Государственное образовательное учреждение высшего профессионального образования «Томский политехнический университет»

УТВЕРЖДАЮ

Директор Научно-образовательного
инновационного центра
«Наноматериалы и нанотехнологии»
Хасанов О.Л.

Программа

краткосрочного повышения квалификации преподавателей и научных работников высшей школы по направлению 150600 «Материаловедение и технология новых материалов» на базе учебного курса

«Ультразвуковое компактирование нано- и полидисперсных порошков»

Цель: Изучение особенностей ультразвукового компактирования нано и полидисперсных порошков.

Категория слушателей: преподаватели и научные работники высшей школы

Срок обучения: 24 часа

Форма обучения: с частичным отрывом от работы

Режим занятий: 8 часов в день

Цель данного курса — ознакомиться с разработанным перспективным методом для производства конструкционной керамики методом сухого(без применения загрязняющих пластификаторов и связок) одноосного прессования нанопорошков при одновременном воздействии мощных ультразвуковых колебаний и показать влияние мощного некавитационного ультразвукового воздействия на параметры структуры, на их реалогические свойства, a также на структуру И механические свойства консолидированных наноструктурных материалов.

Требования к уровню освоения учебного курса

Преподаватели должны:

Знать:

- Условия формирования наноструктурных материалов
- Влияние ультразвука на: твердофазный синтез, дислокационную структуру, механизм разрушения хрупких и пластичных материалов, диспергирование порошковых материалов, акустопластический эффект при пластической деформации.
- Воздействие УЗ на процесс компактирования нанопорошков и его последующее влияние на свойства спекаемой керамики.

Иметь навыки:

- сбора, систематизации и анализа научно-технической и другой профессиональной информации в области новых методов компактирования нанопорошков и методов их исследования.
- включать приобретенные знания о новых методах компактирования нанопорошков и методах их исследования в уже имеющуюся систему знаний и применять эти знания в самостоятельных методических разработках;
- переносить полученные знания о новых методах компактирования на смежные предметные области и к использованию этих знаний для построения междисциплинарных методических разработок.

Иметь представление:

- о разработке новых подходов в теории и технологии прессования нанопорошков с учетом их специфических свойств,
- о проблемах, возникающих при компактировании нанопорошков.
- о влиянии ультразвукового воздействия на процессы, происходящие в различных реакционных системах при синтезе материалов, на изменения, происходящие в первоначальной дислокационной структур, на механизм разрушения хрупких и пластичных материалов.
- о методах исследования механических свойств, фазового состава и рентгеноструктурных особенностях получаемых керамик.

Научные работники должны:

Знать:

- Методы получения нанопорошков
- Условия формирования наноструктурных материалов
- Влияние ультразвука на: твердофазный синтез, дислокационную структуру, механизм разрушения хрупких и пластичных материалов, диспергирование порошковых материалов, акустопластический эффект при пластической деформации
- Общее представление о методах компактирования нанопорошков.
- Воздействие УЗ на процесс компактирования нанопорошков и его последующее влияние на свойства спекаемой керамики

Иметь навыки:

- сбора, систематизации и анализа научно-технической и другой профессиональной информации в области новых методов компактирования нанопорошков и методах исследования структуры и свойств;
- планирования и проведения исследований и экспериментов с использованием новых методов компактирования нанопорошков;
- генерировать новые плодотворные научно-технические и инновационные идеи с использованием технологии новых методов компактирования нанопорошков;
- переносить полученных знания о новых методах компактирования нанопорошков и методах их исследования на смежные предметные области и к использованию этих знаний для создания новых объектов техники и технологии и для инновационной деятельности;

Иметь представление:

- о разработке новых подходов в теории и технологии прессования нанопорошков с учетом их специфических свойств
- о о проблемах, возникающих при компактировании нанопорошков
- возникновении квазирезонансного эффекта, возникающего при совпадении размеров наночастиц или агломератов с их колебательным смещением под ультразвуковым воздействием;

 о методах исследования механических свойств, фазового состава и рентгеноструктурных особенностях получаемых керамик

Учебный курс «Ультразвуковое компактирование нано- и полидисперсных» состоит из дистанционной и очной частей.

Дистанционная часть учебного образовательного курса обеспечивает слушателя необходимым объёмом знаний по выбранной тематике, включая подготовку слушателя к проведению лабораторного практикума. Задача дистанционной составляющей учебного курса — подготовить слушателя к очному посещению лаборатории в Томском политехническом университете.

