \ \dot{U}_{R2} = \dot{U}_{C3} + \dot{U}_{R3}; \ \dot{U}_{R3} = \dot{U}_{\rm BMX}.$$
(5.2)

1. Низкие частоты: $\omega \rightarrow 0$

На нижней предельной частоте сопротивление каждого конденсатора цепи $X_C = 1/\omega C \rightarrow \infty$. Схема замещения ФЦ в этом режиме представлена на рис. 5.3.

Рис. 5.3. Схема замещения $\Phi \amalg R$ -параллель при $\omega \rightarrow 0$

Видно, что входной ток вынужден замкнуться через стремящееся к бесконечности сопротивление первого конденсатора. Следовательно, именно сопротивление **первого** конденсатора $X_{C1} \gg R_1$ определяет как входное сопротивление цепи, так и величину и характер входного тока. Таким образом, $Z_{BX} \to \infty$. Реакция цепи стремится к чисто емкостной, следовательно, входной ток будет опережать входное напряжение практически на $\pi/2$, и $\phi_{Z_{BX}} \to (-)\pi/2$. Величина входного тока $I_{BX} = U_{BX}/Z_{BX} \to 0$, следовательно, и все составляющие этого тока (см. выражение (5.1)) стремятся к бесконечно малым значениям.

Для определения передаточных параметров цепи целесообразно разбить ее на три последовательно включенных звена, каждое из которых представляет собой простейшую *CR*-цепь с конденсатором на входе, подробно проанализированную ранее – рис. 5.4.

Рис. 5.4. Разбиение схемы замещения ФЦ R-параллель на звенья для удобства определения передаточных частотных параметров

В таком случае результирующие передаточные параметры всей цепи будут определяться следующим образом (справедливо только на частотах, стремящихся к предельным значениям, и только для физ.анализа!):

$$K_{U} = K_{U_{1}} K_{U_{2}} K_{U_{3}}; \qquad \varphi_{K_{U}} = \varphi_{K_{U_{1}}} + \varphi_{K_{U_{2}}} + \varphi_{K_{U_{3}}}, \qquad (5.3)$$

где K_{U_1} ... K_{U_3} , $\phi_{K_{U_1}}$... $\phi_{K_{U_3}}$ – параметры отдельных звеньев ФЦ.

Анализ *CR*-цепи с конденсатором на входе показал (см. предыдущий материал, посвященный этому вопросу), что при $\omega \to 0$ модуль ее коэффициента передачи = $U_{\rm Bbix} / U_{\rm Bx} \to 0$, а аргумент \dot{K}_U , т.е. фазовый сдвиг между входным и выходным сигналами $\varphi_{K_U} \to \pi/2$. Таким образом, на нижней предельной частоте для рассматриваемой цепи справедливо:

$$K_{U} = K_{U_{1}} K_{U_{2}} K_{U_{3}} = 0 \cdot 0 \cdot 0 = 0, \qquad (5.4)$$

$$\varphi_{K_U} = \varphi_{K_{U_1}} + \varphi_{K_{U_2}} + \varphi_{K_{U_3}} = \frac{\pi}{2} + \frac{\pi}{2} + \frac{\pi}{2} = \frac{3\pi}{2}.$$
 (5.5)

2. Высокие частоты: $\omega \to \infty$

На верхней предельной частоте сопротивление каждого конденсатора $X_C = 1/\omega C \rightarrow 0$, следовательно, схема замещения цепи в этом режиме приобретает вид, показанный на рис. 5.5.

Из схемы следует, что характер и величина входного тока будут определяться, в основном, результирующим сопротивлением трех параллельно включенных резисторов $R_1 = R_2 = R_3 = R$, т.е. $Z_{\text{вх}} \rightarrow R/3$. Следовательно, $I_{\text{вх}} = U_{\text{вх}}/Z_{\text{вх}} \rightarrow 3U_{\text{вх}}/R = const$, и входной ток будет практиче-

ски синфазен входному сигналу из-за стремящейся к чисто активной реакции цепи. Таким образом, $\phi_{Z_{-v}} \to 0$.

