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LAB # 1 

  
  

ONE-DIMENSIONAL OPTIMIZATION METHODS 
  
  

  
The aim of this work: study of methods for one-dimensional search, as 

well as the study of the influence of algorithm parameters of appropriate 
methods for their effectiveness. 

  
1. Job description 

  
To solve the optimization problem in which the characteristic measure is a 
function of one variable, you can use a variety of methods. The choice of the 
solution of optimization problems depends on the various assumptions and 
assumptions about the nature and properties of the function. The following are 
some of the known methods for one dimensional optimization. 
  
  

1.1. The methods of exclusion ranges 
  
These methods are focused on finding the optimum within a specified interval 
to determine optimum function of one variable by sequential deletion of 
podyntervalov and, therefore, by reducing the search interva [l, 2]. 
To begin your search by using these methods, you must set the interval that 
contains the optimum. You can then apply the procedure for the search interval 
to obtain updated estimates of absolute coordinates. The subinterval, an 
exclusion on the each step depends on the location of the sampling points x1 
and x2 in the search interval. Since the location of the point of optimum, a 
priori, it is appropriate to suggest that the location of test points shall ensure 
that the reduction of the interval in the same regard. In addition, in order to 
improve the efficiency of the algorithm must require that a particular 
relationship is maximized. This strategy is sometimes called a Minimax search 
strategy. 
  

1.1.1. The method of dividing the interval in half 
  
This method allows you to exclude exactly half the interval for each iteration. 

This is sometimes called a three-point search on equal intervals, because its 

implementation is based on the choice of three test points, uniformly distributed 
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in the interval following is a search algorithm to search for finding a minimum 

of the function f(x) in the interval (a, b ). 

Step 1. Put xm =(a+b)/2 and L = b - aCalculate the value. f(xm ). 

Step 2. Put x 1 = a+ L /4 and x 2 = b - L /4 Thus, the point x 1 , x 2 and xm divide 

the interval (a, b) into four equal parts. Calculate values f(x1) and f(x2) . 

Step 3. Compare f(x1) and f(xm ). 

If f(x1) < f(xm) delete the interval (xm, b) by putting b = xm The new midpoint 

interval. search becomes point x 1. Therefore, it is necessary to put an xm=x1. 

go to step 5. If f(x,1) ≥f(xm), go to step 4. 

Step 4. Compare f(x2) and f(xm ). 

If f(x2) < f(xm) delete the interval (a, xm) by putting a= xm Since the midpoint 

of the new range becomes point x 2 , put xm = x 2 5. go to step ... If f(x2) ≥ f(xm) 

delete intervals (a, x1) and (x2, b) Put a= x 1 and b = x 2 New interval midpoint. 

continues to be xm 5. go to step. 

Step 5. Calculate L = b - aIf the value of | L | small finish search. Otherwise, 

return to step 2. 

  
1.1.2. The method of golden section 

  
In contrast to the above in the method of golden section at each iteration is only 
one value of the objective function. Here is a particular implementation of this 
method. 

 
  
 
  
  
 
 
 
Consider a symmetrical two test points on the original range of unit length, 
which is shown in fig 1.1. Sample points are positioned from the interval 
boundary points τ The symmetric location points remaining after the interval 
length is always τ regardless of which of the values of the functions in the pilot 
locations are smaller. Suppose that is right podynterval figure 1.2 shows the 

 

0 1 

Figure 1.1. Search through golden section method 

1-τ τ 

1-τ τ 
1 2 
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remaining podynterval length τ contains one sampling point located at a 
distance (1-τ) from the left endpoint. 
 
 
 
 
 
 
 
To the symmetry of the search pattern persisted, distance (1-τ) must be τ the 
second part of the length of the interval (which is equal to τ) for. τ the next test 
point is placed on the distance equal to τ part of the length of the interval from 
the right perimeter point interval (Figure 1.3). 
 
 
 
 
 
 
 
 
 
This means that if you select τ in accordance with condition 1- τ = τ 2 the search 
model, shown in Figure 1.1, is preserved when you move to a reduced interval, 
which is shown in Figure 1.3. Solving this quadratic equation, we get 
 

( 1 5) / 2,τ = − ±  

 
where a positive decision τ = 0.61803... . Search scheme in which trial points 

divide the interval, known as search using the golden section. Algorithm to 

search through this method is as follows. 

Step 1. Put x0 = a, x 3 = b . 

Step 2. Put x 1 = a+ t1-(b-a) Calculate the value. f(x1) . 

Step 3. Put x2 = a+ t2 · ( b - a). Calculate the value of f(x2) . 

Step 4. Compare f(x2) and f(x1). If  f(x1) > f(x2) delete the interval (x0, x1) by 

putting L = x 3- x 1, x 0 = x 1, x 1 = x 2, x 2 = x 0 + t 2 · L , f(x1) = f(x2)  

0 τ 

Figure 1.2. The intervals obtained by the golden section 

1-τ 
1 

0 τ 

Figure 1.3. The symmetry of the golden section interval 

τ2 

1-τ 
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Calculate the value. f(x2) go to step 5. If f(x1) < f(x2) delete the interval (x2, x3) 

by L = x 2-x 0, x 3 = x 2 , x 2 = x 1 , x 1 = x 0 + t 1 · L , f(x2) = f(x1) Calculate the 

value. f(x1). go to step5. 

Step 5. Determine the amount of computation functions- k. If k < N and | L | > E, 

go to step 4. Otherwise, end the search. 

  
1.1.3. Fibonacci Method 

  
Fibonacci Method has the same sequence of intervals that the exceptions and 

the method of golden section. Difference is selecting the starting points and in 

the size exclusion starting point interval. x1 Fibonacci method is calculated by 

the formula [1]. 

  

x1 = ((b-a) • F (N-1) + E-( -1)N)/f N + a      (1.1)  

  

          where fi -Fibonacci numbers i = 0, 1, 2, ..., the N ; 

          N -the number of computing functions; 

E- the specified accuracy. 

As can be seen from equation (1.1), to get a starting point you must know in 

advance the number of calculation functions, which will be in the search result 

is the optimum value with the specified precision. Below is a search algorithm 

for the method. 

Step 1. Put x 0 = a, x 3 = b . Calculate the value of x1 according to the formula 

(1.1). Calculate the value of f(x1) . 

Step 2. Put x 2 = x 0- x 1 + x 3 Calculate the value. f(x2) . 

Step 3. Compare f(x2) and f(x1) . 

If f(x2) > f(x1) , compare x 1 and x 2 If x 2 > x 1 delete the interval (x2, x3) by 

putting x 3 = x 2 . Go to step 4. If x 2 < x 1 delete the interval (x0, x2) by putting 

x 0 = x 2 . Go to step 4. If f(x2) < f(x1) , compare x 1 and x 2 If x 1 > x 2 delete 

the interval (x1, x3) by putting x 3 = x 1 , x 1 = x 2 , f(x1) = f(x2) . Go to step 4. 
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If x 1 < x 2 delete the interval (x0, x1) by putting x 0 = x 1 , x 1 = x 2 , f(x1) = 

f(x2). go to step 4. 

Step 4. Determine the amount of computation functions- k If k < N go to step 2, 

otherwise complete the search. 

  
1.2. the polynomial approximation and methods 

point estimation 
  
The basic idea of the method is the possibility of approximation of smooth 
functions of polynomial and then using an approximating polynomial for the 
estimation of the optimum point coordinates//1.2. Necessary conditions for the 
effective implementation of this approach are the unimodal′nost′ and the 
continuity of the function. According to the Weierstrass theorem on 
approximation, if a function is continuous in some interval, then it’s with any 
degree of accuracy can be approximated by a polynomial of sufficiently high 
order. Therefore, if the function is an unimodal and found a polynomial that 
approximates it quite accurately, the y-coordinate of the point of optimum 
function can be estimated by calculating the coordinates of the point of 
optimum polynomial. According to the theorem of Weierstrass, the quality of 
the estimates of absolute coordinates, using an approximating polynomial can 
be improved in two ways: using higher-order polynomial and decrease the 
interval approximation. The second method, generally speaking, is more 
preferable because building an approximating polynomial order above the third 
becomes a very complicated procedure, while decreasing the interval is an 
assumption about the unimodal function, is not particularly difficult. 
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1.2.1. Estimation Method using quadratic  

approximation 
  

The simplest polynomial interpolation is a quadratic approximation, which is 
based on the fact that the function to take the minimum value in the inner point 
of the interval must be at least quadratic. If a function is linear, the optimal 
value can be achieved only in one of the two boundary points of the interval. 
Therefore, when implementing a method of estimation using a quadratic 
approximation assumes that in a limited range can be approximated by a 
quadratic polynomial function, and then use the approksimiruûŝuû scheme for 
the evaluation of constructed the coordinates of a point of true minimum 
functions. 
If you specify a sequence of points x1, x2, x3 and are known to correspond to the 
points values of functions f1 , f2 , f3 , it is possible to define constants and0and1 
and 2 and in such a way that the value of a quadratic function 
  

0 1 1 2 1 2( ) ( ) ( )( )q x a a x x a x x x x= + − + − −  

  
coincide with the values of the f(x) the three Go to the calculation of points. q 
(x) in each of the three designated points. First of all, because 
  

1 1 1 0( ) ( )f f x q x a= = = , 
  
we have a0= f1 . 
 