В дистанционной (теоретической) части учебного курса изложены физические основы метода ультразвукового прессования нано и полидисперсных порошков как одного из перспективных для изготовления объемных порошковых материалов. Теоретическая часть учебного курса состоит из четырех лекций:

<u>Лекция 1</u>: Понятие о наноматериалах, нанотехнологии. Основы классификации и типы структур. Консолидированные наноструктурные материалы

Введение в нанотехнологию. Особенности объемных наноструктурных материалов. Условия формирования наноструктуры материала. Агломераты наночастиц. Основные методы получения нанопорошков. Особенности формования нанопорошков.

Лекция 2. Особенности воздействия ультразвука на твердофазные системы

. Влияние ультразвукового воздействия на дислокационную структуру кристалла, акустопластический эффект. Механизм разрушения хрупких и пластичных материалов при ультразвуковом воздействии. Влияние кавитационного ультразвукового воздействия на диспергирование порошковых материалов.

Лекция3. Эффекты активации наноструктурных порошков мощным ультразвуковым воздействием.

Влияние предварительной ультразвуковой обработки на технологические свойства порошков. Не кавитационная УЗ-активация нанопорошков ZrO₂-5вес% Y₂O₃, Al₂O₃. Особенности структуры наночастиц, активированных мощным ультразвуковым воздействием. Воздействие ультразвука на распределение элементов в наночастицах.

<u>Лекция 4</u> Влияние ультразвукового воздействия при компактировании порошков на свойства спеченных керамик.

Разработка ультразвуковых пресс-форм для сухого прессования нанопорошков. Распространение ультразвука в среде нанопорошков переменной плотности. Влияние УЗ-компактирования нанопорошка состава ZrO_2 -5вес% Y_2O_3 на микроструктуру циркониевой керамики. Свойства циркониевой керамики, изготовленной с применением УЗ-компактирования и спеченной в вакууме. Влияние УЗ-прессования нанопорошков YSZ и $Nd^{3+}Y_2O_3$ на твёрдость, прочность и ударную вязкость керамики.

Методические рекомендации по реализации учебной программы

На дистанционную и очную части учебного курса отводится по 12 часов соответственно. Полное содержание лекций в электронной дистанционной части учебного курса находится на сайте www.nanoobr.ru. Для контроля степени освоения теоретической части учебного курса (лекций) используются тестовые вопросы для самопроверки и контрольные вопросы.

.

Тестовые вопросы к курсу

«Ультразвуковое нано- и полидисперсных»

<u>Лекция 1:</u> Понятие о наноматериалах, нанотехнологии. Основы классификации и типы структур. Консолидированные наноструктурные материалы

1. Что такое нанотехнология?				
А) технология, имеющая дело с элементами	Б) технология, которая имеет дело с субмикронными элементами;			
не более 100 нм;				
В) технологии, где используют основные	Г) разработка и использование устройств с			
законы физики; Ответ: Г	размерами в несколько нм;			
Olbei: 1				
2. Особенности наноструктурных материал	IOB?			
А) высокая скорость звука;	Б) высокая температура плавления;			
В) высокая твердость и пластичность;				
Ответ: В				
3. Чем определяются свойства наночастиц				
А) химическим составом;	Б) температурой плавления;			
В) способом получения;				
Ответ: А				
4. Чем вызвана агломерация нанопорошко	R?			
А) стремление минимизировать	Б) формой и размерами наночастиц;			
поверхностную энергию;	b) populou u pasirepaini nano iae indi,			
В) химическим составом;				
Ответ: А				
5. Необходимые условия формирования на				
А) высокая пористость компакта;	кта; Б) обеспечение высокой скорости			
D)	уплотнения;			
В) понижение температуры;				
Ответ: Б				
6.Зависит ли форма частиц нанопорошка о	т способа получения?			
А) зависит;	Б) зависит от химического состава;			
В) не зависит;	2) 3421411 01 1111111 1001010 0 000141241,			
Ответ: А.				
7. Отличительные черты ультразвуковой о	<u> </u>			
А) увеличивает температуру начала	Б) изменяет химический состав;			
синтеза;				
В) инициирует твердофазные превращения;				
Ответ: В				
8.Как влияет ультразвуковое воздействие і	na managamannya ampiatunya			
А) приводит к образованию	на дислокационную структуру: Б) изменение химического состава;			
призматических петель и движению	2) Homonomic Ammi tookot o coctubu,			
краевых дислокаций;				