Рис. 5.5. Схема замещения $\Phi \amalg R$ -параллель при $\omega \rightarrow \infty$

Определим K_U и ϕ_{K_U} цепи. Как и ранее, разобьем условно цепь на три звена, каждое из которых является автономной *CR*-цепью, причем входным напряжением для каждой последующей цепи является выходное напряжение предыдущей – рис. 5.6.

Рис. 5.6. Разбиение схемы замещения ФЦ R-параллель на звенья при определении передаточных частотных параметров цепи

Очевидно, что для каждого звена справедливы результаты логического анализа, проведенного при рассмотрении *CR*-цепи с резистором на входе (см. предыдущий материал). Согласно этим результатам \dot{K}_{U_i} и $\phi_{K_{U_i}}$ каждого *i*-ого звена стремятся, соответственно, к единице и к нулю. Перемножая коэффициенты передачи и складывая аргументы \dot{K}_{U_i} звеньев, для передаточных параметров всей цепи имеем:

$$K_U(\infty) \to 1, \quad \varphi_{K_U}(\infty) \to 0.$$
 (5.6)

3. Средние частоты: $\omega = \omega_i$, причем $X_{Ci} \approx R$

Схема замещения, соответствующая данному случаю, представляет собой исходную схему – рис. 5.2.

Поскольку характер и величина входного тока будет определяться соизмеримыми по величине сопротивлениями, как резисторов, так и конденсаторов, реакция цепи является, очевидно, активно-емкостной.

Следовательно, входной ток в этом случае опережает входное напряжение на некоторый угол α , по модулю меньший $\pi/2$. Следовательно, $\phi_{Z_{\text{вк}_j}}$

будет отрицательным по знаку, и лежать в диапазоне

$$-\pi/2 < \varphi_{Z_{\text{EX}}} < 0.$$
 (5.7)

Модуль входного сопротивления будет иметь некоторую величину из диапазона, ограниченного значениями этого параметра на предельных частотах:

$$R/3 < Z_{\text{BX}\,j} < \infty \,. \tag{5.8}$$

С учетом значений передаточных параметров рассматриваемой цепи на предельных частотах, определенных ранее, на промежуточной частоте ω_i эти параметры будут, очевидно, лежать в диапазонах:

$$0 < K_{U_i} < 1;$$
 $0 < \varphi_{K_{U_i}} < 3\pi/2.$ (5.9)

Примерные («качественные») частотные характеристики, построенные по результатам проведенного анализа, приведены на рис. 5.7.

Математический анализ ФЦ R-параллель

Выражения для определения входных частотных параметров ФЦ получить *самостоятельно* в рамках часов, предусмотренных для самостоятельной работы при освоении дисциплины «Электрические цепи!»

Используя известные методы анализа, получаем выражение для определения комплекса коэффициента передачи данной цепи:

$$\dot{K}_{U} = R^{3} \left[\frac{R^{3} - 5R X^{2} - j(X^{3} - 6R^{2}X)}{(R^{3} - 5R X^{2})^{2} + (X^{3} - 6R^{2}X)^{2}} \right] = \frac{\omega^{3} \tau^{3} [\omega^{3} \tau^{3} - 5\omega \tau - j(1 - 6\omega^{2} \tau^{2})]}{\omega^{6} \tau^{6} + 26 \omega^{4} \tau^{4} + 13 \omega^{2} \tau^{2} + 1},$$
(5.10)

где $X = 1/\omega C$, $\tau = RC$ – постоянная времени одного звена (не всей цепи – цепь имеет 3-й порядок, т.к. содержит в своем составе три автономных реактивных элемента!).