Further, since 

 2 2 2 1 1 2 1( ) ( ) ( )f f x q x f a x x= = = + − , 
we get  

1 2 1 2 1( ) / ( )a f f x x= − − .       (1.2) 
 
Finally, if x = x3  
  

3 3 3 1 2 1 2 1 3 1 2 3 1 3 2( ) ( ) ( ) / ( )( ) ( )( ).f f x q x f f f x x x x a x x x x= = = + − − − + − −  
  

Allowing the last equation on a2, we get 

3 1 2 1
2

3 2 3 1 2 1

1 .f f f fa
x x x x x x

 − −
= − − − − 

       (1.3) 
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Thus, the three given points and the corresponding values of the function, you 
can estimate the parameters a0and1 and and2 an approximating polynomial 
using the above formulas. 
If the precision of the approximation of functions, ranging from x1 to x3 using a 
polynomial is sufficiently high, in accordance with the strategy of search you 
can use polynomial constructed for evaluation of optimum point coordinates. 
Fixed points of functions of one variable is determined by equating to zero as 
its first derivative and subsequent finding roots of equations. In this case, from 
the equation  
  

1 2 2 2 1( ) ( ) 0dq a a x x a x x
dx

= + − + − =  

  
You can get the 
  

2 1 1 2( ) / 2 ( / 2 )x x x a a= + − ⋅ .        (1.4) 

  
Because the function f(x ) on the interval has the property of unimodal and 

approximating a quadratic polynomial is also a unimodal function, it can be 

expected that the x  will prove to be an acceptable estimate of the true optimum 

point coordinates x* [2]. Diagram of the algorithm optimal point can be 

described as follows. 

Step 1. Put x 1 = a, x 3 = b , x2 = (x3-x1)/2.  

Step 2. Calculate f(x1), f(x2), f(x3).  

Step 3. A three-point x 1 , x 2 , x 3 calculate parameters a1, a2, using equation 

(1.2) and (1.3), i.e. 

  

a1 = ( 2) ( 1)
2 1

f x f x
x x

−
−

, 

  

a2 = 
1 ( 3) ( 1) ( 2) ( 1)

3 2 3 1 2 1
f x f x f x f x

x x x x x x
− − − − − − 

. 

  
Step 4. Calculate the optimum  x using parameters a1 and a2, using the formula 
(1.4). 
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1.2.2. Powell's Method 

  
This method, developed by Powell, is based on the consistent application of the 

procedures of evaluation using a quadratic approximation scheme of the 

algorithm can be described as follows: Let x 1- the starting point, Δx - the value 

selected for the step axis x . 

Step 1. Calculate x 2 = x 1 + Δx . 

Step 2. Calculate f(x1) and f(x2) . 

Step 3. If f(x1) > f(x2) , put x 3 = x 1 +2 Δx If f(x1) ≤ f(x2) , put x 3 = x 1- Δx . 

Step 4. Calculate f(x3) and find 

            Fmin = min {f1, f2, f3}, 

Xmin = dot xi that corresponds to the Fmin . 

Step 5. A three-point x 1 , x 2 , x 3 calculate  x using the equation (1.2), (1.3), 

(1.4). 

Step 6. Check the end of the search. is the difference Fmin - f(x) small enough? 

Is the difference Xmin -  x small enough? When both conditions are true, 

complete search; otherwise, go to step 7. 

Step 7. Choose the "best" point (Xmin or x) and the two points on either side of 

the Label that points to the natural order, and go to step 4. 

The first implementation step 5 interval that contains the minimum may not 

necessarily be established. The obtained point  x the point can be x 3 In order to 

avoid too much probability should be moved after step 5 extra checking and, in 

the case where a  x is too far from the x 3 , replace  x point coordinate which is 

calculated based on a predetermined step length. 

  
1.3. The methods using derived 

  
All covered in previous sections of the search methods are based on 

assumptions about unimodal and, in some cases, the continuous study of the 
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target function. It is useful to assume that if in addition to introduce a 

requirement for continuity differentiability condition function, the efficiency of 

search procedures can significantly increase. Recall that a necessary condition 

for the existence of a local minimum of the function at some point z zero is the 

first derivative of the function at that point, i.e. ( ) / | 0.x zf z df dx =′ = =  

If the function f(x) contains members that include x in the third and higher 

degrees, the direct receipt of analytical solutions of the equation f´(x) = 0 it 

may be difficult in such cases are approximate methods of incremental search 

fixed points of functions f. 

        

  
1.3.1. Newton-Raphson Method 

  
In the context of a Newton-Raphson assumes the function ftwice differentiable. 
the algorithm starts at the point x1, which represents the starting value (or initial 
evaluation) the coordinates of the stationary point or square root equations f´ (x) 
= 0 Then build linear approximation of the function f´ (x) at the point x1, and 
the point at which approximates a linear function becomes zero is taken as the 
next approximation. If point xto adopted as the current approach the fixed point, 
then a linear function, approximating the function f´(x) at a point xto a is written 
in the form 

  
( ; ) ( ) ( )( ).k k k kf x x f x f x x x′ ′ ′′= + −     (1.5) 

  
On the right side of equation (1.5) to zero, we get the following approximation: 

1 [ ( ) / ( )].k k k kx x f x f x+ ′ ′′= −        (1.6) 

Figure 1.4 illustrates the fundamental steps of Newton's method. Unfortunately, 

depending on the choice of the starting point and the type of function as the 

algorithm can converge to the true stationary point and diverge [2]. 
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Figure 1.4 - The Newton-Raphson method 

 

The following is the algorithm using the Newton-Raphson method search. 

Step 1. Determine the starting point x1.  

Step 2. Calculate f´ (xk), f״ (xk) and the following approximation formula (1.6). 

Step 3. Check for end of search | f´( xk)| >E, then go to step 2. 

  

1.3.2. The midpoint Method 
  
If the function f´ (x) unimodal search in the specified interval, the optimum 
point is the point at which the f´ (x) = 0 If you can figure out how the value of 
the function and its derivative, then to find the root of the equation f´ (x) = 0 

you can use the effective exclusion algorithm intervals at each iteration where 
is considered only one trial period. For example, if a point z is inequality f´(z) < 
0, given assumptions about unimodal′nosti naturally argue that point minimum 
may not be to the left of point z. In other words, the interval x≤z should be 
deleted, on the other hand, if f´(z) > 0, then the minimum point cannot be to the 
right of z and interval of x≥z you can delete [2]the reasoning underlying the 
logical structure of the midpoint method, sometimes called the search of 
Bolzano. 
We define two points L and R in such a way that f´ L < 0 and f´ (R) > 0 Fixed 
point is located between the L and R. Calculate the value of the derivative of a 
function at the midpoint of the interval z =(L+R)/2 If f´ (z) > 0 the interval (z,R) 

you can exclude from the search interval. On the other hand, if the f´ (z) < 0 

then you can delete the interval (L, z). The following is a formal description of 
the steps of the algorithm. 
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Step 1. Put R = b , L = a; the f´ a< 0 and f´ b > 0 . 

Step 2. Calculate z =(R+L)/2 and f´(z ). 

Step 3. If | f´ (z) | ≤ E Finish search. Otherwise, if the f´ (z) < 0 , put L = z and 

go to step 2 If the f´ (z) > 0 , put R = z and go to step 2. 

It should be noted that the logical structure of the search as described by 
process of elimination of intervals is based only on the research of derivative 
regardless of the values that the derivative is. 
  

1.3.3. The secant Method 
  
The secant Method, a combination of Newton's method and the general pattern 
of exclusion ranges, is focused on finding a root of the equation f´(x) in the 
interval (a, b), If, of course, the root exists. 
Suppose that in the process of finding a fixed point of the function f(x) in the 
interval (a, b) found two points L and R in which the characters derived 
different. In this case, the secant method algorithm approximates function f´ (x) 
«clipping straight» (straight line joining two points) and find the point at which 
a graph of secant f´ (x) crosses the x-axis (fig. 1.5). Therefore, the following 
approximation to a stationary point x * is defined by the formula 

( )
[ ( ) ( )] / ( )

f Rz R
f R f L R L

′
= −

′ ′− −
.        (1.7) 

If | f´(z)| ≤E, the search must be complete; otherwise, you must select one of the 
points is L or R in such a way that marks the derivative at this point and point z 

were different, then repeat the basic step of the algorithm [2]. 
  

