

Институт мониторинга климатических и экологических систем <u>CO PAH</u> Томский политехнический институт Институт природных ресурсов

Вулканизм и озоновый слой Земли

Член-корр. РАН, ∂.ф.-м.н., проф. Зуев Владимир Владимирович

Томск, 6 сентября 2016 г.

Озоновый слой Земли

Негативные последствия разрушения озонового слоя

16 сентября

Международный день охраны озонового слоя

связан с датой подписания

Монреальского протокола

Этапы ангажированной компании по дискредитации фреонов

- 70-е гг. рынок фреонов насытился, спрос упал, а вместе с ним упали доходы основного производителя, компании DuPont.
- Начало компании DuPont, ICI и Alf Atochem завершили создание технологий
- 80-х гг. производства новых химических соединений гидрофторуглеродов (ГФУ) и хладагентов и пропеллентов на их основе
- 1985 г. принята Венская конвенция об охране озонового слоя
- 1985 г. в журнале Nature опубликована статья о наблюдениях озоновой дыры над Антарктидой и ее связи с хлорфторуглеродами (ХФУ), фреонами
- 1987 г. подписан Монреальский протокол (инициатор компания DuPont)
- 1990 г. введено полное торговое эмбарго в отношении фреона
- 1995 г. вручена Нобелевская премия по химии за недоказанную «фреоновую» гипотезу разрушения озона
- 2000 г. осуществлен полный запрет фреоновых технологий
- В итоге ТНК DuPont, ICI и Alf Atochem стали монополистами на рынке ГФУ, бывшие производители фреонов получили многомиллиардные убытки, РФ покупает ГФУ у компании DuPont уже с 1996 г.

Фреоны запретили, а проблемы остались

Озоновая дыра в Арктике март, 2011 г.

Озоновая дыра в Антарктиде октябрь, 2015 г.

Goddard Space Flight Center (GSFC). NASA's Ozone Hole Watch Web Site (online database). http://ozonewatch.gsfc.nasa.gov/SH.html

Вулканы Земли

Характеристика индексов вулканической взрывчатости (VEI)

VEI	Объем, км ³	Высота выброса, км	Тип извержения Частота извержений		Пример	
0	10 ⁻⁵	<0,1	Гавайский	ежедневно	Килауе	
1	10 ⁻⁴	0,1-1	Гавайский/ Стромболианский	ежедневно	Стромболи	
2	10 ⁻³	1-5	Стромболианский/ Вулканианский	Каждую неделю	Галерас, 1992	
3	10 ⁻²	3-15	Вулканианский	ежегодно	Суфриер, 1979	
4	10 -1	10-25	Вулканианский/ Плинианский	1 раз в 10 лет	Галангунг, 1982	
5	1	>25	Плинианский	1 раз в 100 лет	Эль-Чичон, 1982	
6	10	>25	Плинианский/ Ультра Плинианский	1 раз в 100 лет	Пинатубо, 1991	
7	100	>50	Ультра Плинианский	1 раз в 1000 лет	Тамбора, 1815	
8	>1000	>50	Ультра Плинианский	1 раз в 10000 лет	Тоба, 74 тыс. лет назад	

Роль вулкана Эребус в усилении Антарктической озоновой дыры

Хлорный каталитический цикл

Полярная стратосфера

Ключевые гетерогенные реакции

 $\begin{array}{l} \mathsf{HCl} + \mathsf{CIONO}_2 \xrightarrow{\mathsf{\PiCO}} \mathsf{HNO}_3 + \mathsf{Cl}_2 \\ \mathsf{CIONO}_2 + \mathsf{H}_2\mathsf{O} \xrightarrow{\mathsf{\PiCO}} \mathsf{HNO}_3 + \mathsf{HOCl} \\ \mathsf{HCl} + \mathsf{HOCl} \xrightarrow{\mathsf{\PiCO}} \mathsf{H}_2\mathsf{O} + \mathsf{Cl}_2 \end{array}$

 $Cl_2 + hv \rightarrow 2Cl \cdot$

Тропическая стратосфера Хлорфторуглероды (CFCs)

 $\mathbf{CFCl}_3 + h\mathbf{v} \rightarrow \mathbf{CFCl}_2 + \mathbf{Cl}$

Хлорный цикл $Cl + O_3 \rightarrow ClO + O_2$ $ClO + O \rightarrow Cl + O_2$

Блокирующие реакции $ClO + NO_2 + M \rightarrow ClONO_2$ $Cl + CH_4 \rightarrow CH_3 + HCl$

Транспорт к полюсу

Solomon S., Garcia R.R., Rowland F.S., Wuebbles D.J., 1986. On the depletion of Antarctic ozone. Nature, 321, 755-758.