Для модуля и аргумента комплекса коэффициента передачи \dot{K}_{U} , соответственно, справедливо:

$$K_U = \frac{\omega^3 \tau^3}{\sqrt{\omega^6 \tau^6 + 26 \,\omega^4 \tau^4 + 13 \,\omega^2 \tau^2 + 1}},$$
 (5.11)

$$\varphi_{K_U} = \operatorname{arctg}\left(\frac{6\omega^2\tau^2 - 1}{\omega^3\tau^3 - 5\omega\tau}\right).$$
(5.12)

Рис. 5.7. Примерные частотные характеристики ФЦ R-параллель, полученные в результате ФА: а) входные; б) передаточные

Частота входного воздействия, при которой комплекс коэффициента передачи становится действительным числом, а фазовый угол, очевидно, будет составлять π , называется *квазирезонансной* частотой ω_0 . Приравнивая к нулю мнимую часть \dot{K}_U и решая полученное уравнение, после преобразований получаем:

$$\omega_0 = 1/(\sqrt{6}\tau) = 1/(\sqrt{6}RC).$$
 (5.13)

Подставляя найденное значение ω_0 в выражения (5.11) и (5.12), после преобразований, соответственно, имеем:

$$K_U(\omega_0) = \frac{1}{29} \cong 0,0345; \qquad \varphi_{K_U}(\omega_0) = \pi.$$
 (5.14)

Частотные характеристики рассмотренной цепи, построенные по полученным выражениям, показаны на рис. 5.8 (входные) и рис. 5.9 (передаточные). Характер этих кривых полностью соответствует характеру приближенных характеристик (рис. 5.7), что свидетельствует о правильности результатов как логического, так и математического анализов.

На рис. 5.10 представлен годограф ФЦ *R*-параллель, построенный в программе MathCad с использованием выражений (5.10)–(5.12).

При $\omega = 0$, как было определено в результате ΦA , $K_U(0) = 0$, $\varphi_{K_U}(0) = 3\pi/2$. Следовательно, вектор \dot{K}_U на данной частоте повернут относительно действительной оси на угол +270° против часовой стрелки и направлен вниз от начала координат вдоль мнимой оси комплексной плоскости. Поскольку модуль вектора равен нулю, (вектор «сжат» в точку), рабочая точка годографа находится в начале координат: (0; 0).

При отклонении частоты от 0 в соответствии с передаточными ЧХ (рис. 5.9) вектор \dot{K}_U , вращаясь по часовой стрелке с центром вращения в начале координат, переходит в 3-й квадрант комплексной плоскости. С увеличением частоты модуль (длина) вектора \dot{K}_U растет, а аргумент $\phi_{K_{II}}$ уменьшается, оставаясь положительным.

При достижении частотой значения $\omega = \omega_0$ рабочая точка годографа приходит в точку с координатами (-1/29; 0), расположенную в области отрицательных чисел на действительной оси – рис. 5.10. Очевидно, что при этом вектор \dot{K}_U с модулем $K_U(\omega_0) = 1/29$ и аргументом $\varphi_{K_U}(\omega_0) = 180^\circ$ располагается на действительной оси и направлен влево от начала координат.

Рис. 5.8. Входные частотные характеристики ФЦ R-параллель, построенные с помощью программы MathCad по выражениям, полученным в ходе MA

Рис. 5.9. Передаточные частотные характеристики ФЦ R-параллель, построенные с использованием программы MathCad по выражениям, полученным в ходе MA

Рис. 5.10. Годограф фазирующей цепи R-параллель

При дальнейшем увеличении частоты ($\omega > \omega_0$) вектор \dot{K}_U , вращаясь по часовой стрелке, последовательно переходит во 2-й, а затем в 1-й квадрант комплексной плоскости. Этот процесс сопровождается непрерывным увеличением модуля коэффициента передачи и уменьшением его аргумента ϕ_{K_U} .

Последнее положение рабочей точки годографа – точка с координатами (1; 0) на действительной оси комплексной плоскости, в которую она попадает на верхней предельной частоте входного воздействия $\omega = \infty$. Это обусловлено тем, что при этом передаточные параметры рассматриваемой цепи принимают предельные значения: $K_U(\infty) = 1$, $\varphi_{K_U}(\infty) = 0$ (см. результаты ФА). В указанном режиме вектор \dot{K}_U расположен на действительной оси комплексной плоскости – рис. 5.10.

Таким образом, годограф ФЦ *R*-параллель – это фигура, близкая по форме к разомкнутому эллипсу, расположенному в 1-м, 2-м и 3-м квадрантах комплексной плоскости. При изменении частоты от 0 до ∞ рабочая точка годографа, двигаясь по часовой стрелке, перемещается из точки с координатами (0; 0) в точку с координатами (1; 0).

