LABORATORY WORK 1 

Theme of the work: Analysis of empirical distributions. Numerical characteristics of a sample. 
Aim of the work: To learn to perform the grouping of data and graphically report the processing results of the empirical sample (in the form of a polygon, histogram, empirical distribution function). To learn to calculate the numeric characteristics of a sample (indicators of the position, scatter, and form of the distribution) by using the formulas described in the theoretical part and Mathcad’s built-in functions.  
Task: Using the given empirical sample, estimate the density of the probability distribution and the parent distribution function, i.e. draw a histogram, a polygon, an empirical distribution function and a cumulative frequency polygon. On a single graph, compare the empirical and given in the task theoretical probability distribution. By applying the Kolmogorov function, plot the 95% confidence interval (confidence band) for the distribution function.  

Calculate the sample parameters (mean, median, mode, variance, standard deviation, asymmetry parameter, and excess). Compare the calculations by using the formulas described in the theoretical part and Mathcad’s built-in functions. 
Theoretical part
Plotting empirical distributions.

Estimation of the probability density and the distribution function. 

Examining the observation (measurement) results it is hard to notice any patterns in their alterations. Statistical methods enable us to reveal these patterns. 

Preliminary statistical processing of the empirical data begins normally with putting them in increasing order (i.e. non-decreasing order). This ordered sample is known as a variational series, while the ordering procedure is called ranking (or sorting) of empirical data. 

An illustrative graphic representation of empirical data is a histogram or a polygon. A plotted histogram (or a polygon) allows hypothesizing reasonably on the distribution law of the processed empirical data.  Knowing the distribution law of a random variable under observation it is possible to solve numerous practical problems concerned with the processing of the measurement results, quality control of the products, efficiency and sustainability assessment of technological processes.   

In the case of the continuous distribution of a random variable X, the empirical density of the probability distribution can be presented as a histogram or a relative frequency polygon. For this purpose, the sample values must be grouped. 
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 is calculated. Meantime, a relative frequency 
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 is calculated. When drawing a graphic histogram and polygon each interval is better to be presented not by the two thresholds 
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A frequency histogram is a stepped figure consisting of rectangles the bases of which are the partial intervals of a length h and the heights are equal to the relation 
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-th interval). The area of the frequency histogram is equal to the sample size 
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A frequency polygon is a broken line which is obtained when joining the points with the coordinates  
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, i.e. the centres of the upper sides of the histogram’s rectangles are joined. 

A relative frequency polygon and histogram are defined analogously. 
For a relative frequency histogram, the area of a partial 
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 - relative frequency of the elements appearing in the 
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-th interval. The area of a relative frequency histogram equals the sum of all the relative frequencies, i.e. 1. In the case of a quite large sample size, the heights of the drawn rectangles provide for approximated values of the distribution density  
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A relative frequency polygon is a broken line that joins the points
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A cumulative frequency polygon is a broken line graph that joins the points 


[image: image27.wmf](

)

1

1

n

,

b

, 
[image: image28.wmf](

)

2

1

2

n

n

,

b

+

, … , 
[image: image29.wmf]÷

ø

ö

ç

è

æ

å

=

k

i

i

k

n

,

b

1

, … , 
[image: image30.wmf]÷

ø

ö

ç

è

æ

å

=

m

i

i

m

n

,

b

1

, 

with the abscissas equal to the right thresholds of the grouping intervals, and the ordinates equal to the cumulative frequencies. 

Similarly, a cumulative relative frequency polygon is a broken line obtained by joining the points with the coordinates 
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An empirical distribution function is a function 
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 is calculated and then divided by a sample size: 
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Using the unit step function
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the formula for the empirical distribution function can be written more laconically
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In mathematical statistics it is proved that a relative frequency polygon and histogram are the consistent estimates of the distribution density, while a cumulative relative frequency polygon (or an empirical distribution function) is a consistent estimate of the ‘true’ distribution function of the parent population. At the same time, the larger the sample size, the less can be the partitioning intervals 
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, and the more accurately the histogram and the empirical distribution function will approximate the corresponding theoretical distributions. 

A number of the grouping intervals of the empirical data 
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significantly influences the appearance of a histogram. With regard to this fact, there are no articulate recommendations but it is clear that this number must not be ‘too small’ or ‘too large’. For middle size samples (a few hundreds of elements) the number of intervals is typically chosen in the range from 8 to 12. In compliance with the recommendation of the D.I. Mendeleyev Institute for Metrology, depending on the sample size 
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 the number of the grouping intervals 
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must be chosen according to the table
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	40 – 100 
	100 – 500
	500 – 1000
	1000 – 10000
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	7 – 9
	8 – 12
	10 – 16
	12 – 22



In the literature on mathematical statistics for the choice of the optimum value 
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 it is often recommended to apply the formula
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which is compiled with the use of a decimal, binary, or  natural logarithm; or the formula
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where 
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 is a sample size. There also exist other recommendations. However, all the recommended formulas do not have a rigorous substantiation and provide for a rough quantity of the intervals 
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, which, if required, can be changed both ways.  
When determining the range of the possible values of the parameter 
[image: image55.wmf]m

we can use the formulas
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that determine the minimum and maximum values of the parameter. As an optimum value 
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it is recommended to choose a whole number in the interval 
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. Typically, this interval includes a few entire numbers. After drawing a histogram for each of these numbers, the optimum value of the parameter  
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 is determined visually. For symmetric distributions as an 
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value it is recommended to choose an odd number in the interval
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After determining
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, the length of the grouping intervals is calculated
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Then, all the other calculations necessary for plotting a histogram, polygon and the empirical distribution function are performed. 