Интегральное содержание HCl и ClONO₂. Аэрозольный профиль над Антарктикой и Арктикой

Вулкан Эребус, остров Росса, Антарктида

Скорость эмиссии SO₂ ~ 82 т/сут. HCl ~ 26 т/сут. H_{max} ~ 2 км

77,5°ю.ш., 167,2°в.д. Высота - 3794 м

Формирование и динамика высоких циклонов у побережья Антарктиды

Высокий циклон над о-вом Росса

14

Траектория движения воздушных масс в циклоне, рассчитанная по модели NOAA HYSPLIT

Оценка массы HCl, переносимой циклонами в стратосферу от вулкана Эребус

Анализ на основе ежедневных полей геопотенциальной высоты за 35 лет

Вероятность существования циклона над о-вом Росса –	32,5%
Вероятность циклонального подъема –	72,2%
Среднегодовая вероятность перемещения выбросов вулкана Эребус в стратосферу –	23,5%
Macca HCl, выбрасываемого вулканом Эребус –	4,1-60,9 кт/год
Macca HCl, переносимого в антарктическую стратосферу в высоких циклонах –	1,0–14,3 кт/год

Анализ основан на данных NCEP/NCAR global reanalysis http://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis.html

Оценка массы HCl, необходимой для формирования озоновой дыры

 $\begin{array}{l} \text{Clono}_2 + \text{HCl} \rightarrow \text{Cl}_2 + \text{HNO}_3 \\ \text{Cl}_2 + h \text{v} \; (\sim 450 \; \text{hm}) \rightarrow 2\text{Cl} \\ \text{Cl} + \text{O}_3 \rightarrow \text{ClO} + \text{O}_2 \quad \mathbb{O}_3 \psi \; \mathbb{ClO} \uparrow \end{array}$

$$\begin{split} & v_{\rm HCl} = 0,5 v_{\rm ClO}; v_{\rm HCl} / v_{\rm ClO} = \phi_{\rm HCl} / \phi_{\rm ClO} \\ & \phi_{\rm ClOmax} = 1,55 \cdot 10^{-9} \\ & C_{\rm HCl} = \frac{\phi_{\rm ClO} M_{\rm HCl} P_{air}}{2 \, R \, T_{air}} = 8,24 \cdot 10^{-8} \, \text{g/m}^3 \\ & m_{\rm HCl} = C_{\rm HCl} V_{\rm O-hole} = 11,3 \text{KT} \end{split}$$

Сентябрь 1996-2012 **S=22,8·10³ км²**

Усиление антарктической озоновой дыры при увеличении активности вулкана Эребус

Выводы по разделу І

- Основным источником химических реагентов, ответственных за разрушение стратосферного озона над Антарктидой, являются отнюдь не фреоны, а вулкан Эребус;
- Аномально высокая активность вулкана Эребус в начале 80-х определила рост озоновой дыры над Антарктидой;
- Масштабы антарктической озоновой дыры сохраняются, пока продолжается активность вулкана Эребус.

Влияние вулканогенного возмущения тропической стратосферы на формирование озоновой дыры в Арктике

Газопепловая колонна в стратосфере

стратосфера

тропопауза

тропосфера

Распределение SO2 в стратосфере после извержения вулкана Пинатубо (июнь, 1991)

20 Mt SO₂ \rightarrow 30 Mt H₂SO₄

Влияние аэрозольного возмущения тропической стратосферы на циркуляцию

aerosols and ozone depletion. J. Geophys. Res., 107, 4803.

