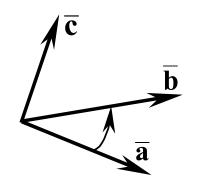
2. Векторное произведение векторов

ОПРЕДЕЛЕНИЕ. Тройка векторов $\bar{\mathbf{a}}$, $\bar{\mathbf{b}}$ и $\bar{\mathbf{c}}$ называется правой, если поворот от вектора $\bar{\mathbf{a}}$ к вектору $\bar{\mathbf{b}}$ на меньший угол виден из конца вектора $\bar{\mathbf{c}}$ против часовой стрелки.



ОПРЕДЕЛЕНИЕ. Векторным произведением двух ненулевых векторов $\overline{\mathbf{a}}$ и $\overline{\mathbf{b}}$ называется вектор $\overline{\mathbf{c}}$, удовлетворяющий следующим условиям:

- 1) $|\bar{\mathbf{c}}| = |\bar{\mathbf{a}}| \cdot |\bar{\mathbf{b}}| \cdot \sin \varphi$, где φ угол между векторами $\bar{\mathbf{a}}$ $u \bar{\mathbf{b}}$;
- 2) вектор $\bar{\mathbf{c}}$ ортогонален векторам $\bar{\mathbf{a}}$ и $\bar{\mathbf{b}}$;
- 3) тройка векторов $\bar{\bf a}$, ${\bf b}$ и $\bar{\bf c}$ правая. Если хотя бы один из векторов $\bar{\bf a}$ или $\bar{\bf b}$ нулевой, то их векторное произведение полагают равным нулевому

Обозначают $[\overline{\mathbf{a}}, \overline{\mathbf{b}}]$ или $\overline{\mathbf{a}} \times \overline{\mathbf{b}}$.

вектору.

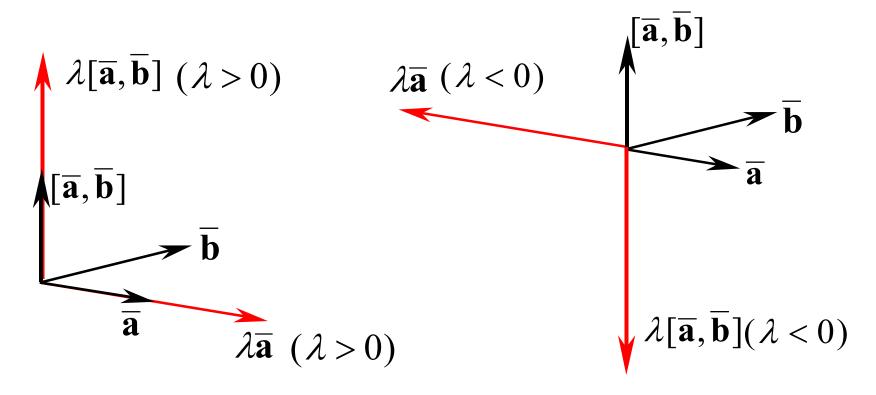
СВОЙСТВА ВЕКТОРНОГО ПРОИЗВЕДЕНИЯ ВЕКТОРОВ

1) При перестановке векторов $\bar{\bf a}$ и ${\bf b}$ их векторное произведение меняет знак, т.е.

$$[\overline{\mathbf{a}}, \overline{\mathbf{b}}] = -[\overline{\mathbf{b}}, \overline{\mathbf{a}}].$$

2) Числовой множитель любого из двух векторов можно вынести за знак векторного произведения. Т.е.

$$[\lambda \overline{\mathbf{a}}, \overline{\mathbf{b}}] = [\overline{\mathbf{a}}, \lambda \overline{\mathbf{b}}] = \lambda [\overline{\mathbf{a}}, \overline{\mathbf{b}}].$$



- 3) Если один из векторов записан в виде суммы, то векторное произведение тоже можно записать в виде суммы. А именно: $[\overline{\bf a}_1 + \overline{\bf a}_2, \overline{\bf b}] = [\overline{\bf a}_1, \overline{\bf b}] + [\overline{\bf a}_2, \overline{\bf b}],$ $[\overline{\bf a}, \overline{\bf b}_1 + \overline{\bf b}_2] = [\overline{\bf a}, \overline{\bf b}_1] + [\overline{\bf a}, \overline{\bf b}_2].$
- 4) Ненулевые векторы **ā** и **b** коллинеарные тогда и только тогда, когда их векторное произведение равно нулевому вектору (Критерий коллинеарности векторов).
- 5) Модуль векторного произведения неколлинеарных векторов $\overline{\mathbf{a}}$ и $\overline{\mathbf{b}}$ равен площади параллелограмма, построенного на этих векторах (Геометрический смысл векторного произведения).