Б. Фазирующая цепь С-параллель

ФЦ С-параллель (2-го типа) отличается от рассмотренной цепи только типом звеньев: здесь для получения **отрицательного** фазового сдвига $\varphi_{K_U} = -\pi$ использованы три одинаковых *RC*-звена с резистором на входе. Как уже отмечалось, в наиболее распространенных случаях («классический» вариант исполнения) сопротивления резисторов и емкости конденсаторов берутся одинаковыми – рис. 5.11.

Рис. 5.11. Классическая трехзвенная фазирующая цепь С-параллель

Логический (физический) анализ ФЦ С-параллель

Для упрощения анализа пронумеруем элементы и введем обозначения токов и напряжений, действующих в схеме.

Схема, подготовленная для анализа, показана на рис. 5.12.

Законы Кирхгофа, выполняющиеся в исследуемой цепи:

а) в соответствии с первым законом Кирхгофа справедливо:

$$\dot{I}_{_{BX}} = \dot{I}_1 + \dot{I}_2; \ \dot{I}_2 = \dot{I}_3 + \dot{I}_4; \Longrightarrow \dot{I}_{_{BX}} = \dot{I}_1 + \dot{I}_3 + \dot{I}_4 \ .$$
 (5.15)

б) по II закону Кирхгофа для комплексов напряжений выполняется: $\dot{U}_{BX} = \dot{U}_{R1} + \dot{U}_{C1}; \ \dot{U}_{C1} = \dot{U}_{R2} + \dot{U}_{C2}; \ \dot{U}_{C2} = \dot{U}_{R3} + \dot{U}_{C3}; \ \dot{U}_{C3} = \dot{U}_{BMX}.$ (5.16) $i_{BX} + i_{BX} + i_{C1} + i_{C1} + i_{C2} + i_{C2} + i_{C3} + i_{C3}$

Рис. 5.12. Схема ФЦ С-параллель, готовая для анализа

1. Низкие частоты: $\omega \rightarrow 0$

На рассматриваемой частоте сопротивление конденсаторов $X_C = 1/\omega C \rightarrow \infty$, поэтому схема замещения ФЦ в этом режиме принимает вид, представленный на рис. 5.13.

Рис. 5.13. Схема замещения $\Phi \amalg C$ -параллель при $\omega \to 0$ $(X_c = 1/\omega C \to \infty)$

Рассмотрим возможные пути протекания входного тока I_{вх}. Этот ток, как известно, протекает в направлении, указанном стрелкой на рис. 5.13, от положительного полюса (+) источника входного сигнала к его отрицательному полюсу (-) по внешней цепи. Пройдя по резистору R_1 , ток $I_{\rm BX}$ подходит к первому узлу, к которому подключены резистор R_2 и конденсатор C_1 . Так как $X_{C1} \gg R_2$, I_{BX} , очевидно, предпочтет путь с наименьшим сопротивлением, следовательно, основная его доля попытается бежать по резистору R₂. Подойдя ко второму узлу (точка соединения элементов R_3 и C_2), ток из тех же соображений ($X_{C2} \gg R_3$!) предпочтет движение по R₃. Пройдя по резистору R₃, носители заряда, формирующие входной ток, «утыкаются» в сопротивление $X_{C3} \rightarrow \infty$. Таким образом, на любом пути к минусу источника $U_{\rm BX}$ у тока $I_{\rm BX}$ нет маршрута с относительно небольшой конечной величиной сопротивления - везде приходится преодолевать сопротивление, стремящееся к бесконечности. Следовательно, величина и характер входного тока определяются, в основном, сопротивлениями всех трех конденсаторов $X_{Ci} \rightarrow \infty$, и модуль входного сопротивления цепи $Z_{\rm BX} \rightarrow \infty$. Реакция цепи стремится к чисто емкостной. Значит, входной ток опережает входное напряжение почти на $\pi/2$, и $\phi_{Z_{BX}} \rightarrow (-) \pi/2$. Величина входного тока $I_{BX} = U_{BX}/Z_{BX} \rightarrow 0$, поэтому все составляющие этого тока (см. выражение (5.15)) также будут иметь бесконечно малые значения.