Арктическая озоновая аномалия после извержения вулкана Мерапи

24

Потепление тропической стратосферы после крупных вулканических извержений

Ν	Дата извержения	Название вулкана	VEI	Н (км)
1	17 март 1963	Агунг	5	25
2	12 авг. 1966	Аву	4	
3	17 окт. 1974	Фуэго	4	24
4	03 апр. 1982	Эль-Чичон	5	31
5	13 нояб. 1985	Дель Руиз	3	31
6	15 июнь 1991	Пинатубо	6	35
7	29 сент. 2000	Улаун	4	17,3
8	4-5 нояб. 2010	Мерапи	4	18,3

25

Связь озоновых аномалий в Арктике с извержениями тропических вулканов

Дата извержения	Название вулкана	VEI	Высота	Арктические озоновые аномалии
Апр. 1982	Эль-Чичон	5	31 км	янвфевр. 1983, февр. 1984
Нояб. 1985	Дель Руиз	3	31 км	янвмарт 1986, янв. 1987
Июнь 1991	Пинатубо	6	35-40 км	янв. 1992, феврмарт 1993
Сент. 1994	Рабаул	4	21 км	март 1995
Сент. 1996	Суфриер Хиллс	3	15 км	март-апр. 1997
Окт. 1999	Гуагуа-Пичинча	3	20 км	феврмарт 2000
Сент. 2000	Улаун	4	17,3 км	
Сент. 2002	Руанг	4	17 км ၂	
Нояб. 2002	Ревентадор	4	20,5 км	янвфевр. 2003
Нояб. 2004	Манам	4	18 км	янвфевр. 2005
Окт. 2006	Рабаул	4	18 км	март 2007
Нояб. 2010	Мерапи	4	18,3 км	феврмарт 2011

Выводы по разделу II

- Аэрозольное вулканогенное возмущение тропической стратосферы приводит к ее потеплению на 2-3°С относительно нормы и соответствующему усилению меридионального температурного градиента в стратосфере;
- Усиление меридионального температурного градиента в осенний период активизирует Арктический циркумполярный вихрь вплоть до весны, когда создаются все необходимые условия для формирования озоновой дыры;
- Все эпизоды формирования озоновых дыр над Арктикой, зарегистрированные с 1979 г. по н/в, связаны с предшествующими вулканогенными возмущениями тропической стратосферы.

Вулканогенная депрессия стратосферного озона в средних и низких широтах

Вулканы, определившие аэрозольное возмущение стратосферы над Томском

N₂	Дата	Вулкан	VEI	H	N₂	Дата	Вулкан	VEI	H
извержения				(KM)		извержения			(KM)
1	13.10.1985	Руиз	3	31	12	20.05.2006	Суфриер Хиллс	4	17
2	20.11.1986	Чикурачки	4	14	13	07.10.2006	Рабаул	4	18
3	23.02.1987	Ключевской	4	14	14	12.07.2008	Окмок	4	15
4	28.08.1987	Кливленд	3	11	15	07.08.2008	Касаточи	4	14
5	02.01.1990	Редубт	3	14	16	22.03.2009	Редубт	3	18
6	15.06.1991	Пинатубо	6	35	17	16.06.2009	Пик Сарычева	4	21
7	19.09.1994	Рабаул	4	21	18	17.04.2010	Эйяфьятлай-	4	11
8		Гуагуа					екюль		
0	05.10.1999	Пичинча	3	20	19	04.11.2010	Мерапи	4	18
9	26.02.2000	Гекла	3	15	20	21.05.2011	Гримсвётн	4	20
10	24.11.2004	Манам	4	18	21	13.06.2011	Набро	4	14
11	27.01.2005	Манам	4	24	22	13.02.2014	Келут	4	20

Какой аэрозоль разрушает

Механизм формирования сажи в эруптивной колонне

Технологический реактор производства технического углерода

 $CH_4 \rightarrow C + 2H_2$ (T ~ 1000 °C)