6) Если в декартовом прямоугольном базисе векторы $\bar{\bf a}$ и $\bar{\bf b}$ имеют координаты: $\bar{\bf a} = \{a_x; a_y; a_z\}, \ \bar{\bf b} = \{b_x; b_y; b_z\}, \ mo$

$$[\overline{\mathbf{a}}, \overline{\mathbf{b}}] = \left\{ \begin{vmatrix} a_y & a_z \\ b_y & b_z \end{vmatrix}; \begin{vmatrix} a_z & a_x \\ b_z & b_x \end{vmatrix}; \begin{vmatrix} a_x & a_y \\ b_x & b_y \end{vmatrix} \right\} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ a_x & a_y & a_z \\ b_x & b_y & b_z \end{vmatrix}.$$

7) (Механический смысл векторного произведения). Если вектор $\overline{\mathbf{F}}$ это сила, приложенная к точке , то векторное произведение $\left[\overline{\mathbf{OM}},\overline{\mathbf{F}}\right]$ представляет собой момент силы $\overline{\mathbf{F}}$ относительно точк $\mathbf{\Omega}$.

3. Смешанное произведение векторов

ОПРЕДЕЛЕНИЕ. Смешанным произведением трех векторов $\overline{\bf a}$, $\overline{\bf b}$ и $\overline{\bf c}$ называется число, равное скалярному произведению вектора $\overline{\bf a}$ на векторное произведение векторов $\overline{\bf b}$ и $\overline{\bf c}$, т.е. $(\overline{\bf a},[\overline{\bf b},\overline{\bf c}])$.

Обозначают: $(\overline{\mathbf{a}}, \overline{\mathbf{b}}, \overline{\mathbf{c}})$ или $\overline{\mathbf{a}}\overline{\mathbf{b}}\overline{\mathbf{c}}$.

СВОЙСТВА СМЕШАННОГО ПРОИЗВЕДЕНИЯ ВЕКТОРОВ

1) При циклической перестановке векторов $\bar{\mathbf{a}}$, $\bar{\mathbf{b}}$, $\bar{\mathbf{c}}$ их смешанное произведение не меняется, т.е.

$$(\overline{\mathbf{a}}, \overline{\mathbf{b}}, \overline{\mathbf{c}}) = (\overline{\mathbf{b}}, \overline{\mathbf{c}}, \overline{\mathbf{a}}) = (\overline{\mathbf{c}}, \overline{\mathbf{a}}, \overline{\mathbf{b}}).$$

2) При перестановке любых двух векторов их смешанное произведение меняет знак.

3) Числовой множитель любого из трех векторов можно вынести за знак смешанного произведения. Т.е.

$$(\lambda \overline{\mathbf{a}}, \overline{\mathbf{b}}, \overline{\mathbf{c}}) = (\overline{\mathbf{a}}, \lambda \overline{\mathbf{b}}, \overline{\mathbf{c}}) = (\overline{\mathbf{a}}, \overline{\mathbf{b}}, \lambda \overline{\mathbf{c}}) = \lambda(\overline{\mathbf{a}}, \overline{\mathbf{b}}, \overline{\mathbf{c}}).$$

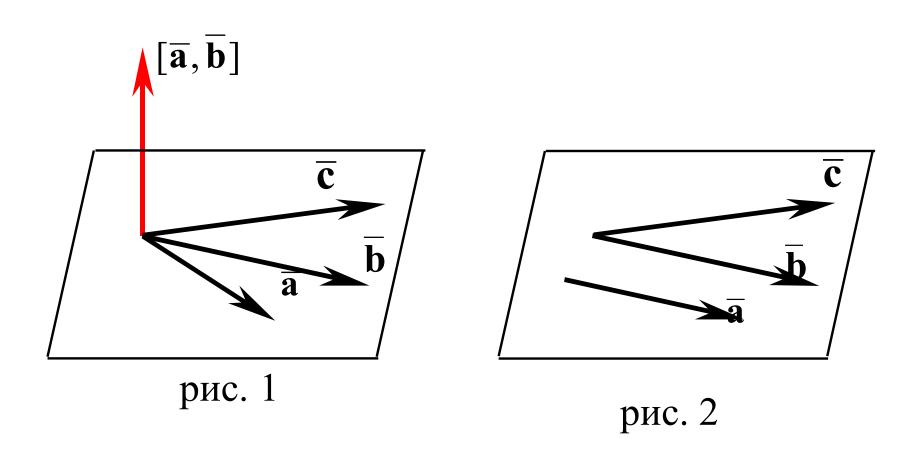
4) Если один из векторов записан в виде суммы, то смешанное произведение тоже можно записать в виде суммы. А

именно:
$$(\overline{\mathbf{a}}_1 + \overline{\mathbf{a}}_2, \overline{\mathbf{b}}, \overline{\mathbf{c}}) = (\overline{\mathbf{a}}_1, \overline{\mathbf{b}}, \overline{\mathbf{c}}) + (\overline{\mathbf{a}}_2, \overline{\mathbf{b}}, \overline{\mathbf{c}}) \,,$$