Как и в случае с ФЦ *R*-параллель (см. предыдущий раздел), для определения передаточных параметров рассматриваемой цепи разобьем ее на три последовательно включенных простейших *RC*-звена, являющихся фазосдвигающими цепочками с резистором на входе – рис. 5.14.

Рис. 5.14. Разбиение схемы замещения ФЦ С-параллель на звенья для определения передаточных частотных параметров

Как уже отмечалось, в ходе физ.анализа *при определении передаточных параметров* разветвленной ЭЦ, состоящей из последовательно соединенных *однотипных* звеньев, достаточно проанализировать *одно* звено, и с учетом полученных результатов, а также известного соотношения для результирующих передаточных параметров всей цепи, сразу же записать конечный результат (*см. ФА фазирующей цепи R-параллель*).

Используя результаты ΦA , полученные для *RC*-цепи с резистором на входе (см. материалы предыдущих разделов курса), для рассматриваемой цепи при $\omega \rightarrow 0$ имеем:

$$K_U(0) \to 1, \quad \varphi_{K_U}(0) \to 0.$$
 (5.17)

2. Высокие частоты: $\omega \rightarrow \infty$

Поскольку сопротивления всех конденсаторов на верхней предельной частоте $X_C = 1/\omega C \rightarrow 0$, схема замещения ФЦ *С*-параллель для этого режима принимает вид, показанный на рис. 5.15:

Рис. 5.15. Схема замещения $\Phi \amalg C$ -параллель при $\omega \rightarrow \infty$ $(X_c = 1/\omega C \rightarrow 0)$

Из схемы видно, что входной ток, пройдя по R_1 , практически весь замкнется через конденсатор C_1 , сопротивление которого $X_{C1} \rightarrow 0$. Таким образом, входное сопротивление цепи $Z_{BX} \rightarrow R_1$, а ее реакция стремится к чисто активной: р.ц. \rightarrow ч.а. Следовательно, I_{BX} почти синфазен входному сигналу, и $\varphi_{Z_{BX}} \rightarrow 0$. Модуль входного тока $I_{BX} \rightarrow U_{BX}/R_1 = const$, $I_1 \rightarrow I_{BX}$, а все остальные токи (I_2 , I_3 , и I_4) стремятся к нулю.

Для определения передаточных параметров цепи разобьем ее, как и в предыдущем пункте анализа, на три одинаковых звена: рис. 5.16.

Рис. 5.16. Схема замещения ФЦ С-параллель при $\omega \to \infty$ $(X_c = 1/\omega C \to 0)$, разбитая на звенья для определения передаточных параметров

Поскольку результаты ΦA одного звена известны из предыдущих разделов дисциплины, для рассматриваемой цепи при $\omega \to \infty$ получаем:

$$K_{U}(\infty) \to 0, \qquad \varphi_{K_{U}}(\infty) \to -3\pi/2.$$
 (5.18)

3. Средние частоты: $\omega = \omega_i$, причем $X_{Ci} = 1/\omega_i C \approx R$

Схема замещения, соответствующая рассматриваемому режиму, вырождается, очевидно, в исходную схему – рис. 5.12.

Так как величина и характер входного тока будут определяться соизмеримыми по значениям сопротивлениями и резисторов, и конденсаторов, реакция цепи является активно-емкостной. Следовательно, входной ток опережает входное напряжение на некоторый угол α , по модулю меньший $\pi/2$. Поэтому $\varphi_{Z_{BX}i}$ будет отрицательным по знаку и располагаться в диапазоне

$$-\pi/2 < \varphi_{Z_{w_{i}}} < 0. \tag{5.19}$$

Модуль входного сопротивления цепи будет обладать некоторой *i*-ой величиной из диапазона, ограниченного значениями этого параметра на предельных частотах (см. пункты 1 и 2 раздела):

$$R < Z_{\rm BX} < \infty \,. \tag{5.20}$$

С учетом значений передаточных параметров рассматриваемой цепи на предельных частотах, найденных ранее, на промежуточной частоте ω_i эти параметры будут, очевидно, лежать в диапазонах:

$$0 < K_{U_i} < 1;$$
 $-3\pi/2 < \varphi_{K_{U_i}} < 0.$ (5.21)

Примерные частотные характеристики ФЦ *С*-параллель, построенные с учетом результатов проведенного ФА, показаны на рис. 5.17.