The confidence region for the distribution function that corresponds to the confidence level  
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These inequalities are executed simultaneously for all 
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 values with a probability approximating
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 is an equation root (reciprocal distribution of the  Kolmogorov’s extension theorem)
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 is a Kolmogorov’s (distribution) function that is determined by an absolutely convergent series 
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(2)

This series converges extremely irregularly. Thus, to achieve the same accuracy at different 
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values it is necessary to preserve a different number of the series members (2). The estimates reveal the following fact. In order to secure the calculation accuracy of the function 
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preserving in  the sum only 3-5 summands.
Calculation of empirical parameters

Numerical characteristics of a sample are calculated by using the following formulas:

- observed (sample) mean  
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- sample variance
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 - standard deviation 
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 - sample span 
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 - empirical central moment of the 
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(8)

 - empirical asymmetry and excess parameters
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Unbiased estimates of the asymmetry and excess parameters are calculated by the formulas:
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where
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The second formula (5) provides for an unbiased variance estimate
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, but despite this fact, after extracting the square root (formula (6)), we obtain a biased estimate for a meansquare deviation. An unbiased estimate 
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where 
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 is the Euler's gamma function. It is sensible to use this formula only in the case of a small sample size since the multiplier 
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 is roughly equal to 1 and changes very slowly with an increasing 
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It should be noticed that the estimates of expectation and variance 
[image: image114.wmf]x

 и 
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 are unbiased estimates at random distributions; estimate of a standard deviation (11) may be biased at the distributions different from a normal distribution.

Execution order of the task
1. Assign a value equal to 1 to the ORIGIN variable.
2. From the file named «Lab1 Nx», where N is a number of the task variant, read off the initial data and put them in the Х array.
3. By using the in-built function length (X) determine the sample size 
[image: image116.wmf]n

.

4. Define the maximum and minimum values and the sample range.
5. Perform the operation of the sample ranking.
6. Set (or calculate) the number 
[image: image117.wmf]m

 of the data grouping intervals.
7. Determine the characteristics of the grouping intervals: 
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, 
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8. Define by using the in-built function hist(x,X) the value array (vector) of relative frequencies.
9. Draw a relative frequency polygon and histogram by using various styles of the graphic representation of information. 
10. Compare the histogram (polygon) with the theoretical probability density. 
11. Determine the vector of the cumulative relative frequencies. 
12. Plot the graphs of the empirical distribution function for initial and grouped sample, compare the results.   
13. Plot the graphs of the empirical distribution function and the cumulative relative frequency polygon. 
14. Compare the empirical and theoretical distributions (by plotting on one graph the empirical frequency polygons and the distribution specified in the task). 
15. Perform all calculations for several various values 
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; compare the results, identify the optimum value 
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.
16. Calculate all the specified in the task numerical characteristics of the sample by using the formulas (4) – (11) and built-in functions of the Mathcad system. Compare the calculation results. 
17. Using the fractile 
[image: image124.wmf]a

z

 of the Kolmogorov’s distribution, draw the confidence region for the empirical distribution function. Pay attention to the way the “width” of the confidence region changes with altering 
[image: image125.wmf]a

.
18. Formulate the conclusions based on the performed work. 
19. Save the document.
LABORATORY WORK 2 
Theme of the work: Point and interval (confidence) estimates of the normal random variable parameters 
Aim of the work: To learn to determine the point and interval estimates of the mathematical expectation and variance of normal random variables. To clarify the issue on the dependence of interval estimates on a sample size and confidence level. 
Task: Using the specified set of the experiment results 
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, draw a point and two-sided interval estimate for the true (actual) value of the measurand (at known and unknown measurement inaccuracy); draw a point and two-sided interval estimate for the measurement inaccuracy (at known and unknown value of the measurand).
Theoretical part
Confidence interval for the measurand true value
Let us assume that all 
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 measurements of the quantity 
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 are mutually independent and are performed with the same accuracy 
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(that is supposed to be known, for instance, from the previous measurement results), and that random measurement inaccuracy conforms to normal distribution.  Then, the interval
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with random thresholds is a (two-sided) confidence interval (or interval estimate) of the value 
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 with a reliability level 
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Here, 
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 is a significance point. The number 
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Unless the measurement accuracy (i.e. the meansquare error 
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) is known beforehand, it is necessary to calculate its estimate (
[image: image143.wmf]2

s

 is an unbiased variance estimate, 
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 is an estimate of the meansquare error)
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and then, to draw the confidence interval
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where 
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 is the Student's t-distribution function with a degree of freedom  
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the confidence interval (2) for the parameter 
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Confidence interval for measurement inaccuracy.