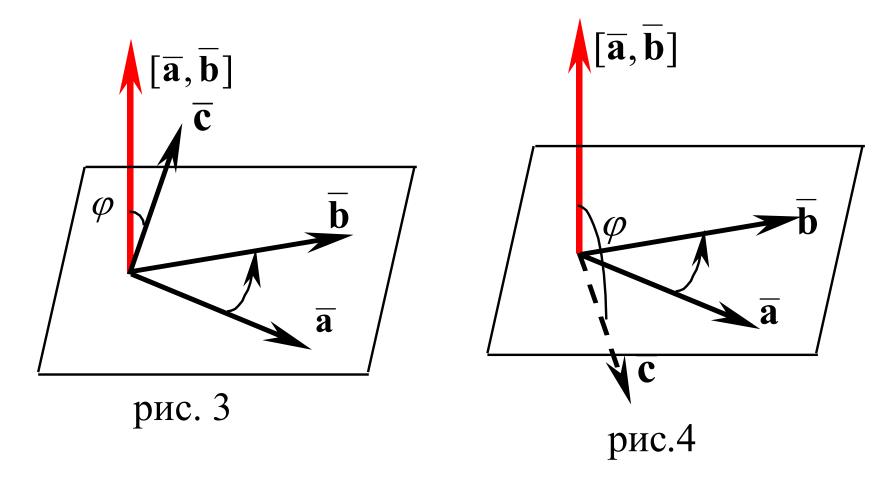
$$(\overline{\mathbf{a}}, \overline{\mathbf{b}}_1 + \overline{\mathbf{b}}_2, \overline{\mathbf{c}}) = (\overline{\mathbf{a}}, \overline{\mathbf{b}}_1, \overline{\mathbf{c}}) + (\overline{\mathbf{a}}, \overline{\mathbf{b}}_2, \overline{\mathbf{c}}) \,,$$

$$(\overline{\mathbf{a}}, \overline{\mathbf{b}}, \overline{\mathbf{c}}_1 + \overline{\mathbf{c}}_2) = (\overline{\mathbf{a}}, \overline{\mathbf{b}}, \overline{\mathbf{c}}_1) + (\overline{\mathbf{a}}, \overline{\mathbf{b}}, \overline{\mathbf{c}}_2) \,.$$

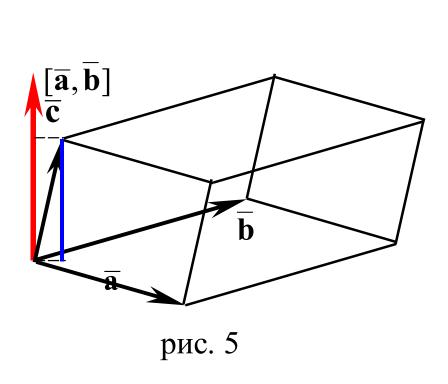
5) Ненулевые векторы $\bar{\mathbf{a}}$, $\bar{\mathbf{b}}$, $\bar{\mathbf{c}}$ компланарны тогда и только тогда, когда их смешанное произведение равно нулю (Критерий компланарности векторов).

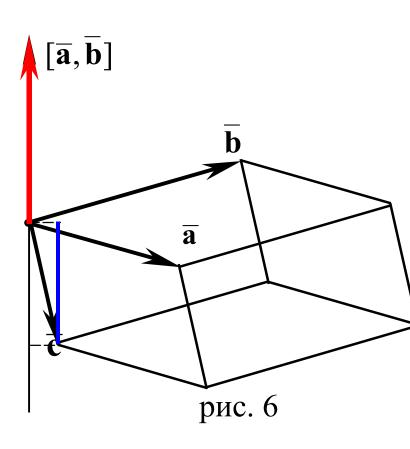


6) Если $(\overline{\mathbf{a}}, \overline{\mathbf{b}}, \overline{\mathbf{c}}) > 0$, то векторы $\overline{\mathbf{a}}$, $\overline{\mathbf{b}}$, $\overline{\mathbf{c}}$ образуют правую тройку. Если $(\overline{\mathbf{a}}, \overline{\mathbf{b}}, \overline{\mathbf{c}}) < 0$, то тройка векторов $\overline{\mathbf{a}}$, $\overline{\mathbf{b}}$, $\overline{\mathbf{c}}$ – левая.



7) Модуль смешанного произведения некомпланарных векторов $\overline{\mathbf{a}}$, $\overline{\mathbf{b}}$, $\overline{\mathbf{c}}$ равен объему параллелепипеда, построенного на этих векторах (Геометрический смысл смешанного произведения).





8) (Следствие свойства 7). Объем пирамиды, построенной на векторах $\bar{\mathbf{a}}$, $\bar{\mathbf{b}}$, $\bar{\mathbf{c}}$ раве $\frac{1}{6}$ модуля их смешанного произведения.

9) Если в декартовом прямоугольном базисе векторы $\bar{\bf a}$, $\bar{\bf b}$, $\bar{\bf c}$ имеют координаты: $\bar{\bf a} = \{a_x; a_y; a_z\}$, $\bar{\bf b} = \{b_x; b_y; b_z\}$, $\bar{\bf c} = \{c_x; c_y; c_z\}$, то

$$(\overline{\mathbf{a}}, \overline{\mathbf{b}}, \overline{\mathbf{c}}) = \begin{vmatrix} a_x & a_y & a_z \\ b_x & b_y & b_z \\ c_x & c_y & c_z \end{vmatrix}.$$