Математический анализ ФЦ С-параллель

Выражения, определяющие комплекс, модуль и аргумент комплекса коэффициента передачи рассматриваемой цепи, полученные с использованием известных методов анализа ЭЦ, имеют вид (рекомендуется все формулы получить самостоятельно!):

комплекс коэффициента передачи

$$\dot{K}_U = \frac{1 - 5\omega^2 \tau^2 - j\omega\tau(6 - \omega^2 \tau^2)}{\omega^6 \tau^6 + 13\omega^4 \tau^4 + 26\omega^2 \tau^2 + 1},$$
(5.22)

где $X = 1 / \omega C$, $\tau = RC$ – параметр цепи;

модуль коэффициента передачи:

$$K_{U} = \frac{1}{\sqrt{\omega^{6}\tau^{6} + 13\omega^{4}\tau^{4} + 26\omega^{2}\tau^{2} + 1}};$$
 (5.23)

аргумент \dot{K}_U

$$\varphi_{K_U} = -\arctan\left(\frac{6\,\omega\tau - \omega^3\tau^3}{1 - 5\omega^2\tau^2}\right).$$
(5.24)

Приравнивая к нулю мнимую часть \dot{K}_U и решая полученное уравнение, после преобразований получаем выражение для определения квазирезонансной частоты ФЦ *С*-параллель:

$$\omega_0 = \sqrt{6} / \tau = \sqrt{6} / RC.$$
 (5.25)

Отметим важную особенность: частота квазирезонанса ω_0 рассматриваемой цепи *в 6 раз больше, чем в цепи R-параллель при одинаковых значениях* $\tau = RC$.

Подставляя найденное значение ω_0 в выражения (5.23) и (5.24), определяющие модуль и аргумент комплекса коэффициента передачи, после преобразований получаем:

$$K_U(\omega_0) = \frac{1}{29} \cong 0,0345;$$
 $\varphi_{K_U}(\omega_0) = -\pi.$ (5.26)

Рис. 5.17. Примерные частотные характеристики ФЦ С-параллель, полученные по результатам ФА: а) входные; б) передаточные

Рис. 5.18. Входные частотные характеристики ФЦ С-параллель, построенные с использованием программы MathCad по выражениям, полученным в ходе MA

Рис. 5.19. Передаточные частотные характеристики ФЦ С-параллель, построенные с использованием программы MathCad по выражениям, полученным в ходе MA

Рис. 5.20. Годограф фазирующей цепи С-параллель

Сравнивая найденные значения с аналогичными параметрами $\Phi \amalg R$ -параллель, отметим, что в рассматриваемой цепи фазовый сдвиг $\phi_{K_{in}}$

между входным и выходным сигналами на частоте квазирезонанса, как и должно быть, сменил знак на отрицательный, а модуль коэффициента передачи $K_U(\omega_0) = 1/29$ имеет точно такое же значение!

Входные и передаточные частотные характеристики цепи *С*-параллель, построенные по полученным выражениям, приведены на рис. 5.18 и рис. 5.19, соответственно. Видно, что характер поведения и входных, и передаточных параметров цепи в частотной области качественно точно такой же, как на построенных ранее примерных частотных характеристиках (рис. 5.17). Это свидетельствует о верности результатов как логического, так и математического анализов.

На рис. 5.20 показан годограф ФЦ *R*-параллель, выполненный в программе MathCad с использованием выражений (5.22)–(5.24).

При $\omega = 0$ в соответствии с результатами проведенного анализа цепи $K_U(0) = 1$, $\varphi_{K_U}(0) = 0$. Следовательно, вектор \dot{K}_U на нижней предельной частоте входного сигнала расположен на действительной оси комплексной плоскости, и его конец (начальная рабочая точка годографа) находится на этой же оси в точке с координатами (1; 0).