The meansquare error 
[image: image157.wmf]s

 or the variance 
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 is used as an indicator of the measurement inaccuracy (accuracy of a measurement device).  
The two-sided confidence intervals (at a confidence probability
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) for the variance 
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 of a normal random variable at a known or unknown value of the quantity 
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 are written as:

[image: image162.wmf]2

2

2

2

2

p

,

L

p

,

R

c

n

c

n

s

<

s

<

s

)

)


и

[image: image163.wmf](

)

(

)

2

2

2

2

2

1

1

p

,

L

p

,

R

d

s

n

d

s

n

-

<

s

<

-

, 


(3)

where
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Here,  
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 is a variance estimate at a known mathematical expectation (i.e. upon measurement of the known quantity - standard), 
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 is a point variance estimate at an unknown mathematical expectation (upon measurement of the unknown quantity). The fractiles  
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 of the chi-square distribution are calculated as the roots of the equation:
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The confidence intervals for the meansquare deviation for the two considered cases in accordance with (3) look as:
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(4)


Sometimes, instead of the two-sided confidence intervals presented above (1) – (4), one-sided (right-sided or left-sided) confidence intervals are considered. 
Execution order of the task
1. Assign a value equal to 1 to the ORIGIN variable; to the n variable – the specified in the task number equal to the quantity of the empirical sample elements. 

2. Introduce (by using the function READPRN (“file path”)) the sample values vector. 
3. Calculate the point estimates 
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, 
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,
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and 
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4. Find the 95% confidence intervals for 
[image: image186.wmf]a

 at known and unknown variance. Calculate the width of the confidence intervals.
5. Find the 95% confidence intervals for 
[image: image187.wmf]2

s

 at known and unknown quantity 
[image: image188.wmf]a

. Calculate the width of the confidence intervals.
6. Repeat the calculations performed in 4 – 5 at the other value of the confidence probability (for instance, 
[image: image189.wmf]99

0

.

p

=

). Compare the obtained results and answer the question: how does the width of the confidence interval change when changing the confidence probability? 
7. Split the sample into two parts (take, for instance, the first 
[image: image190.wmf]2

/

n

 of the values as the first sample, the other values – as the second sample; or take the odd and even elements of the initial sample). Perform calculations 3 – 6 for each of the two samples. Compare the results for the partial samples and for the complete sample. Answer the question: how does the width of the confidence interval change when changing a sample size?
8. State the conclusions of the performed work.  

9. Save the document. 

When stating the conclusions, it is advisable to plot the graphs revealing the dependence of the upper and lower confidence thresholds and width of the confidence interval on a sample size and confidence probability.  
The size of the working document can be significantly reduced by using the given below Mathcad’s programmes 
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LABORATORY WORK 3 

Theme of the work: Preliminary statistical processing of experimental data. Testing of the statistical hypotheses. 
Aim of the work: To learn to verify the main statistical hypotheses: on the homogeneity of the observations and consistency of the measurement results with the law of normal probability distribution. 
Task: Based on the statistical criteria, check if the measurement results 
[image: image194.wmf]1

x

, 
[image: image195.wmf]2

x

, …, 
[image: image196.wmf]n

x

contain gross errors (blunders). Using the approximate test and the Pearson's chi-squared test verify the hypothesis that the probability distribution of the measurement set under consideration conforms to the normal law. 
Theoretical part
Preliminary processing of the measurement results pursues mainly two goals: exclusion of gross measurement errors and verification of the hypothesis on the consistency of measurement results with the normal distribution law.   
Exclusion of gross measurement results


The difficulty of the gross error revelation is explained by the following fact. Provided the measurement number 
[image: image197.wmf]n

 is small, the confidence interval is wide and even significant deviations from mean 
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lie within this interval. If 
[image: image199.wmf]n

 is big, there is an increasing probability that at least one measurement 
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 will badly deviate from the mean at random. 

Methods for the exclusion of gross measurement inaccuracy for small samples are considered in the lecture part of the course. For large samples the following method for testing the observations homogeneity is applied in practice.  

Let us assume that 
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 of independent measurements has been done and the values of the empirical mean 
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 and standard 
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 have been specified. The doubtful element of the sample that is remarkably different from the others will be 
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The method under investigation is based on the fact that the critical values of the maximum relative deviation 
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are expressed through the fractiles of the Student’s t distribution with the 
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Practically, two values of 
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The observations that fall within the first interval are not to be ignored at any case. The observations that appear in the second interval may be excluded provided that there are any other additional facts in favour of their invalidity. Finally, the observations that fall within the third interval are always excluded as completely erroneous. 
Testing of the hypothesis on the normality of the measurement results distribution. 