Ответ: А

9. Каков механизм разрушения хрупких м A) изменение в химическом составе; В) образование пор как в зерне, так и на границе; Ответ: Б	атериалов? Б) диффузионно-дислокационный;				
<u>Лекция 2:</u> Особенности воздействия ульт	гразвука на твердофазные системы				
1.Методы получения наноматериалов вли свойств?	ияют на формирование структуры и				
	от; Б) существенно влияют;				
2. Влияет ли предварительная ультразву характеристики пороков?	-				
A) не влияет;B) улучшает технологические характеристиОтвет: В	Б) ухудшает; ки; Г) ухудшает спекание;				
3. Каким методом исследовались эффект структуру? А) методом фазового рентгеноструктурног В) на микротвердомере ПМТ- 3; Ответ: А					
4. Каким методом можно исследовать пр А) методом определения микротвердости; В) методом рентгенофазового анализа; Ответ: А					
<u>Лекция 3</u> : Эффекты активации ультразвуковым воздействием.	наноструктурных порошков мощным				
1. В чем заключаются проблемы компакт A) в обеспечении равноплотности; Б) в с В) в высокой насыпной плотности; Ответ: A	гирования нанопорошков? сохранении пористости;				
2. В чем заключается эффект УЗ воздейст А) обеспечивает достижение наибольшей плотности; В) увеличивает размер зерен; Ответ: А					
3. Зависят ли плотность и механические о плотности компактов, спрессованных пра А) зависят;					

В) зависят от химического состава;	
Ответ: А	· .
-	метры структуры в спеченной керамике?
А) не влияет;	Б) влияет;
В) влияет на химический состав; Ответ: Б	Г) влияет на характер распределения пор;
	структурных фаз в одной наночастице при УЗ
компактировании?	rpjrijpiisis qui s ognon nano meringe npir v s
А) не возможно;	Б) возможно;
Ответ: А	
<u>Лекция 4</u> : Влияние УЗ воздействия керамик	при компактировании на свойства спеченных
нанопорошка, фактора формы прессо сохранением наноструктуры прессов	<u>=</u>
А) существует;	Б) не существует;
Ответ: А	,
	іствия при изготовлении оптической керамики?
А) перспективен;	Б) не перспективен;
В) Снижает коэффициент ослабления;	
Ответ: А	
3.Влияет ли УЗ воздействие на прочн А) не влияет	Б)существенно влияет
,	Б)существенно влижет
В) зависит от режимов УЗ прессования 4.Влияет ли УЗ компактирование на ми	reportantement attainantion reasonatem?
4. Блияет ли у 3 компактирование на миА) не влияет	б) частично влияет
В) существенно влияют	о) частично влияет
, 2	зает достижение наибольшей плотности прессовок
А) когда колеб смещение частиц не пре	
• ·	
Ет их размер	В) не зависит от размера частиц
Ответ: А	

Контрольные вопросы для проверки материала.

- 1.Сформулировать такие определения как нанотехнологии, наночастицы, нанонаука.
- 2. Дать определения наноструктруным материалам
- 3. Как изменяется прочность, твердость и пластичность при изменении размера зерна.
- 4. Как влияет УЗ обработка на твердое тело (на твердофазные превращения, реакцию металлотермии, обменные реакции).
- 5.Влияние УЗ обработки на дислокационную структуру кристалла.
- 6. Механизм разрушения хрупких и пластичных материалов при УЗ воздействии.
- 7. Акустопластический эффект.
- 8. Кавитационное УЗ воздействие на диспергирование порошковых материалов.
- 9. Влияние предварительной УЗ обработки на технологические свойства нанопорошков.
- 10. Методы получения нанопорошков.

- 11. Мощное кавитационное акустическое воздействие как распространенный метод активации.
- 12.Использование УЗ колебаний для интенсификации технологических процессов и улучшения свойств изделий.
- 13 Некавитационная УЗ активация нанопорошков.
- 14. Особенности структуры наночастиц, активированных мощным УЗ воздействием.
- 15. Воздействие УЗ на распределение элементов в наночастице.
- 16. Конструкции УЗ прессформ для сухого прессования нанаопорошков.
- 17. Распространение УЗ в среде нанопорошков переменной плотности.
- 18.Влияние УЗ крмпактирования нанопорошков состава ZrO2-5% Y₂O₃ на микроструктуру.
- 19. Исследование микроструктуры нанокерамики методами АСМ
- 20 . Влияние режимов УЗ прессования на улучшения характеристик оптической лазерной керамики.