 
Figure 1.5 - Secant Method 

 
The algorithm for this method is shown below. 
  
Step 1. We put the R = b , L = a; the f´ a< 0 and f´ b > 0.  
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Step 2. Calculate the current approximation z to a minimum according to 

the formula (1.7). Calculate f´(z ). 

  

Step 3. If | f´(z)| ≤E, Finish search. Otherwise, if f´(z) > 0, put R=z and 

go to step 2. If f´(z) < 0, put L=z and go to step 2.  

After the algorithms you can start developing software complex, defining 

the first objective that must be fulfilled by the program. 

  
  

2. The implementation of software complex 
  
Complex for the study and research of one-dimensional search is implemented 
in your environment MATLAB. 

After running the complex appears onscreen form that contains a certain 
number of Windows that you can use to specify methods for solving tasks 
option and the parameters of the study of algorithms. 

The first three Windows  <Section> <method> <Option>  allow you to select 
the method the task group, respectively, within a given group-a method of 
solution and option that specifies the type of the target function. 

The following window for displaying graphs of functions, the range of her 
study, referring to the objective function, the number of iterations N , to find the 
optimum, error, step are active in addressing the tasks the user can change the 
above settings, the settings of the target function and carry out studies of 
individual custom functions, using the step by step or automatic mode in step 
the user consistently implements virtual key to run. 

The research results are presented to the user in a graphical form and in the 
form of a sequence of iterations with relevant quantitative estimates that appear 
in certain Windows screen form. 

Background information explaining the characteristics of the implementation of 
each of the techniques is also displayed in the screen window of the form.  
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3. Implementation of the work 
  

1. To familiarize themselves with the work of software. 
2. To find a solution to test and compare with the received solution. 
3. Get the job options for work. 
4. Investigate the effects of parameters specified targets on the 

effectiveness of decisions. 
5. Examine the effects specified accuracy on performance measures for 

methods. 
6. Make a report with the results of the study methods. 

A report must contain the results of the decision, the purpose of the given 
version of the target function, complemented by appropriate analytical 
calculations. In addition, you must submit a form for analysis, the results of the 
study of various parameters on the efficiency of methods. Bring the results of 
the decision of the user-defined function. 

  
  

LAB # 2 
  

METHODS OF MULTIVARIATE OPTIMIZATION 
  

The purpose of the work: a study of the features of solution of optimization 
tasks using multivariate optimization without restrictions. 
  

  
1. Basic provisions 

  
To find extremum target functions of many variables, you can use a variety 

of methods [1, 2, 3, 4]. Depending on the specifics of the extremum search 
methods of multidimensional optimization can be divided into two groups: 
methods that use the actual values of the target functions and methods with the 
use of derivatives. The paper deals with the methods of the second group. The 
methods of this group is the use of an iterative procedure 

( 1) ( ) ( ) ( )( )k k k kx x s xα+ = + ⋅ ,         (1) 

where ( )kx -the current value of the argument of the function; 
     (α) k is a parameter describing the length of the step; 
    ( ) ( )( )k ks x s= -Search direction in the N -dimensional space managed 

variables. 
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In determining the amount of and directions allocate a number of 
optimization techniques. 
  

1.1. Gradient methods  
  

Gradient methods in contrast to direct methods of search, search procedures 
that use only values of the objective function in the investigated points, 
presuppose the existence of derivative function. This reduces the number of 
required calculations inside functions. 

If the search direction ( )( )ks x  take direction antigradient function 

  
( ) ( )( ) ( )k ks x f x= −∇ , 

  

where 
1 2

( ; ;...;
n

f f ff
x x x
∂ ∂ ∂

∇ =
∂ ∂ ∂

) -the gradient of the function, 

We'll get out of (1) the ratio of the 
  
                                      ( 1) ( ) ( ) ( )( )k k k kx x f xα+ = − ∇ ,                                                                 (2)      
  
program determines the method of steepest descent, or Cauchy method. 
In this method, the value of ( )kα  on each iteration, computed by the task of 
finding the minimum functions ( 1)( )kf x +  along the lines of ( )( )kf x∇  by means 
of a one-dimensional search method. 

The method has high reliability and stability. However, the method has 
some drawbacks [1]. 

Taking as a parameter ( )kα  in (1) a positive number α get computing 
scheme   

  
                                      ( 1) ( ) ( )( )k k kx x f xα+ = − ∇ ,    (3) 

  
which defines the simple gradient method in finding the minimum of 
multidimensional functions. The method has several disadvantages, including 
the following: first, you need to select the right value α ; and secondly, the 
method is slow convergence to a minimum because of the smallness of the 
gradient f∇  in the neighborhood nearly stationary area.  

Along with the above to solve optimization problems using Gauss-
Seidel method, known under the name of the wise descent. The essence of 
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the method is to find the minimum functions sequentially for each coordinate. 
Let the prioritized change coordinates 1 2, ,..., nx x x  coinciding with the order of 
their indices 1, 2, ..., N. First change one component 1x  while keeping all other 
coordinates fixed by some amount x∆  and determine the amount of the 
increment f∆ . If It is therefore a step in the wrong direction. We change 
direction and move until 0f∆ <  does not change the sign of a value. Then 
proceed to change the other coordinates 2x  and so on until it finds a specified 
precision point minimum. When you implement the other computational 
schemes. 

The method is simple implementation. However, compared to other methods 
require more 0f∆ >  to search the minimum functions. 
  

1.2. Newton's Method  
  

The above methods are based on consistent linear approximation of the 
objective function and require calculation of values of the objective function 
and its derivatives at each step, the number of which can be very large [1,3]. For 
a more general strategy to bring about the second derivatives ( )f x . This 
information can be obtained when a quadratic approximation of functions, when 
its Taylor series expansion takes account of a number of members up to the 
second order, inclusive. Using the results of approximation leads to Newton's 
method is implemented by the formula 

  
                                      ( 1) ( ) 2 ( ) 1 ( )( ) ( )k k k kx x f x f x+ −= −∇ ∇ ,   (4) 

  
where 2 ( )f x∇ -Hessian (Hesse’s matrix). 

Newton's method finds a quadratic rate of convergence, which is the 
inequality 

  
2( 1) ( )k kcε ε+ ≤ ,        

  
where c is a constant related to the conditions of the Hessian matrix. 

( ) ( ) *k kx xε = − , 
where *x -solution.  
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Convergence of Newton's method depends largely on the choice of the 
initial approximation (0)x . The method converges whenever choice (0)x  is 
carried out in accordance with condition [1] 

(0) 1 cε < . 
Quadratic convergence speed due to the fact that the study of 

nekvadratičnyh functions of Newton's method is highly reliable/1, 3/. If the 

point located at a considerable distance from the point of Newton's 
method step is often too high, which can lead to non-convergence. Method can 
be quite easy to modify to ensure the reduction of the target function from 
iteration to iteration and search along a straight, as in the Cauchy. Iteration 
sequence is built in accordance with the formula 

  
                                      ( 1) ( ) ( ) 2 ( ) 1 ( )( ) ( )k k k k kx x f x f xα+ −= − ∇ ∇ .   (6) 

  
Choice ( )kα is carried out in such a way as to  
  
                                      ( 1)( ) minkf x + → . 
  
This ensures that the inequality 
  
                                      ( 1) ( )( ) ( )k kf x f x+ ≤        (7) 

  
This technique is called modified Newton's method and when calculating 
the exact values of the first and second derivatives does not pose significant 
difficulties, is safe and effective. 
  

1.3. Conjugate gradient Methods  
  
These methods, with positive properties of Cauchy and Newton are based on 

calculating values only first derivatives, are highly reliable searches *x  from a 
remote location (0)x  and quickly converge around point minimum. The build 
procedure methods Conjugate directions, for which the quadratic function 
approximation ( )f x  and the value component of the gradient. 

So, we believe that the objective function is quadratic: 
 

                                      ( ) ( ) 1 2T Tf x q x a b x x Cx= = + + , 
 
and iteration are run according to formula (1), i.e. 
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                                       ( 1) ( ) ( ) ( )( )k k k kx x s xα+ = + ⋅ . 
  