The approximate method for testing the distribution normality is based on the calculation of the empirical estimates of the asymmetry parameter (using the measurement results)
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and their variance
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If the sample asymmetry and excess satisfy the inequalities 
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the hypothesis on the normality of the observed distribution is accepted; otherwise, the hypothesis is rejected. 


If a sample is quite large, other fitting criteria are applied. The most reliable and universal of them is the Pearson's test 
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. Using the given test it is necessary to perform the following operations. 

The region of the possible values of a random variable 
[image: image227.wmf](

)

+¥

¥

-

,

 is split into a finite number (
[image: image228.wmf]20

8

¸

»

m

) of the non-intersecting intervals:

[image: image229.wmf](

]

(

]

(

]

(

)

+¥

¥

-

,

x

,

,

x

,

x

,

x

,

x

,

x

,

m

K

4

3

3

2

1

. 


When choosing the quantity of the intervals you can be guided by the same ideas that are considered in the 1st laboratory work for histogram plotting. 


For each interval 
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 of the sample elements that fall in the given interval.  


Then, we calculate the theoretical probability
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where 
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 is a standard normal distribution function.  

The fulfillment of the condition 
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 for all the intervals is checked; the intervals for which the condition is not fulfilled are joined with the adjacent intervals. 

The sum is computed
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that has an approximate 
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At a specified confidence probability 
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the hypothesis is accepted, i.e. it can be stated that the probability distribution of the measurement set under investigation does not differ from the normal one.  


It should be kept in mind that by using the statistical methods it is only possible to accept or reject the hypothesis, but not to prove it. At the same time, errors of the first and second kind can occur. 
Execution order of the task
Exclusion of the gross measurement errors

1. Assign a value equal to 1 to the ORIGIN variable.

2. Introduce the sample values vector (X:=READPRN(“file path Lab3 1a”)); using the in-built function length(X) calculate the sample size. 
3. Determine the sample values of the mean, variance, and standard deviation: 
[image: image245.wmf]x

, 
[image: image246.wmf]2

s

 and 
[image: image247.wmf]s

.

4. Plot the sample elements and a three-sigma interval on the graph. Identify visually if the sample elements include any anomalously deviating values. 
5. If there are any suspicious elements, for the convenience of further calculations sort the sample values. In this case, the suspicious elements will be in the beginning and (or) in the end of the variation series. 
6. Using the formulas (1) and (2) calculate the values 
[image: image248.wmf]t

, 
[image: image249.wmf]1

t

 and 
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t

. If the value 
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 fall into the third interval (3), exclude it from the sample. Using the other sample elements calculate again the parameters 
[image: image252.wmf]x

, 
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, 
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 and start analysing the next suspicious element, etc. 
7. Draw the conclusions of the performed work. 
8. Save the document.
Testing of the distribution normality hypothesis (1). 

1. Assign a value equal to 1 to the ORIGIN variable.

2. Introduce the sample values vector (Y:=READPRN(“file path Lab3 1b”)); using the in-built function length(Y) calculate the sample size.
3. Calculate the estimates of the empirical coefficients of asymmetry, excess and their variance. 
4. Compare the obtained results using the formula (4) and a draw your conclusion. 
Before you test the hypothesis on the distribution normality it is advisable to plot a histogram and to visually evaluate the similarity degree of the empirical distribution and the normal distribution density.  

Testing of the distribution normality hypothesis (2). 

1. Calculate the estimates of the empirical mean, variance, and standard deviation. 
2. Calculate the maximum and minimum sample values. 
3. Assign a definite value to the number of the partitioning intervals 
[image: image255.wmf]m

 (when choosing 
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 number you can follow the same recommendations considered in the first laboratory work) and calculate the interval boundaries 
[image: image257.wmf]i

x

, 
[image: image258.wmf]1

 

 

2

 

1

+

=

m

,

,

,

i

K

; assign the values 
[image: image259.wmf]-¥

=

1

x

, 
[image: image260.wmf]¥

=

+

1

m

x

 to the extreme boundaries. 
4. Using the hist(x,X) function, calculate the frequency of the sample values’ fall into the partitioning intervals; using the normal distribution function norm(x,a,s) calculate the theoretical probabilities. 
5. Check the fulfillment of the condition 
[image: image261.wmf]5
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 and join the intervals in such a way that ensures the fulfillment of this condition for each interval.
6. Calculate the sum (5). 

7. Specify a certain significance level and calculate the critical value of the test 
[image: image262.wmf]2
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 - the fractile of the chi-square distribution of the
[image: image263.wmf]p

level with 
[image: image264.wmf]3
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 degrees of freedom. 
8. On the basis of (5) conclude if the hypothesis that the distribution is normal is either accepted or rejected. 
9. Draw conclusions based on the performed work.
10. Save the document. 

LABORATORY WORK 4 

Theme of the work: Linear regression. 

