Математический анализ

Раздел: Числовые и функциональные ряды

Тема: *Основные понятия теории рядов*

Лектор Янущик О.В.

Литература

- 1. Бугров Я.С., Никольский С.М. Дифференциальные уравнения. Кратные интегралы. Ряды. Функции комплексного переменного. М.: Наука, 1981.
- 2. Данко П.Е., Попова А.,Г., Кожевникова Т.Я. Высшая математика в упражнениях и задачах: в 2-х частях. М.: высшая школа, 1980.
- 3. Краснов М.Л., Кисилев А.И., Макаренко Г.И. Функции комплексного переменного. Операционное исчисление. Теория устойчивости. М.: Наука, 1971.
- 4. Кошельская Г.А., Столярова Г.П., Харлова А.Н. Высшая математика (часть IV). Ряды. Учебное пособие. Томск: изд-во ТПУ, 2001.
- 5. Ряды и комплексный анализ [Электронный ресурс]: учебное пособие / Е. А. Молдованова, А. Н. Харлова, В. В. Ласуков; Томский политехнический университет (ТПУ). Томск: Изд-во ТПУ, 2009 Ч. 2: Функции комплексного переменного. Режим доступа: http://www.lib.tpu.ru/fulltext2/m/2009/m64.pdf

Глава 1. Числовые ряды

§1. Основные понятия теории числовых рядов

1. Основные определения

Пусть задана числовая последовательность $\{u_n\}$

ОПРЕДЕЛЕНИЕ 1.1. Выражение вида
$$u_1 + u_2 + \ldots + u_n + \ldots = \sum_{n=1}^{\infty} u_n$$

называют числовым рядом.

При этом, члены последовательности $\{u_n\}$ называются **члена- ми ряда** (1-м, 2-м, ..., n-м (общим членом))

Если начиная с некоторого номера N для членов ряда справедливо равенство

$$u_{N} = u_{N+1} = u_{N+2} = \dots = 0$$
,

то ряд называют *конечным*. В противном случае ряд называется *бесконечным*.

Pяд $\sum u_n$ называют

- *знакоположительным*, если $u_n \ge 0$, $\forall n \in \mathbb{N}$;
- знакоотрицательным, если $u_n \leq 0$, $\forall n \in \mathbb{N}$;
- *знакопостоянным*, если он знакоположительный или знакоотрицательный;
- знакопеременным, если он содержит бесконечное число как положительных, так и отрицательных членов.

Для ряда $\sum u_n$ запишем последовательность $S_1=u_1$, $S_2=u_1+u_2$, ..., $S_n=u_1+u_2+...+u_n$, ... Числа S_1,S_2 , ..., S_n называют **частичными суммами ряда** $\sum u_n$

Числа $S_1, S_2, ..., S_n$ называют **частичными суммами ряда** $\sum u_n$ (1-й, 2-й, ..., n-й).

ОПРЕДЕЛЕНИЕ 1.2. Pяд $\sum u_n$ называется **сходящимся**, если существует конечный предел последовательности его частичных сумм $\{S_n\}$.

 $\Pi p u$ этом, число $S = \lim_{n \to \infty} S_n$ называют **суммой ряда** $\sum u_n$.

Ecnu $\lim_{n\to\infty} S_n = \infty$ $(\lim_{n\to\infty} S_n - \mathbb{Z})$ то говорят, что ряд $\sum u_n$ расходится u не имеет суммы.

Если S — сумма ряда $\sum u_n$, то записывают: $\sum u_n = S$.

ОСНОВНЫЕ ЗАДАЧИ ТЕОРИИ РЯДОВ

- 1) Рассматривается в математическом анализе: Определить, сходится или расходится заданный ряд (говорят: «исследовать ряд на сходимость»)
- 2) Рассматривается в вычислительной математике: *Найти сумму сходящегося ряда*.

Найти точное значение суммы S сходящегося ряда удается редко. Обычно полагают $S \approx S_n$ где n выбирают так, чтобы $|R_n| = |S - S_n| < \varepsilon$ (ε заранее задано).

Число R_n называют *остатком ряда*.

2. Основные свойства числовых рядов

TEOPEMA 1.3.

Поведение ряда относительно сходимости не изменится, если добавить (отбросить) конечное число членов ряда.

ДОКАЗАТЕЛЬСТВО

ОПРЕДЕЛЕНИЕ 1.4.