При отклонении частоты от нулевого значения в соответствии с передаточными ЧХ (рис. 5.19) вектор \dot{K}_U , вращаясь по часовой стрелке с центром вращения в начале координат, переходит вначале в 4-й, а затем в 3-й квадранты комплексной плоскости. При этом ставший отрицательным аргумент ϕ_{K_U} непрерывно увеличивается по модулю (становится более отрицательным!), а модуль (длина) вектора \dot{K}_U уменьшается с ростом частоты. При дальнейшем увеличении частоты входного воздействия эта тенденция сохраняется.

При достижении частотой значения ω_0 (квазирезонанс) рабочая точка годографа доходит до точки с координатами (-1/29; 0), расположенной в области отрицательных чисел на действительной оси – рис. 5.20. Очевидно, что при этом вектор \dot{K}_U с модулем $K_U(\omega_0) = 1/29$ и аргументом $\varphi_{K_U}(\omega_0) = -180^\circ$ располагается на действительной оси и направлен влево от начала координат.

Когда частота входного сигнала превысит частоту квазирезонанса $(\omega > \omega_0)$, вектор \dot{K}_U , продолжая вращаться по часовой стрелке, переходит во 2-ой квадрант комплексной плоскости, причем тенденция в поведении параметров K_U и φ_{K_U} сохраняется прежней.

Последнее положение рабочей точки годографа – точка с координатами (0; 0) – начало координат комплексной плоскости. В это место рабочая точка попадает на верхней предельной частоте входного воздействия $\omega = \infty$, когда передаточные параметры рассматриваемой цепи принимают предельные значения: $K_U(\infty) = 0$, $\varphi_{K_U}(\infty) = -3\pi/2$ (см. результаты анализа). В указанном режиме вектор \dot{K}_U , «сжатый» в точку, направлен вверх вдоль мнимой оси комплексной плоскости, поскольку повернут по часовой стрелке на 270° относительно действительной оси – рис. 5.20.

Итак, годограф ФЦ С-параллель – это фигура, близкая по форме к разомкнутому эллипсу, расположенному во 2-м, 3-м и 4-м квадрантах комплексной плоскости. При изменении частоты от 0 до ∞ рабочая точка годографа, двигаясь по часовой стрелке, перемещается из точки с координатами (1; 0) в точку с координатами (0; 0).

Достоинством рассмотренных «классических» трехзвенных фазирующих цепей является их относительная простота и «прозрачность» принципа действия. Цепочки дешевы, надежны в работе и не требуют тщательной настройки. Однако «классическим» фазирующим цепям присущ и существенный недостаток: относительно малый коэффициент передачи на квазирезонансной частоте, поскольку выходной сигнал на частоте квазирезонанса меньше входного в 29 раз!

«Смягчение» этого недостатка, т.е. увеличение $K_U(\omega_0)$ фазирующих цепей, может быть достигнуто двумя путями:

а) использование *четырехзвенных* цепочек из *одинаковых* звеньев. Очевидно, чем больше звеньев используется для получения результирующего сдвига $\phi_{K_U} = \pm 180^\circ$, тем меньший по модулю сдвиг требуется от каждого звена. При увеличении количества однотипных звеньев до 4-х возрастают коэффициенты передачи отдельных звеньев, а, следовательно, растет и результирующий $K_U(\omega_0)$. При этом, естественно, меняется и значение частоты, на которой наблюдается квазирезонанс. Передаточные параметры четырехзвенных ФЦ на частоте квазирезонанса приведены в таблице 5.1.

Таблица 5.1

Порометри	Тип четырехзвенной фазирующей цепи	
Парамстры	<i>R</i> -параллель	С-параллель
ω ₀	$\frac{\sqrt{7/10}}{\tau}\approx 0,837\tau$	$\frac{\sqrt{10/7}}{\tau}\approx 1,195\tau$
$K_{U}(\omega_{0})$	$1/18,388 \approx 0,0544$	1/18,388 ≈ 0,0544
$\phi_{K_U}(\omega_0)$	$+\pi$	$-\pi$

Анализ данных, представленных в таблице 5.1, показывает, что применение четырехзвенных ФЦ обеспечивает увеличение коэффициента передачи на квазирезонансе примерно в 1,6 раза по сравнению с трехзвенным (классическим) вариантом при любом типе цепи $(K_U(\omega_0) = 1/18,388 \approx 0,0544$ –почти в 1,6 раз больше, чем у классических цепей!).

b) применение трехзвенных прогрессивных цепей. Суть: сопротивление компонентов каждого последующего звена выбирается в несколько раз (обычно в 5 раз) больше, чем у предыдущего, что снижает нагрузку на предыдущие звенья и обеспечивает увеличение $K_U(\omega_0)$. 1/10,696 \approx 1/11, в 2,7 раза больше.