Aim of the work: To calculate the coefficient of the linear regression dependence and to do the statistical analysis of the obtained equation.
Task: The results of the set of the experimental measurements are given:
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where both variables 
[image: image266.wmf]x

 and
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are measured in the same experiments. The measurement errors of the variable 
[image: image268.wmf]y

are known to be independent normal random variables with identical variances and null mathematical expectations; the 
[image: image269.wmf]x

 variable is measured with a negligible error (i.e. 
[image: image270.wmf]x

 is a nonrandom variable). 

The task is to recover the linear regression on the basis of the measurement results; to calculate the empirical regression parameters by the method of least squares (calculations must be performed with the use of explicit formulas and various functions of the Mathcad package followed by the results comparison); to plot the confidence intervals for the regression coefficients and the confidence region for the entire regression line; to check the adequacy of the regression equation by using the Fisher's test.
Theoretical part

The purpose of the linear regression analysis is to recover the functional dependence 

[image: image271.wmf](

)

x

a

a

x

y

1

0

+

=

 

on the basis of the measurement results
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The equation (empirical regression)
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determines the straight line which serves as an estimate of the true regression line. It is necessary to calculate the point and interval estimates 
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 for the parameters 
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 based on the experiment results and to test the significance of the obtained regression equation. 

The coefficients 
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 are always calculated by the method of least squares, although this method fixes only the ‘strategy’ for obtaining empirical estimates allowing various ‘tactical processes’, which leads to a wide variety of the definite mathematical problem statements, methods and formulas for obtaining the estimates 
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 even in the simplest case of the linear regression considered in this work. Let us note the main approaches to the estimation of the regression coefficient.    
The regression coefficients can be determined by:


( minimizing the sum of squared deviations:
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( numerically solving the system of equations:
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( solving the system of normal equations (using point and iterative methods) after presenting it in an evident way:
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( analytically solving the system of normal equations:
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or
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or, provided the estimates of the variances  
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then
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The confidence intervals for the regression coefficients 
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where 
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The confidence region for the entire regression line is determined by using the equations 
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describing correspondingly the lower and upper boundaries of the region (band) in which with the confidence probability 
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 is a fractile of the Fisher distribution defined as a solution of the equation 
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 is a residual variance characterising the scattering of the experimental points relative to the regression line
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To test the significance of the regression equation at large we use the Fisher’s test:
if 
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the regression equation adequately describes the experiment results at  (
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The relation (of total and residual variances) 
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 reveals by how many times the regression equation predicts the experiment results better that the mean 
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It is important to bear in mind that the confidence estimate of the deviation of the empirical regression line from the theoretical one is becoming considerably lower when moving off from the mean 
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. Due to this fact, for example, the extrapolation of the empirical regression dependence beyond the boundaries of the interval  
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 for which it is obtained is unwanted. 
Execution order of the task
1. Assign a value equal to 1 to the ORIGIN variable.
2. From the files Lab4 kx and Lab4 ky (k – task variant number) introduce the initial data and put them in the (x) and (y) data array. 
3. Calculate the regression coefficients using the in-built functions of the Mathcad package. 
4. Calculate the regression coefficients by determining the function minimum
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5. Calculate the regression coefficients with the use of the numerical calculation block «Given – Find» by setting the partial derivatives from the function 
[image: image322.wmf](

)

1

0

a

,

a

E

 equal to zero.
6. Calculate the regression coefficients by explicitly forming the system of normal equations. 

7. Calculate the regression coefficients using the formulas considered in the theoretical part. 

8. Compare the values of the regression coefficients obtained by various methods.
9. Determine the confidence intervals for the coefficients 
[image: image323.wmf]0
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 and 
[image: image324.wmf]1

a

.

10. Plot the confidence region for the entire regression line. 
11. Draw the regression line graph and plot the initial experimental points. 
12. Plot on the same graph the regression line and its boundaries of the confidence region. 
13. Check the adequacy of the obtained regression equation by using the Fisher’s test. 
14. Draw conclusions based on the performed work.
15. Save the document. 

LABORATORY WORK 5 

Theme of the work: Nonlinear regression. Determining the optimal degree of a generalized polynomial. 

Aim of the work: To calculate the nonlinear regression coefficients; to select the empirical formula that optimally describes the experimental data. 
Task: As a result of the experimental measurement set the values of 
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 at the specified points 
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 are obtained. The variables 
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 are measured independently from each other with an identical meansquare error 
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The task is:

-  to plot the regression dependence 
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 in the form of a generalized polynomial using the method of least squares and the Chebyshev polynomials;

-  to determine the optimal degree of a polynomial;

-  to justify the optimality of the obtained empirical dependence based on the statistical analysis results. 
Theoretical part

Engineers often face the problem of selecting an empirical formula that adequately describes the obtained experimental data. As a rule, the formula takes the form of a generalized polynomial
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where
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is a linearly independent system of the basis functions, 
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 are the formula’s parameters that are the coefficients of a generalized polynomial. The parameters’ estimates determined by the method of least squares are calculated using the system of normal equations 
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From the computational perspective, it is most reasonable to use any orthogonal (on the ensemble of points 
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) function system, for instance,  the Chebyshev polynomials as basis functions (2). In this case, the matrix of the normal equations’ system 
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 becomes diagonal and well-conditioned. Due to this fact, first of all, the task of calculating the coefficients of a generalized polynomial gets much easier; secondly, upon the successive refinement of an empirical formula only one new coefficient 
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 is calculated at each stage; thirdly, the considered computational algorithm can be applied with any degree of a generalized polynomial. Let us notice that a function system that is widely used at polynomial approximation 
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and that leads to classic algebraic polynomials is applied only when 
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 are completely distorted rounding error. 