Search direction on every iteration is defined by the following relations: 

                                      
1

( ) ( ) ( ) ( )

0

k
k k i i

i
s g sg

−

=

= − +∑ ,      (8) 

                                      (0) (0)s g= − ,        (9) 

where 

                                      ( ) (k) (k) (k)(x ) g(x ) Cxkg f b=∇ =∇ = + .    (10) 

Using the quadratic function 

                                      ( ) ( 1) ( ) ( 1)( ) ( ) ( ) ( )k k k kg x g x g x C x x C x− −∆ = − = − = ∆  

  
and c-contingency-directions ( )is  (i= 1, 2, ...), the ratio can be obtained for 
computing parameter ( )ig in the formula (8) [1, 3], using the general formula (8) 
determine the direction of the search has the following form: 

                                      

2( )
( ) ( ) ( 1)

2( 1)

k
k k k

k

g
s g s

g
−

−
= − + .     (11) 

If ( )f x -quadratic function, to find the point of minimum required N -1 of 
such areas and to N searches along a straight line. If the same function ( )f x is 
not quadratic, the number of destinations and related searches is increasing. 

  
1.4. Other methods 

  
In addition to those described above methods to meet the challenges of 

the unconditional multivariate optimization is used and many others [1, 2, 3, 
6 .7, 8] which include quasi-Newtonian methods. These methods have the 
positive qualities of Newton's method, however, only use the first derivative. 
All methods of the specified class build vectors search referrals by using 
formula (1), which ( )( )ks x is written in the form  

                                      ( ) ( ) ( )( ) ( )k k ks x A f x= ∇ ,      (12) 

where ( )kA is the matrix of order N*N, which is called a metric. Search 
methods along the lines determined by this formula are known as variable 
metric methods yet, because the matrix a is changed at each iteration. 
Changing matrix ( )kA due to its proximity to the matrix of the inverse Hessian 
matrix. To approximate the inverse Hessian matrix, the ratio of recurrent 
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                                      ( 1) ( ) ( )к к k
cА А A+ = + ,       (13) 

where ( )k
cA -adjustment matrix. 

This matrix allows each step to improve the task. 
Among the known methods of kvazin′ûtonovskih Dèvidona method-

Flettčera-Powell (DPF), method Brojdena-Fletcher-Šènno, etc. [1, 3, 6, 7, 8]. 
The above methods have different performance indicators. Some research 

questions the effectiveness of the methods covered in this lab. 
  

2. The implementation of software complex 
  

Complex for the study and research of methods optimization is 
implemented nonjudgmental environment MATLAB.  

After running the complex appears onscreen form that contains 
multiple Windows that you can use to specify methods of problem 
solving. Enhancing the multidimensional optimization leads to the 
emergence of a new on-screen forms to perform laboratory work. Window 
screen form allow you to specify any function, modify its parameters and 
the parameters of the study of algorithms to output tasks. 

The top window screen form allows you to select the function, and in 
the next window, you can change its settings. The following window for 
setting the initial approach, accuracy, number of iterations, and step size 
are active. The study involves a step-by-step and automatic solution, and 
the results are displayed both graphically and in terms of quantitative 
evaluations. You can specify and three-dimensional graphics. 

Background information explaining the characteristics of the 
implementation of each of the techniques is also displayed in the screen 
window of the form. 

  
3. Implementation of the work 

  
1. Get acquainted with the work of the software. 
2. To find a solution to test and compare with the received solution. 
3. Get the job options for work. 
4. Investigate the effects of parameters specified targets on the 

effectiveness of decisions. 
5. Examine the effects of the initial approximations, the accuracy of the 

indicators of performance techniques. 
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6. Get a solution for the user-defined function. 
7. To issue a report with the results of the study methods.  
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LAB # 3 
  

CONDITIONAL METHODS OF OPTIMIZATION 
  
The purpose of the work: a study of the features of solution of optimization 
tasks using conditional methods of optimization. 
  

1. Basic provisions 
  
To find extremum target functions of many variables, you can use a 

variety of methods [1, 3, 5, 7]. This paper discusses how conditional 
optimization. Constraints on variables that may take the form of equations and 
inequalities. It addresses methods for solving constraint problems of both 
species.  
  
  

1.1. The Adapted method Hook-1996 
  

For solution of optimization tasks with constraints can be used method 
Hook-1996. The General procedure for finding the minimum of the objective 
function by changing the variables conditioning test valid decisions determined 
by the limitations of the task. And if the variable is outside the valid range, the 
objective function is given some great predefined value that adequately failure 
when looking for direction in the space of parameters. In the case of 
conditioning variables the General procedure feasible solution does not change 
[2].  
  

1.2. Methods of Lagrange multipliers 
  

To find extremum function 
  

1 2( ) ( , ,..., )nf x f x x x=       (1) 

  
with restrictions 
  

1 2( , ,..., ) 0i ng x x x = ,                1,2,..., .i m=  (2) 

  
You can use the classic method of conditional optimization functions of several 
variables [2, 5]. We believe that the functions 1 2( , ,..., )nf x x x and 
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1 2( , ,..., )i ng x x x  together with its continuous first partial derivatives. The 
function is to solve the problem 

1 2 1 2 1 2 1 2
1

( , ,..., , , ,..., ) ( , ,..., ) ( , ,..., ),
m

n m n i i n
i

F x x x f x x x q x x xλ λ λ λ
=

= + ⋅∑  (3) 

define partial derivatives ( 1,2,..., ),
j

F j n
x
∂

=
∂

 ( 1,2,..., )
i

F i m
λ
∂

=
∂

 and are equal to 

zero, resulting in a system of equations: 
  

1

1 2

0

 ( , ,..., ) 0

m

i
ij j j

i n
j

F f g
x x x

F g x x x
x

λ
=

 ∂ ∂ ∂
= + =∂ ∂ ∂


∂ = =

∂

∑
where 1,2,...,i m=  and, 1,2,...,j n= . (4) 

  
Function (3) is called the Lagrangian function, and the number of λi -Lagrange 
multipliers. If the function 1 2( ) ( , ,..., )nf x f x x x= at the point of 

(0) (0) (0) (0)
1 2( , ,..., )nX x x x=  has the extremum, then there exists a vector 

(0) (0) (0) (0)
1 2( , ,..., )mλ λ λΛ =  that point ( (0) (0) (0)

1 2, ,..., nx x x , (0) (0) (0)
1 2, ,..., mλ λ λ ) is the 

solution of the system. Therefore, solving the system, get lots of points at which 
the function ( )f x can have extreme values.  
You can use the Lagrangian method in the case of restrictions in the form of 
inequalities. By introducing additional variables, constraints are inequalities can 
be converted to the equation, with additional variables restricted 
neotricatel′nosti. 
  

1.3. Method of penalty functions 
  

The method of numerical solution of optimization problems with 
constraints method of conversion-based optimization tasks [1, 2, 3, 9]. 

The task can be formulated as follows: 
  
minimize ( ),f x       Nx R∈          (1) 

  
with restrictions ( ) 0, 1,2,.. ,ig x j m≥ =       (2) 

( ) 0, 1,2,... .ih x i l= =          (3) 
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The essence of the method is to convert the source to the target function (1) 
by incorporating features from the limits (2) and (3), thus obtaining the 
unconditional optimization, which you can use known techniques [1, 2, 3]. 

The transformed function defined by 

  
  ( , ) ( ) ( , ( ), ( )),P x R f x R g x h x= +Ω        (4) 

  
where Ω -penalty function of restrictions and R -penalty parameter. 

There are different types of fines and various procedures taking into account 
constraints when you navigate to a task without optimization. 
  
1. Quadratic penalty   
  

This type of penalty is used to account for the limitations of equations and 
has the form 

  
2( ( ))R h xΩ = .           (5) 

In the minimization of this penalty prevents rejection of the values of ( )h x from 
the ground up. It is easy to see that if you increase the R the stationary point of a 
function P(x, R) is coming to the decision x*because in the limit ( )( ) 0t

kh x =

where t = 1, 2, ..., T. Function. Ω is continuous and has continuous derivatives. 
  
2. Logarithmic fine  

  
This and the following penalties shall take into account the constraints of 
inequality. Logarithmic penalty has the form 
 

ln[ ( )]R g xΩ = −            (6) 

  
The fine is positive for all x such that 0 < g(x) < 1, and negative if g(x)> 1. In 
this case, the internal points of the acceptable solutions will be given preference. 
Logarithmic barrier function is fine, not described in the invalid pixels (i.e. such 
that g(x) < 0). Therefore, the initial step is to ensure penetration into the 
permissible range. Since the transformed problem is solved one of the numerical 
methods, it is possible the emergence of unacceptable points in the course of the 
decision (for example, as a result of a great first step in the search for the one-
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dimensional). In this regard, special measures shall be provided to prevent this 
situation or its detection and repair. Iterative process starts from a valid positive 
initial point R (R= 10 or R= 100). following the decision of each subtask 
unconditional optimization decreases and in the limit of zero. 
  
3. The penalty specified by reciprocal function 
  
This type of penalty 

  
[1 / ( )]R g xΩ =            (7) 

  
has no negative values in the acceptable area. Like the previous one, is a barrier 
to a fine in the valid points near the border values of fine positive and quickly 
wanes when advancing into the permissible area. On the border value of P(x, R) 
and its gradient is not defined. As in the previous case, you may receive 
incorrect points. 
  