- 1) Произведением ряда $\sum u_n$ на число $c \in \mathbb{R}$ называется ряд $\sum c \cdot u_n$.
- 2) **Суммой (разностью) рядов** $\sum u_n \ u \ \sum v_n$ называется ряд $\sum (u_n + v_n) \ [\sum (u_n v_n)].$

ОБОЗНАЧАЮТ: $c \cdot \sum u_n$ – произведение ряда на число c ; $\sum u_n \pm \sum v_n$ – сумма (разность) рядов $\sum u_n$ и $\sum v_n$

ТЕОРЕМА 1.5 (об арифметических действиях над сходящимися рядами)

Если ряд $\sum u_n$ сходится и его сумма равна U, ряд $\sum v_n$ сходится и его сумма равна V, то а) ряд $\sum cu_n - cx$ одится и его сумма равна cU ($\forall c \in \mathbb{R}$); б) ряд $\sum (u_n \pm v_n) - cx$ одится и его сумма равна $U \pm V$. ДОКАЗАТЕЛЬСТВО

СЛЕДСТВИЯ теоремы 1.5.

- 1) Если $\sum u_n$ расходится, то $\forall c \neq 0$ $(c \in \mathbb{R})$ ряд $\sum cu_n$ тоже расходится.
- 2) Если ряд $\sum u_n$ сходится, а ряд $\sum v_n$ расходится, то ряд $\sum (u_n \pm v_n) pacxoдится$.

ТЕОРЕМА 1.6 (необходимый признак сходимости ряда).

Eсли pяд $\sum u_n$ cходиmся, m0 $\lim_{n \to \infty} u_n = 0$. ДОКАЗАТЕЛЬСТВО

СЛЕДСТВИЕ теоремы 1.6 (достаточное условие расходимости ряда)

 $E c \pi u \lim_{n \to \infty} u_n \neq 0$, то ряд $\sum u_n$ расходится.

ТЕОРЕМА 1.7 (закон ассоциативности для сходящихся рядов).

Пусть ряд $\sum u_n$ сходится и его сумма равна U

Если сгруппировать члены этого ряда, НЕ ИЗМЕНЯЯ ИХ ПОРЯДКА, то полученный в результате этого ряд будет сходиться и иметь ту же сумму U.

§2. Сходимость знакоположительных рядов

ЛЕММА 2.1 (необходимое и достаточное условие сходимости знакоположительного ряда).

Знакоположительный ряд сходится ⇔ последовательность его частичных сумм ограничена.

ДОКАЗАТЕЛЬСТВО

ТЕОРЕМА 2.2 (первый признак сравнения).

Пусть $\sum u_n \ u \ \sum v_n -$ знакоположительные ряды, причем $u_n \le v_n \ , \ \forall n \ge N \ (N \in \mathbb{N}).$

Тогда

- 1) если ряд $\sum v_n$ сходится, то и ряд $\sum u_n$ тоже сходится;
- 2) если ряд $\sum u_n$ расходится, то и ряд $\sum v_n$ тоже расходится.

ДОКАЗАТЕЛЬСТВО

ТЕОРЕМА 2.3 (второй признак сравнения).

 Π усть $\sum u_n \ u \ \sum v_n$ – знакоположительные ряды.

Если при $n \to \infty$ существует конечный и отличный от нуля предел отношения их общих членов, т.е.

$$\lim_{n\to\infty}\frac{u_n}{v_n}=k\neq 0,$$

то ряды $\sum u_n$ и $\sum v_n$ ведут себя одинаково по отношению к сходимости.

ДОКАЗАТЕЛЬСТВО

- ЭТАЛОННЫЕ РЯДЫ, которые используются в признаках сравнения: ∞ 1
 - сравнения: а) гармонический ряд $\sum_{n=1}^{\infty} \frac{1}{n}$ — расходится;
 - б) обобщенный гармонический ряд (ряд Дирихле)

$$\sum_{n=1}^{\infty} \frac{1}{n^{\alpha}} - \begin{cases} cxo \partial umcn, & ecnu \ \alpha > 1, \\ pacxo \partial umcn, & ecnu \ \alpha \leq 1. \end{cases}$$

в) ряд геометрической прогрессии

$$\sum_{n=1}^{\infty} aq^{n-1} - \begin{cases} cxo \partial umcn, & ecnu |q| < 1, \\ pacxo \partial umcn, & ecnu |q| \ge 1. \end{cases}$$