The orthogonal Chebyshev polynomials  
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are determined by a recurrence equation 
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where
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In order to use this recurrence formula it is necessary to specify the null and first degree polynomials; they look like:
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The empirical formula (1) with the use of the Chebyshev polynomials will be written as:
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(4)

The estimates of the polynomial’s coefficients are computed by the formula:
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 An effective smoothing of the experiment errors upon meansquare approximation is observed when 
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. But if 
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 is too small, the polynomial coefficients may be insufficient for the description of a complicated nonlinear dependence
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. It is evident that in each definite case there exists the optimal number of coefficients. This number is determined as follows. 

Having specified 
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and determined the respective coefficients according to (5), let us calculate the residual variance
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and compare it with the known experimental error 
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using the Fisher’s test. If 
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(7)

the mathematical approximation error is (significantly) higher than the physical error of the initial data, and the formula (5) needs refinement. Consequently, we increase 
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by one; using the formula (5) we calculate the coefficient 
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 and test the quality of approximation again according to (6), (7).

Typically, calculations start with 
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, when (at nonlinear dependence) the inequality (7) is known to be satisfied. The number of the coefficients is gradually increased until at some value 
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the condition is satisfied
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This condition means that the variance 
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 (at given
[image: image368.wmf]m

) is formed only due to random measurement errors and, consequently, any additional summands in the function (4) cannot decrease this variance. Therefore, the obtained 
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 value is the optimal degree of an approximated polynomial and the empirical formula (4) is final. If in this case 
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, the kind of an approximating function (in the form of a generalized polynomial) is chosen well; otherwise, it is necessary to look for a more appropriate kind of an approximating function.  

In the relation (7), 
[image: image371.wmf]a

-

1

f

 is a fractile of the Fisher distribution, i.e. the root of the equation 
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 is a Fisher distribution function with the 
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 degrees of freedom (i.e. we consider that the general variance 
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 is known from numerous previous experiments and, therefore, assign to it an infinitely large number of the degrees of freedom), 
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 is a significance level. 
Execution order of the task 
1. Assign a value equal to 1 to the ORIGIN variable.

2. From the files Lab5 kx and Lab5 ky (k – task variant number) introduce the initial data and put them in the (x) and (y) data array. 
3. Plot the Chebyshev polynomials of the null and first degrees (
[image: image378.wmf]1
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m

).

4. Compute the 
[image: image379.wmf]0
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 and 
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  coefficients and plot an approximating polynomial of the first degree according to (4).
5. Draw a linear regression graph and plot the initial experimental points there. Evaluate visually the approximation quality.  

6. Having specified the significance level and using the Fisher’s test, find out if the plotted regression dependence needs refinement.  
7. If the refinement is necessary, increase the 
[image: image381.wmf]m

value by 1; plot the Chebyshev polynomial 
[image: image382.wmf]m

Q

.

8. Compute next 
[image: image383.wmf]m
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 coefficient and plot a generalized polynomial of the 
[image: image384.wmf]m

 kind.
9. Repeat the steps 5-8 sequentially until the inequality (8) is satisfied.

10. Draw conclusions on the basis of the performed work.
11. Save the document. 

LABORATORY WORK 6 

Theme of the work: Interpolation of experimental data and numerical integration.

Aim of the work: To learn to use the mathematical methods for plotting the interpolating polynomials; to learn the simplest numerical integration algorithms and to acquire the skills of their practical application. 
Task: The function 
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 is set on the 
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 interval. Plot a Lagrange quadratic interpolating polynomial using equidistant nodes. Analyze the behaviour of the interpolation error and compute the maximum error value. Repeat the calculations by doubling the number of the interpolation nodes. Compare the results. Perform numerical integration using the components of the trapezoid and the Simpson's rules. Sequentially doubling the number of the integration intervals make sure that these rules are characterized by the second and forth degrees of accuracy correspondingly. 
Theoretical part
Lagrange interpolating polynomial

At large, the purpose of interpolation is by using the values of the function at several points of the interval to recover the function’s values at the other points of this interval. Surely, at such a general formulation this task does not have a unique solution. The task becomes more definite if we consider algebraic polynomials as the interpolation function. 

A typical practical task that leads to the necessity of plotting an interpolation polynomial is as follows. The experimentally measured values of the function
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Having at our disposal a continuous function 
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 that is set analytically, we can approximately calculate the
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Algebraic polynomials are normally used as an interpolating function
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. It has been proved that there exists a single interpolating polynomial of the 
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degree that satisfies the conditions (1). Among various notations of an interpolating polynomial the most frequently used notations are the Lagrange’s and Newton’s ones. It should be emphasized that they represent different notations of one and the same polynomial that satisfies the interpolation conditions (1).     