4. The penalty-type square cutting 

  
2( )R g xΩ = ⋅ ,           (8) 

  

where 
,   0,

0,   0.
a if a

a
if a

≤
=  >

         (9) 

  
Note that this fine external. Invalid point do not create difficulties in this case 
compared with valid. The distinction between them is that in valid and 
boundary points penalty is 0. this type of penalty is convenient because P(x, R) 
is continuous and everywhere. The calculation is carried out with positive R 

rising from iteration to iteration. 
In this lab, discusses the challenges of non-linear programming method of 
penalty functions taking into account constraints-constraints-equations and 
inequalities.  
Algorithm for solving the problem can be represented as the following sequence 
of steps 

           
Step 1. Specify the initial data N, J, k , ε1, ε2, ε3, x(0), R(0), where 
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          ε1 – the end of a one-dimensional search (if it is used in the procedure of 

unconditional optimization); 

          ε2 – the end of the procedure the unconditional optimization; 

          ε3 – the end of the algorithm; 

          x(0) is the starting point; 

          R(0) -initial vector of penalty parameters. 

Step 2. Build the penalty function 

  

    ( , ) ( ) ( , ( ), ( )).P x R f x R g x h x= +Ω  

  

Step 3. Find x(t+1) that delivers the extremum P(x(t+1), R(t)) with a fixed R(t) . As a 

starting point is used x(t), and as the end step parameter – the constant  ε2. 

Step 4. Check whether the condition ( 1) ( ) ( ) ( 1)
3( , ) ( , )t t t tP x R P x R ε+ −− ≤ . If it is, 

put x* = x(t+1) and finish the process address; otherwise, go to step 5. 

Step 5. Put R(t+1) = R(t) + ∆R in accordance with any conversion rule and proceed 

to step 2. 

There are no clear guidelines on choosing R. Either R is incremented by a 
certain number ∆R, either as R use increasing degrees of some number (e.g. 10, 
100, 1000, etc.). 
When implementing step 3 can be used to optimize any procedure: Hook-Jeeves 

method, simplex search. If it is possible to calculate 
i

P
x
∂
∂

, then apply any 

gradient search procedure. 
  

2. The implementation of software complex 
  
Center for study and research methods in the optimization of conditional 

MATLAB. 
After the launch complex on the screen that appears, you click form, the 
corresponding conditional optimization techniques, increasing which leads to 
another screen form. 
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Work in the window that appears is similar to working with Windows of the 
preceding paragraphs, the complex is provided with relevant information and 
does not require further explanation. 
  

3. Implementation of the work 
  

1. To familiarize themselves with the work of software. 
2. To find a solution to the previously selected test tasks for all kinds of 

fines. 
3. Get a job at the teacher to complete the work. 
4. Investigate the influence of fines and their parameters on the accuracy of 

decisions. 
5. Execute the report with the results of decisions and research methods.  

           
LAB No. 4 

  
SOLUTION OF LINEAR PROGRAMMING PROBLEMS 

  
Aim: to study the methods of the solution of linear programming problems 
and their application to the study of applications. 
  
  

1.  General linear programming problem 
  
The General objective of linear programming (LP) is to find the extreme 

values (maximum or minimum) of linear function 
  

1 1 2 2 n nZ C x C x C x= + + +        (1.1) 
  

from physical variables when imposed restrictions: 
  

( )
( )

( )

( )

11 1 12 2 1 1 1

21 1 22 2 2 2 2

1 1 2 2

1 1 2 2

,
,

,

,

j j n n

j j n n

i i ij j in n i

m m mj j mn n m

a x a x a x a x b
a x a x a x a x b

a x a x a x a x b

a x a x a x a x b

+ + + + + ≤ = ≥
 + + + + + ≤ = ≥

 + + + + + ≤ = ≥



+ + + + + ≤ = ≥

 

 



 



 

,   (1.2) 

  

 0jx ≥  ( )1,2, ,j n=  ,      (1.3) 
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where ija , ib  and jC  are the defined constants. 

A linear function that is extreme value, commonly referred to as the 
target function.  

The restrictions can simultaneously meet marks is less than or equal to, 
equal to, greater than or equal to. 

The overall objective has several forms of writing. 
Vector linear programming task form has the following form: 
  
minimize (maximize) linear function 

  
Z =CX           (1.4) 

  
with restrictions 

  
( )1 1 2 2 0,n nx x x+ + + ≤ = ≥A A A A , 0≥X ,    (1.5) 

  
where   ( )1 2, , , nc c c=C  ; 

( )1 2, , , nx x x=X  ; 
CX  is the scalar product. 

 
Vectors 

11 12 1 1

21 22 2 2
1 2 0

1 2

, , , ,

n

n
n

m m mn m

a a a b
a a a b

a a a b

       
       
       = = = =
       
       
       

A A A A

   

 (1.6) 

  
are the coefficients of the unknowns and free members. 

Matrix form of linear programming task involves finding the 
minimum (maximum) value of linear function 

  
Z =CX           (1.7) 

  
with restrictions 

  
( ) 0,≤ = ≥AX A , 0≥X ,        (1.8) 
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where ( )1 2 nc c c=C   is the string-matrix; 

1

2

m

x
x

x

 
 
 =
 
 
 

X


, 

1

2
0

m

b
b

b

 
 
 =
 
 
 

A


 – the matrix-column;  

  
11 12 1

21 22 2

1 2

n

n

m m mn

a a a
a a a

a a a

 
 
 =
 
 
 

A





   



 is the matrix of coefficients of the system 

constraints.  
  
Example 1 
Find the maximum value of a linear function 1 2 33Z x x x= − + +  with 

restrictions 
  

1 2 3

1 2 3

1 3

2 1
4 2 2
3 5

x x x
x x x
x x

− + ≤
 − + ≥ −
 + ≤

. 

  
The vectors are of the form: 
  

( )1 2 3= −C , 
 

( )1 2 3x x x=X , 
 

1 2 3 0

2 1 1 1
4 , 2 , 1 , 2
3 0 1 5

−       
       = = − = = −       
       
       

A A A A . 

 
  
The matrix system of restrictions is as follows: 

  
2 1 1
4 2 1
3 0 1

− 
 = − 
 
 

A . 
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2. Simplex method of linear programming 
  
2.1. Standard form of linear programming tasks 
  
Linear programming problems presented in different ways, can be 

reduced to standard form. Standard form is to minimize the objective function 
  

1 1 2 2 n nZ C x C x C x= + + +      (2.1) 

  
in view of the limitations of equalities:  

 
11 1 12 2 1 1 1

21 1 22 2 2 2 2

1 1 2 2

1 1 2 2

j j n n

j j n n

i i ij j in n i

m m mj j mn n m

a x a x a x a x b
a x a x a x a x b

a x a x a x a x b

a x a x a x a x b

+ + + + + =
 + + + + + =

 + + + + + =



+ + + + + =

 

 



 



 

,  (2.2) 

 
0jx ≥  ( )1,2, ,j n=  ,     (2.3) 

 
0ib ≥  ( )1,2, ,i m=  .     (2.4) 

 
  

If a task in the form of (2.1) to (2.4) the condition m n>  then the LP is 
reduced to the solution of systems of equations (2.2). This task will not have 
solutions if the condition (2.3) is not running or the system of equations has no 
solution. The LP will not have decisions and when m n<  the system of 
restrictions has no solution. 

Here are the tasks for which the condition jC . 

To the task of finding the maximum value of the objective function (1.1) 

move on to the task of minimization, enough to take all coefficients the 
target function with signs. To navigate back after finding the minimum result so 
you must invert. 

For the transition from the type constraint is less than or equal to the 
equity in it, you must enter additional nonnegative variable with sign «plus»: 
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1 1 1

1 1

i ij j in n

i i ij j in n n i

a x a x a x b

a x a x a x x b+

+ + + + ≤

⇒ + + + + + =

 

 

.      (2.5) 

  
For the transition from the type constraint is greater than or equal to the 

equity in it, you must enter additional nonnegative variable with a minus sign: 
  

1 1 1

1 1

i ij j in n

i i ij j in n n i

a x a x a x b

a x a x a x x b+

+ + + + ≥

⇒ + + + + − =

 

 

.      (2.6) 

  
In each inequality is it’s ( )n i+  an additional variable. 
All equality with negative free members, divided into 1−  in order to 

satisfy the condition (2.4). 
  

Example 2 
Convert task, as set out in example 1 to the standard form. The system 

of restrictions is as follows: 
  

1 2 3

1 2 3

1 3

2 1
4 2 2
3 5

x x x
x x x
x x

− + ≤
 − + ≥ −
 + ≤

. 