Контрольные вопросы и задания для самопроверки качества усвоения материала

1. Фазирующие цепи (ФЦ). Определение, наиболее распространенные схемотехнические решения, области применения.

2. Обоснуйте минимально необходимое количество *RC*- (*RL*-) звеньев, требуемое для получения $\phi_{K_{ll}}$, равного $\pm \pi$.

3. Что общего между фазирующей и фазосдвигающей цепями? Чем они отличаются и почему?

4. Приведите схему фазирующей цепи, обеспечивающей положительное значение фазового сдвига между выходным и входным напряжениями. Обоснуйте ответ.

5. Укажите достоинства и недостатки классической фазирующей цепи.

6. Почему частота, на которой фазовый сдвиг между выходным и входным сигналами Φ Ц равен $\pm \pi$, называется квазирезонансной? Какова реакция цепи на этой частоте?

7. Получите выражение для определения входных частотных параметров классической ФЦ *R*-параллель (*C*-параллель).

8. Получите выражение для определения выходного сопротивления трехзвенной ФЦ *R*-параллель (*C*-параллель).

9. Изобразите принципиальную схему ФЦ *R*-параллель. Подготовьте схему для анализа и укажите алгоритм построения векторной диаграммы цепи на какой-либо конкретной частоте входного воздействия.

10. Фазирующая цепь *R*-параллель. Изобразите схему, частотные характеристики цепи и укажите ее основные параметры. Поясните принцип действия данной цепи.

11. Какие фазирующие цепи – составленные из *RC*- или *RL*-звеньев – наиболее широко используются на практике? Почему?

12. Проведите физический анализ ФЦ *R*-параллель. Используя результаты ФА, постройте частотные характеристики цепи.

13. Укажите способы повышения коэффициента передачи фазирующей цепи на частоте квазирезонанса f_0 .

14. Поясните, почему увеличение количества звеньев обеспечивает увеличение коэффициента передачи фазирующей цепи на частоте квазирезонанса f_0 .

15. Укажите последовательность действий при определении частоты квазирезонанса *f*₀ фазирующей цепи.

16. Каким образом экспериментально определить параметры исследуемой ФЦ на квазирезонансной частоте:

- входное сопротивление $R_{\text{вх 0}}$;
- выходное сопротивление $R_{\text{вых 0}}$;
- коэффициент передачи K_{U0} ;
- фазовый сдвиг между входным напряжением и входным током $\phi_{Z_{RX0}}$;

(по указанию преподавателя). Поясните, какие при этом используются измерительные приборы, и какова последовательность действий оператора в каждом конкретном случае.

17. Прогрессивные фазирующие цепи. Назначение, схемотехника, достоинства по сравнению с классической ФЦ.

18. Как распределяется суммарный фазовый сдвиг $\varphi_{K_U} = \pm \pi$ по звеньям классической трехзвенной фазирующей цепи? Какое звено обеспечивает максимальный фазовый сдвиг на квазирезонансе, а какое – минимальный? Почему?

19. Можно ли при проведении **математического** анализа разбивать ФЦ на звенья и определять результирующий K_{U0} , перемножая коэффициенты передачи отдельных звеньев? Поясните свое заключение.

20. Проведите физический анализ ФЦ С-параллель. Используя результаты ФА, постройте частотные характеристики цепи.

21. Сравните между собой ФЦ *R*-параллель и *C*-параллель. Что у них общего и чем они отличаются друг от друга?

22. Какой АЧХ будет обладать электрической цепь, представляющая собой последовательное соединение ФЦ *R*-параллель и *C*-параллель? Поясните свое заключение.