The Newton’s interpolation formula can be considered as a difference analogue of the Taylor’s formula. This formula is advantageously used in the case when one and the same function is being interpolated but the number of the interpolation nodes is gradually increasing. If the interpolation nodes are fixed and several functions are being interpolated, it is more convenient to use the Lagrange’s formula.     

Let us consider a Lagrange polynomial passing through the 
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where 
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At each fixed 
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 value the coefficients 
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Due to this property, in the sum (2) at 
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 value. Thus, the polynomial (2) really contains all the interpolation nodes
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Let us consider the expanded formulas for the linear, quadratic, and quadratic Lagrange polynomials: 
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For the interpolation error at point 
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while for the maximum modulus of the interpolation error the correct estimate is:
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It is clearly seen that the interpolation by a polynomial of the 
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 degree has the 
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-th order of accuracy relatively to the maximum step of the 
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 table. Particularly, the formulas (3) - (5) are characterized by the second, third, and forth orders of accuracy correspondingly.  
It is important to bear in mind that interpolation completely preserves or even increases the “noise” of the experiment. Therefore, the operation of interpolation is performed only in such cases where the experiment errors are insignificant and can be neglected.   

Simple quadrature formulas. 

The task of numerical integration becomes important in applied investigations when a value of the definite integral
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cannot be computed analytically, in particular, when the
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 function is specified by a table of its values. 


Numerical integration is performed with the use of the so-called quadrature formulas – the approximate equations of the kind 
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where 
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 are the numerical coefficients named as a scale of a quadrature formula; the sum 
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is called the error of a quadrature formula.

A widespread method for defining quadrature formulas is as follows. The integral (8) is represented as a sum of integrals by the elementary intervals
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On each of the elementary segments the 
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 function is approximated by an interpolating polynomial of a definite degree and the integration is performed (analytically). The obtained formulas (for equidistant nodes) are called the Newton-Cotes formulas. 

If we use an interpolating polynomial of the first degree on the elementary interval 
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 length (3), we obtain a simple Newton-Cotes formula – the trapezoidal rule:
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For the polynomials of the second (4) and third (5) degree we get the elementary Simpson’s quadrature rules
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for an interpolating polynomial of the forth degree – the elementary Boole's quadrature formula  
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If the interval 
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length by the equidistant nodes, using (11) and (12) we can deduce a compound trapezoidal formula (rule)
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When writing the compound Simpson’s rule it is necessary to take an even number of the nodes; the role of an elementary interval is played by the interval 
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When 
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For the components of the quadrature trapezoidal and Simpson’s rules the following error estimates are correct:
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The trapezoidal rule is characterized by the second order of accuracy relative to 
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, while The Simpson’s rule – the forth order. The trapezoidal rule provides an accurate result for the first- degree polynomials, while the Simpson’s rule – for the third-degree polynomials. 
Execution order of the task 
1. Specify the degree of an interpolating polynomial; determine the step, interpolation nodes’ coordinates and the values of the given in the task function in nodes. 
2. Write the expressions for the basis polynomials and define the general formula of a Lagrange interpolating polynomial. 
3. Draw an interpolating polynomial graph. 
4. Define the error function of interpolation and plot its graph. 
5. Compute the maximum value of the interpolation error and define the point where this value is obtained. 
6. Test (visually) the extrapolation potential of a Lagrange polynomial by plotting the relevant graph.  
7. Take two or three times more of the interpolation nodes and repeat all the calculations above. Compare the results. 
8. Having chosen the definite number of the integration intervals (in the range from 4 to 10), determine the coordinates of the node points and the values of the function at these points.  
9. Using the compound trapezoidal rule perform numerical integration. 
10. Perform the numeric integration by using the compound Simpson’s rule. Compare the results. 
11. Using the in-built functions of the Mathcad system, compute the “exact” value of the definite interval and with its help the error of the trapezoidal and Simpson’s rules. 
12. Repeat steps 8 – 11 by doubling each time the number of the interpolation intervals. On the basis of these calculations build an error map (5 – 10 lines). Analysing the map data, draw the conclusion on the accuracy order of the Simpson’s and trapezoidal rules. 
13. Find the error estimate of numerical integration by using the Runge's rule. Compare this estimate with the theoretical one. 
14. Draw conclusions on the basis of the performed work. 

15. Save the document. 
When doing 12-13, it is advisable to draw the graphs that describe the error change (theoretical and obtained by Runge's rule) of numerical integration upon the subsequent doubling of the integration nodes’ number.   
In the case of numerical integration by the trapezoidal rule one of the Mathcad’s programmes can be used (explain the difference between them):
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Further on, we can use the programme (J is an exact value of the definite interval calculated analytically):
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Identical Mathcad-programmes must be made for the Simpson’s rule. 