  
Multiplying the second constraint by 1−  for the non-negativity 

conditions of the free terms in the constraints:  
  

1 2 3

1 2 3

1 3

2 1
4 2 2

3 5

x x x
x x x

x x

− + ≤
− + − ≤
 + ≤

. 

  
We will introduce in the first inequality more variable 4 0x ≥  with sign 

Plus, the second – 5 0x ≥  and in the third – 6 0x ≥  also the plus. The result will 
be a system of restrictions in standard form: 

  
1 2 3 4

1 2 3 5

1 3 6

2 1
4 2 2

3 5

x x x x
x x x x

x x x

− + + =
− + − + =
 + + =

. 

  
While these restrictions will need to find the minimum value of the 

function with coefficients: 
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1 2 33Z x x x= − − . 

  
  
2.2. The concept plan for the linear programming problem 

  
PL task, presented in a standard format, introduced the concept of the 

plan. 
The plan, or a valid solution to the linear programming problem, referred 

to as a vector ( )1 2, , , nx x x=X   that satisfies the conditions (2.2), (2.3) 
and (2.4). 

The plan is called the baseline if the vectors iA  ( )1,2, ,i m=   in the 
decomposition type (1.5) with positive coefficients ix  (standard forms) are 
linearly independent. Number of positive reference component of the plan may 
not exceed m . The support plan is called non-degenerate if it contains m  
positive components, otherwise the support program is called degenerate. 

The optimal plan or the optimal solution of linear programming tasks is 
referred to as a plan that delivers the lowest value of linear function (2.1). 

The set of all linear programming tasks plans (if they exist) is convex bi-
hex profile. Each corner point of the polyhedron solutions meets the basic plan. 
Each basic plan is determined by the system m  linearly independent vectors 
contained in the system of n  vectors . 1 2, , , nA A A  

In order to find the optimal plan to explore the only anchor plans. The 
upper bound of the number of backup plans contained in this task, is determined 
by the number of combinations m

nC . When large m and n find the best plan, 
turning over all support plans task very difficult. 

Simplex method provides a schema that allows a smooth transition from 
one key to another plan. This method, based on known reference plan tasks for a 
finite number of steps to get the optimal plan. Each of the steps (or iterations) is 
to find a new plan, which is less than the value of the linear function the same as 
in the previous plan. If the task has no plans or linear function is not limited to 
the polyhedron solutions the simplex method allows you to set this in the 
decision. 
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2.3. Building support programs 
  
To build initial support plan should be made in the system of restrictions 

(2.2) m linearly independent vectors. The most simple is made by converting the 
system of restrictions so that it appeared unit vectors (submatrix unit): 

  
1 1, 1 1 1 1

2 2, 1 1 2 2

, 1 1

m m n n

m m n n

m m m m mn n n

x a x a x b
x a x a x b

x a x a x b

+ +

+ +

+ +

+ + + =
 + + + =


 + + + =









, 0ib ≥  ( )1,2, ,j m=  . (2.7) 

 
In vector form system (2.7) is as follows: 
  

1 1 2 2 1 1 0m m m m n nx x x x x+ ++ + + + + + =A A A A A A  ,   (2.8) 

  
where 

1 2

1 0 0
0 1 0

, , ,0
0 0
0 0 1

m

     
     
     
     = = =
     
     
     
     

A A A 



; 

 
1, 1 1 1

2, 1 2 2
1 0

, 1

, , ,

m n

m n
m n

m m mn m

a a b
a a b

a a b

+

+
+

+

     
     
     = = =
     
           

A A A


 

. 

Vectors 1 2, , , mA A A  are linearly independent unit vectors of m-dimensional 
space. They form the basis of this space. Any of the vectors jA  can be 
represented as a linear combination of basis vectors, and the only way: 
  
 

1

m

j ij i
i

x
=

=∑A A , 0,1,2,i n=  .    (2.9) 

 
If the decomposition (2.7) for the unknown base select 1 2, , , mx x x  free 
unknown 1, ,m nx x+   equates to zero and, given that 0ib ≥  ( )1,2, ,j m=   and 
vectors 1 2, , , mA A A  are single and get an initial basic plan: 
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( )0 1 1 2 2 1; ; ; 0; 0m m m nx b x b x b x x+= = = = = =X   .  (2.10) 

  
If you ask a certain amount 0θ >  the vector 
  

( )1 1 1, 1 2 2, 1 , 1; ; ; ; 0 0m m m m mx x x x x xθ θ θ θ+ + += − − −X    

  
also is a plan if its negative features. 

Since 0θ > , all components of the vector 1X , which include non-
positive , 1i mx +  are non-negative. You must define the 0θ >  under which for all 

, 1 0i mx + >  the following condition is satisfied:  
  

, 1 0i i mx xθ +− ≥ .         (2.11) 

  
From (2.11) should be , 1i i mx xθ +≤ . Therefore, the vector 1X  is the Plan 

tasks for any θ  that satisfies a condition 

, 10 min ,i i mx xθ + < ≤  
       (2.12)  

  
where the minimum is taken i for which , 1 0i mx + > . 

Because the basic plan may not contain m+1 positive component, so in 
1X  it is necessary to pay zero in at least one of the component. If you put 

  
0 , 1min  i i mx xθ θ + = =   ,       (2.13) 

  
the component of the plan 1X  that is at least becomes zero, the transition to the 
new support plan: 

  
( )1 2 10; `; `; `; 0 0m mx x x +=X   .    (2.14) 

  
2.4 Finding optimal plan 
  
If a linear programming problem (2.1)-(2.4) has the plans and each of its 

basic plan is not degenerate, then for the support program (2.10) the following 
relation is satisfied: 

  
 

1 1 2 2 0m mx x x+ + + =A A A A ,     (2.15) 
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( )1 1 2 2 0m mx C x C x C Z+ + + = A ,     (2.16) 
 

 
where all 0ix > ; 

( )0Z A  – the value of the objective function corresponding to this plan. 
Decomposition of a vector jA  on this basis the only vectors: 
  

1 1 2 2j j mj m jx x x+ + + =A A A A  ( )1,2, ,j n=  .   (2.17) 
 

This corresponds to a single value decomposition of linear function 
  

1 1 2 2j j mj m jx C x C x C Z+ + + =  ( )1,2, ,j n=  ,    (2.18) 

  
where jZ  – the value of the linear function if it instead of unknown substitute 
the corresponding coefficients of decomposition j-th vector by basis. 

If, for a specific plan X decomposition of all vectors jA  ( )1,2, ,j n=   
satisfies the condition 

  
0j jZ C− ≤ ,         (2.19) 

  
the plan is the best. 

Inequality (2.19) are a condition of optimality of the plan tasks to be 
solved by finding the minimum value of linear functions and values j jZ C−

referred to as estimate of the plan. 
Thus, in order to plan tasks to be optimal, it is necessary and sufficient 

that its estimates were non-positive. 
  
3. Algorithm of simplex method 
  
3.1. Build Simplex table 
  
The next step after the task is reduced to the standard form, the system 

of restrictions highlighted submatrix unit and received initial support program in 
the form (2.10), it is necessary to examine this plan optimality. The vectors jA  

( )1,2, ,j n=   of the system are decomposed on the basis vectors 

1 2, , , mA A A and count values assessments .j jZ C−  The basis of an isolated, 

so the coefficients of the decomposition of a vector jA  on the baseline are its 
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components, i.e. ij ijx a=  ( )1,2, , ; 1,2, ,i m j n= =  . This means that columns 

jA  ( )1,2, ,j n=   of the table to record the type of constraint matrix (2.7). 

Further calculations easier to carry out if the condition and initial data obtained 
after the first key plan, written in simplex table (table 1). 

  
Table 1 

i Basis C 
Basis 

a0  c1 c2 … cl … Cm Cm +1 … c 
to(j) 

… Ck … Cn 

a1  a2  … aL  … a(m)  am +1  … aJ … ak  … aN  

1 a1  c1 X1 1 0 … 0 … 0 x1, m +1 … x1j … x1 k … x1n 
2 a2  c2 X2 0 1 … 0 … 0 x2, m +1 … x2j … x2 k … x2n 
… … … … … … … … … … … … … … … … … 

L aL  cl xl 0 0 … 1 … 0 xL, (m) +1 … xlj … xlk … xln 

… … … … … … … … … … … … … … … … … 
(m) a(m)  Cm xm 0 0 … 0 … 1 xm, m +1 … xmj … xmk … xmn 

M +1 Zj-Cj Z0 0 0 … 0 … 0 Zm +1-
Cm +1 

… Zj-
Cj 

… Zk-
Ck 

… Zn-
Cn 

  
  
In the column C  of basis are the coefficients of linear function 

corresponding to the vectors of the basis. In the column 0A  – initial basic plan 

0X . It is as a result of calculations produced optimum plan and columns jA  

( )1,2, ,j n=   are coefficients of the decomposition j-th vector on the basis 
described in the future through jX . 