Темы рефератов

- 1. Области использования наноструктурных материалов.
- 2. Перспективы развития нанотехнологий в России.
- 3. Перспективы использования функциональной керамики с высокими прочностными свойствами
- 4. Взаимосвязь структуры и механических свойств нанокерамик.
- 5. Перспективность применения различных методов прессования, в том числе и применении УЗ –прессования для изготовления оптически прозрачных керамик.
- 6. Перспективные методы компактирования для производства функциональной керамики.
- 7. Влияние способа подведения УЗ колебаний на качество прессовок.
- 8. Изменение параметров кристаллической структуры нанопорошков при прессовании с применением УЗ разной мощности.
- 9. Применение метода наноиндентирования для определения динамических характеристик наноматериалов.

Учебно-тематический план

№ Название учебного		в том числе (указа	ать часы)		Форма
курса и лекций	Всего, час.	дистанционное общение с преподавателем,	раоота. Подготовка ответов на		
«Ультразвуковое компактирование нано- и полидисперсных порошков»		10 ч.	2 ч.	12 ч.	Контрольные вопросы (электронная зачётка) Реферат
1. Лекция 1 Понятие о наноструктурн. материалах, основы классификации и типы структур.		2,5 ч.	0,5 ч.		геферит
2. Лекция 2: Особенности воздействия УЗ на твердофазный синтез.		2,5 ч.	0,5 ч.		
3. Лекция 3 Эффект активации наноструктурных порошков мощным УЗ воздействием.		2,5 ч.	0,5 ч.		
Лекция 4 Влияние УЗ воздействия при компактировании на свойства спеченных керамик		2,5 ч	0,5 ч.		
Итоговый контроль			Контрольные вопросы (электронная зачётка)	Реферат	

Список литературы (основной и дополнительной), а также других видов учебно-методологических материалов и пособий, необходимых для изучения (конспектов лекций, видеолекций, лазерных дисков и др.).

Список литературы и др. дополнительных источников информации в кол-ве – 14.

- 1. Методы компактирования и консолидации наноструктурных материалов и изделий / О.Л. Хасанов, Э.С. Двилис, З.Г. Бикбаева Томск: Изд-во Томского политехнического университета, 2008.- 196 с.
- 2. Попильский Р.Я., Пивинский Ю.Е. Прессование порошковых керамических масс. М.: Металлургия, 1983.- 176 с.
- 3. Кипарисов С.С., Либенсон Г.А. Порошковая металлургия. М.: Металлургия, 1972.-528 с.
- 4. Бальшин М.Ю. Порошковая металлургия. М.: Машгиз, 1948, 286 с.
- 5. Бережной А.С. О зависимости между давлением прессования и пористостью необожженных огнеупорных изделий // Огнеупоры. 1947. № 3. С. 124-130.
- 6. Ультразвук: Маленькая энциклопедия / Гл. ред. И.П. Голямина. М.: Советская энциклопедия, 1979. 400 с.
- 7. Агранат Б.А., Гудович А.П., Нежевенко Л.Б. Ультразвук в порошковой металлургии. М.: Металлургия, 1986. 168 с.
- 8. Кулемин А.В. Ультразвук и диффузия в металлах. М.: Металлургия, 1978. 200 с.
- 9. Хасанов О.Л. Научные основы сухого компактирования ультрадисперсных порошков в технологии изготовления нанокерамики: Дис. ... докт. Техн. Наук.- Томск.- 2003.- 405 с.
- 10. Эффекты мощного ультразвукового воздействия на структуру и свойства наноматериалов. /О.Л. Хасанов, Э.С. Двилис, Полисадова В.В. Томск: Изд-во Томского политехнического университета, 2008.- 153 с.
- 11. Степанов Ю.Н., Алехин В.П. Изменение распределения плотности краевых дислокаций в образце при возникновении стоячей волны // Физика и химия обработки материалов.—1999.—№1.—С.78—83
- 12. Тяпунина Н.А., Наими Е.К. Действие ультразвука на кристаллы с дефектами.— М.:Изд-во МГУ, 1999. 214.
- 13. Шевченюк А.А., Купряшов Ю.А., Коршун Н.В. Влияние предварительной обработки ультрадисперсных порошков на микроструктуру и свойства оксидной керамики // Порошковая металлургия.— 2001.— Вып.24.— С.88—93.
- 14. Полоцкий И.Г., Мордюк Н.С.Воздействие ультразвука на дислокационную структуру монокристаллов алюминия // Металлофизика.—1970.—№29.—С.99—101.

Полное содержание лекций в электронной дистанционной части учебного курса на сайте <u>www.nanoobr.ru</u>