LABORATORY WORK 7 

Theme of the work: Empirical data smoothing and numerical differentiation. 
Aim of the work: To learn to apply elementary algorithms for linear and nonlinear smoothing of the noisy experimental data; to study the methods for numerical differentiation and learn the selection procedure of its optimal step.     
Task: A set of the experimentally measured 
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 is given. The experiment results contain some “experimental noise” – random errors 
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). Based on the methodical consideration, it is also assumed that we know the “non-noisy” true function 
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The task is:

- to smooth the measurement results using the algorithms for linear and nonlinear smoothing;

- to perform the numerical differentiation of the initial experimental 
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 data using the operators of the second- and fourth-degree accuracy;
- compare the results of smoothing and differentiation with the true function 
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 and its derivative 
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;

- to determine the optimal step of the numerical differentiation and calculate the first derivative of the smoothed function with this step. 
Theoretical part

Some tasks that we need to perform when analysing and interpreting the experimental data do not require the construction of a single analytical formula within the whole range of the 
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 variable’s change. For instance, for numerical differentiation it is important only to eliminate the noise of the experiment preserving the information on the true function. For this purpose, the experimental data are smoothed, i.e. the initial table of the experimental points is changed for another table of the close to them points that lie on a rather smooth curve.  

The method of least squares and the approximating polynomials of various degrees are applied for smoothing. If a first-degree polynomial is used, the smoothing is known as linear, otherwise, the smoothing is nonlinear. 

There is normally the odd number of the points taken for smoothing while the points clusters must be “sliding” along the entire table. For instance, at the linear smoothing by 5 points the sequence of actions is as follows.  Firstly, the first five points 
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 are chosen. These points are used to determine the polynomial of the best meansquare approximation. The
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 value of this polynomial at midpoint is calculated and  
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 is changed for a smoothed value 
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. Then, the next group of the points 
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 is taken. After necessary calculations, the average value in this group 
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 is being smoothed (i.e. the value 
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 is changed for 
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), and so on to the end of the map. Afterwards, the two first and the two end points are smoothed by using special (less accurate) formulas. 

Linear smoothing by three points leads to the formulas:
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The formulas of the linear smoothing by five points are written as:
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The formulas of the nonlinear smoothing (by a third-degree polynomial) by seven points are:
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With regard to experimental data, the numerical differentiation task is simplest in the case when the values of the 
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 function are measured at equidistant points:
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It is necessary to compute the values of the 
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 derivative at the same points. In other words, using the function table with the constant step 
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 it is necessary to build the table of its derivatives with the same step. 

The numerical differentiation results are badly influenced by the noise of the experiment. Even relatively small errors in the measurements of the initial function 
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 can result in considerable errors in its derivative. It is important to realize that the actual reason for such a distortion of the results is caused not by the imperfection of the derivative calculation techniques but by the fact that the operation of the numerical differentiation of an approximately prescribed function itself is incorrect. 

Therefore, if the function values include random errors, it is necessary to preliminarily smooth the initial data and, then, to use these or those methods for numerical differentiation. 

More often than others, the central difference formula is used in numerical differentiation. 
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This formula is used when 
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, while at the starting and end points the one-sided derivative formula is applied:
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These formulas are characterized by the second-degree accuracy by 
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.

The formulas of the fourth-degree accuracy for the equidistant points 
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The numerical differentiation results of the very noisy data are highly dependent on the quality of a smoothing algorithm. 
Execution order of the task
1. Assign a value equal to 1 to the ORIGIN variable.

2. From the files Lab6 Nx, Lab6 Ny, Lab6 Ny0, Lab6 Ny1, Lab6 Ny2, Lab6 Ny3 (N – task variant number) introduce the initial data and put them in the (x), (y), (у0), (у1), (y2), (y3) arrays. The (y0) и (y1), (y2), (y3) arrays contain values of the true function 
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 derivatives (which are unknown in a real situation).
3. Using the algorithm for the linear smoothing by three points, build the smoothed data table; plot both initial (у) and smoothed data on the graph. 
4. Perform the linear smoothing by five points; plot the graphs for initial and smoothed data. 
5. Using the algorithm for the linear smoothing by seven points, build the smoothed data table; plot both initial (у) and smoothed data on the graph.

6. Compare (graphically) the smoothing quality of the linear and nonlinear algorithms. 
7. Smooth the data using the in-built functions of the Mathcad system – medsmooth(y,m) и supsmooth(x,y); compare these results with results obtained previously. 
8. Since smoothing is usually repeated in practice, perform the tenfold smoothing and comment on the obtained results. 
9. Using the formulas of the second-degree accuracy, differentiate numerically the initial and smoothed data. Compare the obtained results with the true derivative of the non-noisy function (array y1). 
10. Using the formulas of the fourth-degree accuracy, differentiate numerically the data smoothed by different algorithms. Compare the results. 

11. Determine the optimal step of the numerical differentiation and perform the differentiation with this step; compare the results. The experiment noise level is 
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for all the task variants. 
12. Draw the conclusions on the basis of the performed work. 

13. Save the document. 
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