In (m+1)-th row in the column 0A  recorded values of linear function 

( )0Z X . It makes the results the basic plan, and columns jA  – value 

assessments j jZ C− . 

Function ( )0Z X  and ( )j jZ Z= X  find substituting a linear function of 

the key components of the plan, respectively, and the coefficients of the 
expansion j-th vector of vectors, basis, so those values in table 1 can be obtained 
as the dot product: 

( )0 0
1

m

б i i
i

Z C x
=

= =∑X C X ,      (3.1) 

1

m

j б j i ij
i

Z C x
=

= =∑C X , 1,2, ,j n=  ,     (3.2) 
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where jC  – coefficients of linear function corresponding to the vectors of the 
basis. 
  

Example 3.1 
 

We shall make the initial Simplex table for tasks in example 2. 
Vectors 4A , 5A  and 6A , form a single submatrix and form the basis of 

the initial plan, the free unknown are zero. The result is an initial basic plan:  
  

( ) ( )1
0 0; 0; 0; 1; 2; 5=X . 

  
Let's calculate the value of ( )1m +  row: 

 ( )0 0 0бZ = =X C X ; 
 

1 1 0бZ = =C X ;    2 2 0бZ = =C X ;    3 3 0бZ = =C X ; 
 

1 1 0 1 1Z C− = − = − ;    2 2 0 1 1Z C− = + = ;    3 3 0 3 3Z C− = + = . 
 

Table 2 
 

i Basis c 
basis 

a0  C1= 1 c2= -1 C3= -3 C4= 0 C5= 0 c6= 0 

a1  a2  a3  a4  a5  a6  

1 a4  0 1 2 -1 1 1 0 0 

2 a5  0 2 -4 2 -1 0 1 0 
3 a6  0 5 3 0 1 0 0 1 

m +1 Zj-Cj 0 -1 1 3 0 0 0 

  
  
3.2 Search allowing the simplex table 
  
After the table 1 analyses ( )1m +  string. If for all 1,2, ,j n=   value 

assessments j jZ C−  less than zero, the basic plan 0X  is optimal and minimum 

value of the linear function is ( )0Z X . Otherwise, you can include the basis 
vector corresponding to a positive assessment, build a basic plan, which 
corresponds to a lower value of the linear function. 

If the number of positive evaluations, the basis should be included in the 
vector, which corresponds to the ( )0max  j j jZ Cθ −  because the decreasing 

value of the objective function is the value of ( )0 j j jZ Cθ − . Maximum is taken 
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on the j for which the score is positive and 0 jθ  to be determined for each j. This 

allows for this step, go to the top of the decisions related to the polyhedron the 
greatest decrease in linear functions. 

Let the basis is included k-th vector, then excluded from the basis of the 
vector, which corresponds to the [ ]0 mink i ikx xθ =  ( )0ikx > . If this condition 
is fulfilled for the vector basis lA . Element lkx  is called an allowand and 
column and line, at the intersection of which it is located, is directing. New 
reference plan represents the basis consisting of 1 1 1, , , , , ,l k l m− +A A A A A  . 

 

3.3. The transition to the new reference plan 
  
To calculate the new basic plan and test it for continuity, you must 

distribute all vectors vectors new basis. The new basic plan and expansion of 
vectors in the basis when 1,2, ,j n=   is defined by the equations: 

( )

( )

ij
ij ij

lk

ij
ij

lk

x
x x i l

x
x

x i j
x


′ = − ≠



 ′ = =

,       (3.3) 

  
which are the formulas of Gauss-Jordan total exclusions. 

So to get the rates of decomposition of vectors 0A , jA  ( )1,2, ,j n=   

on the new basis vectors, value assessments of new reference plan and values of 
linear function, you need to divide all the elements of the guide lines to allow 
entry and by producing a full conversion of the Gauss-Jordan method, using the 
converted string to compose a new Simplex table. 

 

3.4 Change the end Conditions 
  
If a simplex table ( )1m +  row of all ratings ( ) 0j jZ C− ≤ , the resulting 

plan is optimal. If there are positive, then you look for the next basic plan. 
If at least one positive assessment of the coefficients of the expansion 

ijx  of the vector, the nonlinear function is not limited to the polyhedron 

solutions. The linear function can be arbitrarily small value. 
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The process continues until the optimal plan, or to establish an linear 
function problem. If estimates of optimal plan evaluation, only the zero 
reference vectors, it talks about the uniqueness of the optimal plan. 

If the system limitations of linear programming task contains a single 
basis, then the challenge should be approximately iterations. 

  
Example 3.2 

 
Will continue the consideration of the tasks of the example 3.1. 
In ( )1m +  row of the original table (table 2), there are two positive 

reviews. They correspond to vectors 2A  and 3A . This means that the original 
plan is not optimal and it could be improved by incorporating in the basis vector 
by ( )0max  0j j jZ Cθ − >  . Among the coefficients of expansion of vectors 

2A  and 3A  on the basis there are positive, so 02 0θ >  and 03 0θ >  which 
exclude from the basis of vectors exist. Find these values: 

  
02 2 2θ = ; 

 
( )03 min 1 1, 5 1 1θ = = ; 

 
( )02 2 2 1 1 1Z Cθ − = ⋅ = ; 

 
( )03 3 3 1 3 3Z Cθ − = ⋅ = ; 

 
( )max 1, 3 3= . 

 
Thus allowing the element is the number of 1 standing in the first row 

and third column. This means that vector 3A  include in the basis, and the vector 
4A  deleted. 

Make second Simplex table (table 3).  
            Table 3  
 

i Basis c 
basis 

a0  C1= 1 c2= -1 C3= -3 C4= 0 C5= 0 c6= 0 

a1  a2  a3  a4  a5  a6  

1 a3  -3 1 2 -1 1 1 0 0 

2 a5  0 3 -2 1 0 1 1 0 

3 a6  0 4 1 1 0 -1 0 1 
m +1 Zj-Cj -3 -7 4 0 -3 0 0 

 



40 
 

Let us count the new rail line. The old items guide lines divide the allow 
entry (1) and with the help of the received string will make one conversion 
method of total exclusions, i.e., add second and subtract from third. 

The values in the ( )1m +  row are similar to the example 3.1. 

In table 3 is the second basic plan ( ) ( )2
0 0; 0; 1; 0; 3; 4=X , which 

corresponds to the value of the linear function ( )( )2
0 3Z = −X . The second plan is 

not optimal, because the score in ( )1m +  row is ( )2 2 4 0Z C− = > . 
Define ( )02 min 3 1, 4 1 3θ = = . The number of 1, standing at the 

intersection of the second row and second column is an allow element vector 
5A  excluded from the baseline. Make up a third of the simplex table (table 4). 

 
Table 4 

i Basis c 
basis 

a0  C1= 1 c2= -1 C3= -3 C4= 0 C5= 0 c6= 0 

            
a1  a2  a3  a4  a5  a6  

1 a3  -3 4 0 0 1 2 1 0 
2 a2  -1 3 -2 1 0 1 1 0 

3 a6  0 1 3 0 0 -2 -1 1 

m +1 Zj-Cj -15 1 0 0 -7 -4 0 

  
In table 4 is the third basic plan ( ) ( )3

0 0 3; 4; 0; 0; 1=X , which 

corresponds to the value of the linear function ( )( )3
0 15Z = −X . The third plan is 

the same is not optimal, because ( )1 1 1 0Z C− = > . Is the next simplex table 5. 
 

Table 5  
 

i Basis c 
basis 

a0  C1= 1 c2= -1 C3= -3 C4= 0 C5= 0 c6= 0 

a1  a2  a3  a4  a5  a6  

1 a3  -3 4 0 0 1 2 1 0 
2 a2  -1 

 

0 1 0 
   

3 a1  1 
 

1 0 0 
   

m +1 Zj-Cj 
 

0 0 0 
   

In table 5, it can be concluded that the plan 
  

( ) ( )4
0 1 3; 11 3; 4; 0; 0; 0=X  
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is the best and only. The minimum value of a linear function is at the point 
and equal . ( )4

0X  и равно 46 3− . 
  