Условия для формирования фуллеренов в эруптивной колонне

Условия для формирования фуллеренов

Динамика осаждения пепла, сажи и озоновых аномалий после извержения Пинатубо

Динамика релаксации сернокислотного аэрозоля после извержения Пинатубо

Выводы по разделу III

- Долговременная (более одного года) вулканогенная депрессия стратосферного озона в широтном поясе от 50° ю.ш. до 50°с.ш. объясняется только вулканическими выбросами в стратосферу нанодисперсной сажи;
- ✓ Вулканогенная сажа образуется в основании эруптивной колонны в результате термического разложения метана при температуре ≥ 1000°С в условиях высоковольтных электрических разрядов;
- ✓ Время жизни вулканогенной сажи в стратосфере достигает
 3-4 лет благодаря низкой влажности и левитации под действием фотофорестических сил.

Роль вулканизма в долговременных изменениях ОСО

Долговременные изменения ОСО в умеренном поясе широт

Связь изменений ОСО и плотности годичных колец хвойных деревьев

Реконструкция ОСО по ПГК хвойных

Столбики – хронология извержений с VEI ≥ 6: 1-Тамбора; 2-Кракатау; 3-Санта-Мария; 4-Катмай; 5-Пинатубо

Выводы по разделу IV

- Долговременные изменения ОСО в средних широтах на протяжении последних 200 лет выраженно модулируются 66летним гравитационным циклом Солнечной системы и 22летним циклом Солнечной;
- Отрицательные аномалии ОСО в основном связаны с вулканогенными возмущениями стратосферы. Их усиление происходит в отрицательной фазе циклических колебаний при высокой частоте следования вулканических извержений;
- Благодаря совпадению момента извержения вулкана Пинатубо и минимума циклических колебаний озоносферы при высокой частоте серийной активности вулканов в 90-х годах достигнут минимум ОСО за период последних 200 лет.

Заключение

В феврале 1775 года в своем путевом журнале известный первооткрыватель **Джеймс Кук** записал: «...ни один человек никогда не решится проникнуть на юг дальше, чем это удалось мне. Земли, что могут находиться на юге, никогда не будут исследованы...»

Открытие Антарктиды экспедицией Беллинсгаузена - Лазарева вызвали восхищение ученых всего мира. В 70-х годах XIX столетия известный немецкий географ Август Петерман писал о Беллинсгаузене: «...Он бесстрашно пошел против мнения Кука, царившего во всей силе в продолжение пятидесяти лет... За эту заслугу имя Беллинсгаузена можно поставить... с именами тех людей, которые не отступали перед трудностями и воображаемыми невозможностями, созданными их предшественниками...»

Публикации

- Zuev V.V., Zueva N.E., Savelieva E.S., Gerasimov V.V. The Antarctic ozone depletion caused by Erebus volcano gas emissions // Atmos. Environ. 2015.
 V. 122. P. 393-399.
- Zuev V.V., Zueva N.E., Saveljeva E.S. Temperature and ozone anomalies as indicators of volcanic soot in the stratosphere // Atmos. Ocean. Opt. 2015.
 V. 28, N 1. P. 100-106.
- Zuev V.V., Zueva N.E., Koutsenogii P.K., Savelyeva E.S. Volcanogenic nanosized carbon aerosol in the stratosphere // Chem. Sustain. Dev. 2014. V. 22, N 1. P. 81-86.
- Zuev V.V. Reconstruction and prediction of long-period variations of the ozonosphere using ozonometric and dendrochronological data// Int. J. Remote Sens. 2005. V. 26, N 16. P. 3631-3639.
- Zuev V.V., Burlakov V.D., El'nikov A.V., Ivanov A.P., Chaikovskii A.P., Shcherbakov V.N. Processes of long-term relaxation of stratospheric aerosol layer in Northern Hemisphere midlatitudes after a powerful volcanic eruption // Atmos. Environ. 2001. V. 35, N 30. P. 5059-5066.
- Zuev V.V., Burlakov V.D., El'nikov A.V. Ten years (1986-1995) of lidar observations of temporal and vertical structure of stratospheric aerosols over Siberia //J. Aerosol Sci. 1998. V. 29, N 10. P. 1179-1187.

Спасибо за внимание!

Manufacture solution