4. Dual linear programming problems 
 
4.1. Direct and dual problem 
  
With each task is closely related to other linear programming linear task, 

called a dual or less in relation to the reference or direct [1, 5]. Will define the 
dual tasks in relation to the original problem of linear programming to find the 
maximum value of the function 

  

1 1 2 2Z c x c x c xn n= + + +        (4.1)  
  

with restrictions 
 

11 1 12 2 1 1

21 1 22 2 2 2

1 1 2 2

...

n n

n n

m m mn n m

a x a x a x b
a x a x a x b

a x a x a x b

+ + + ≤
 + + + ≤


 + + + ≤







     (4.2) 

( )1,2, ,j n=  .        (4.3) 
 

Task of finding the minimum value of the function 
  

           '
1 1 2 2 m mZ b x b x b x= + + +        (4.4) 

  
with restrictions 
  

 

11 1 21 2 1 1

12 1 22 2 2 2

1 1 2 2

...

m m

m m

n n mn m m

a y a y a y c
a y a y a y c

a y a y a y c

+ + + ≤
 + + + ≤


 + + + ≤







,      (4.5) 

 0jy ≥  ( )1,2, ,i m=  .        (4.6) 
 
is called the dual task (4.1) and (4.3). 

Tasks (4.1) and (4.3) and (4.4) to (4.6) form a couple of tasks, called 
linear programming dual pair. 
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The comparison of two targets shows that the dual problem in relation to 
the reference shall be drawn up according to the following rules: 

  
1. The target function has the opposite type of extremum. 
  
2. the matrix of coefficients of the dual tasks resulting from the transposition 
of the matrix of coefficients of the original problem. 
  
3. The number of variables in the dual task (4.4) to (4.6) is equal to the number 
of relationships in the system (4.2) the original problem and the number of 
constraints in the system (4.5)-the number of variables in the original problem. 
  
4. Coefficients of the unknowns in the objective function (4.4) the dual tasks 
are free members into the system (4.2), and the right parts in the system (4.5) 
the dual objectives-unidentified factors in the objective function (4.1). 
  

Many of the original linear programming shall be drawn up in the form 
of a source or of dubious tasks, so it makes sense to talk about a pair of dual 
linear programming tasks.  
           
Between optimal plans of couples of ambiguous objectives there is a link that 
installs a duality theorem [5]: 
           
If a pair of dual tasks, one has the best plan, and the other has a solution, with 
extreme values of linear functions is the ratio 
  
                            'min maxZ Z= . 
  
          If a linear function is one of the objectives is not limited to, the other has 
no solution. 
  

  
4.2 Model dual tasks 
  
There are asymmetric and symmetric dual task. The asymmetrical dual 

tasks of system constraints of the original problem is given in the form of 
equations, and the dual-in the form of inequalities, and the variables may be 
negative. In the symmetric constraint system tasks as source and dual tasks set 
inequalities, with the dual variables are neotricatel′nosti condition. 



43 
 

Mathematical model of a pair of twin tasks can have one of the following types. 
 

Asymmetrical task 

  
 

The initial problem      Dual problem 
   
1. minZ CX= ;                                                         maxZ YB′ = ;           
       AX B= ;                                                                   YA C≤ . 

   0X ≥ .  
    
2. maxZ CX= ;                                                            minZ YB′ = ; 
        AX B= ;                                                                  YA C≥ . 
           0X ≥ . 
              
 

Symmetric problem 
  

The initial problem      Dual problem 
 3. minZ CX= ;                                                             maxZ YB′ = ;           
        AX B≥ ;                                                               YA C≤ ; 

      0X ≥ .                                                        0Y ≥ . 
    
4. maxZ CX= ;                                                             minZ YB′ = ; 
        AX B≤ ;                                                               YA C≥ ; 
          0X ≥ .                                                                 0Y ≥ . 
 
 
Here  

1 2( , ,..., )T
nX x x x= – the matrix-column; 

1 2( , ,..., )nC c c c= – the matrix-a string; 

1 2( , ,..., )T
mB b b b= – matrix column; 

1 2( , ,..., )mY y y y= – the string matrix; 
( )ij mxnA a= – the matrix of coefficients of the system constraints. 

  
Finally, here is the following theorem, which is used in the evaluation of 

the duality of linear programming problems. 
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The theorem. If the substitution component of the optimal plan in restrictions of 
the original problem i-th constraint applies to inequality, the i-th component of 
the optimal program of the dual problem is zero. 
If the i-th component of the optimal program of the dual problem is positive, the 
i-th constraint is satisfied its initial problem the best solution as a strict 
equality. 
 

  
5. Description of the laboratory complex 
 The complex is a software module written in Borland C++ Builder 3. 

The complex is designed to solve the problems of linear programming and 
carrying out laboratory work on studying of the simplex method for solving the 
problem. 

Programmatic form consists of four pages: "model", "table", "Results" 
and "Task". 

  
5.1 Page "model" 
  

"Model" page is for task models in source form. 
Canonicalization is required. Conversion routine tasks 
implemented programmatically. The page includes four areas for 
input and two buttons (fig. 1). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure. 1. The page “Model”  
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In region 1 are the values of the coefficients iC  the target of linear 
function (string matrix C ). 

 
Region 2 is a matrix A task constraints. 
 
In region 3, you specify the type of limitations for each row of the 

matrix A . The value of each field can be "==" for type constraints as well, "> 
=" – type restrictions for greater-or-equal to , and < = "-for less-or-equal in any 
order. You can set the keyboard type or cycle through the values by double-
clicking the left mouse button. 

Region 4 – vector 0A  of free members enforcement tasks. 
 
All numeric data is entered in floating point format. Accuracy of 

calculations 610− . Writing fractions are not allowed. The correctness of the 
input is checked automatically. 

The number of model variables ( )n  can be changed within the range of 

2 to 100, the number of restrictions ( )m . – from 1 to 100. Introduced the model 
can be saved to disk in a specific format, and then use the model by entering 
them from the file. These operations are performed using the menu. 

By clicking the "result" shows the results of the task, when correctly its 
performances (go to the page "Results"). 

When you click the "task" table is converted to a simplex in canonical 
form is determined by the initial defensive plan, and presented a simplex table 
(go to the page "table"). 
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5.2 Page “Table” 
  
On this page (fig. 2) is a simplex table, a brief comment and three 

buttons. 

  
Figure. 2. Page “Table” 

  
This page shows a step-by-step solution of the problem. Each step 

consists of defining an element and conversion tables. To do this on the page 
have corresponding buttons. 

When you click the "Allow" element is defined in the current table and 
allow entry is highlighted. 

By clicking "recalculate the table recalculation Simplex table 
corresponding to any element. The table contains all values of TRIMs, that does 
not affect the accuracy of the final result. In the final step, the message is 
displayed as a result of solving the problem. 

The "back" button returns to the previous page. To calculate the final 
result at any step, you can navigate to the result page. 

Result button duplicates the corresponding button on the previous page. 
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5.3 Page “Result”  
  
Results page (Figure 3) contains the text wording generalized linear 

programming tasks in accordance with the model specified on the "model", and 
the results of the decision: 

-         the minimum value of the linear function, if it exists; 

-         the optimal values of variables. 

As a model, you can save the result as text to disk and read from the disk 
stored results using the menu. 

 
Figure. 3. Page “Result” 

  
 

5.4 The page “Task” 
  
This page (Figure 4) is only used when you run the laboratory work. On 

the Task, you can view the text of the task, in accordance with the specified 
option. The library includes three levels of 10 options for each. 
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Figure. 4. The page “Task” 

  
5.5 Main menu 

  
The menu contains four items:  
-         the "Model" is designed for operations with task models; 
-the "Result" is designed to perform operations on the results of tasks; 
-         by selecting "exit" to exit the program; 
-Click "?" displays help. 
The sub-item "Model-> New" clears the input fields and navigates to a 

page "model". 
Subparagraph "Model-> Open" can be considered a model from disk 

that was saved using the sub-item "Model-> save. Model files have the format 
"*.mdl". Change the content model file will cause an error in the program.  

The sub-item "Result-> open" displays the result on the page the text 
stored in text form. You may open any text file and modify it. 

Subparagraph "Result-> Calculate" is similar to the corresponding 
button on the page. 

The sub-item "Result-> Check" is used only when you run the lab work 
and is intended for checking of models of the optimal value of the objective 
function. 
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5.6 How to solve a problem using the software module 
  
To solve the problem, you must perform the following steps. 
  
-         Run the file Lin_Prog.exe 
-         Go to the "model" 
-         Set the number of variables in the objective function 
-         Enter the objective function coefficients vector 
-         Set the number of task constraints 
-         Enter the constraint matrix 
-         Specify the type of the constraint for each row of the matrix 

constraints 
-         Introduce column constraint system free members 
-         Check the correctness of 
-         Get result in automatic or step mode 
-         Store the result in a file 

  
When you enter a model from a file, the number of variables and 

constraints are placed automatically. 
  

The order of execution of work 
  

1. The software system on the example of verification (test) 
task. 

  
2. Confirm using the complex decision of linear programming 

tasks selected previously. 
  

3. Get a job teaching at the three levels. 
  

4. Build a model of the dual tasks and get solutions. 
  

5. Make a report stating the results of the objectives justifying 
the construction of models. 
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