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What is Optimization? 

Find the minimum or maximum of an objective function given a 
set of constraints: 
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Why Do We Care? 

Linear Classification      Maximum Likelihood 
 
 
 
 
 
 
K-Means 
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Prefer Convex Problems 

Local (non global) minima and maxima: 
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Convex Functions and Sets 

5 



Important Convex Functions 
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Convex Optimization Problem 
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Lagrangian Dual 
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First Order Methods: 
       Gradient Descent 

Newton’s Method 
 Introduction to Convex Optimization for Machine Learning, John Duchi, UC  Berkeley, Tutorial, 2009 

Subgradient Descent 
 Introduction to Convex Optimization for Machine Learning, John Duchi, UC  Berkeley, Tutorial, 2009 

Stochastic Gradient Descent 
 Stochastic Optimization for Machine Learning, Nathan Srebro and Ambuj  Tewari, presented at ICML'10 

Trust Regions 
 Trust Region Newton method for large-scale logistic regression, C.-J. Lin, R. C.  Weng, 
 and S. S. Keerthi, Journal of Machine Learning Research, 2008 

Dual Coordinate Descent 
 Dual Coordinate Descent Methods for logistic regression and maximum entropy 
 models, H.-F. Yu, F.-L. Huang, and C.-J. Lin, . Machine Learning Journal, 2011 

Linear Classification 
 Recent Advances of Large-scale linear classification, G.-X. Yuan, C.-H. Ho, and C.-J. 
 Lin. Proceedings of the IEEE, 100(2012) 
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Gradient Descent 
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Single Step Illustration 
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Full Gradient Descent Illustration 
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Выступающий
Заметки для презентации
Elipses are level curves (function is quadratic). If we start on ---- line –gradient goes towards minimum (middle), if not, bounce back and forth
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Newton’s Method 

Inverse Hessian Gradient 
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Выступающий
Заметки для презентации
Need Hessian to be invertible --- positive definite 



Newton’s Method Picture 

17 



First Order Methods: 
       Gradient Descent 

Newton’s Method 
 Introduction to Convex Optimization for Machine Learning, John Duchi, UC  Berkeley, Tutorial, 2009 

Subgradient Descent 
 Introduction to Convex Optimization for Machine Learning, John Duchi, UC  Berkeley, Tutorial, 2009 

Stochastic Gradient Descent 
 Stochastic Optimization for Machine Learning, Nathan Srebro and Ambuj  Tewari, presented at ICML'10 

Trust Regions 
 Trust Region Newton method for large-scale logistic regression, C.-J. Lin, R. C.  Weng, 
 and S. S. Keerthi, Journal of Machine Learning Research, 2008 

Dual Coordinate Descent 
 Dual Coordinate Descent Methods for logistic regression and maximum entropy 
 models, H.-F. Yu, F.-L. Huang, and C.-J. Lin, . Machine Learning Journal, 2011 

Linear Classification 
 Recent Advances of Large-scale linear classification, G.-X. Yuan, C.-H. Ho, and C.-J. 
 Lin. Proceedings of the IEEE, 100(2012) 

18 



First Order Methods: 
       Gradient Descent 

Newton’s Method 
 Introduction to Convex Optimization for Machine Learning, John Duchi, UC  Berkeley, Tutorial, 2009 

Subgradient Descent 
 Introduction to Convex Optimization for Machine Learning, John Duchi, UC  Berkeley, Tutorial, 2009 

Stochastic Gradient Descent 
 Stochastic Optimization for Machine Learning, Nathan Srebro and Ambuj  Tewari, presented at ICML'10 

Trust Regions 
 Trust Region Newton method for large-scale logistic regression, C.-J. Lin, R. C.  Weng, 
 and S. S. Keerthi, Journal of Machine Learning Research, 2008 

Dual Coordinate Descent 
 Dual Coordinate Descent Methods for logistic regression and maximum entropy 
 models, H.-F. Yu, F.-L. Huang, and C.-J. Lin, . Machine Learning Journal, 2011 

Linear Classification 
 Recent Advances of Large-scale linear classification, G.-X. Yuan, C.-H. Ho, and C.-J. 
 Lin. Proceedings of the IEEE, 100(2012) 

19 



Subgradient Descent Motivation 
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Subgradient Descent – Algorithm 
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Выступающий
Заметки для презентации
A brief introduction to Stochastic gradient descent



Online learning and optimization 

• Goal of machine learning : 
– Minimize expected loss 

 
given samples 

 
• This is Stochastic Optimization 

– Assume loss function is convex 
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Batch (sub)gradient descent for ML 

• Process all examples together in each step 
 
 
 
 

• Entire training set examined at each step 
• Very slow when n is very large 
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Stochastic (sub)gradient descent 

• “Optimize” one example at a time 
• Choose examples randomly (or reorder and 

choose in order) 
– Learning representative of example distribution 
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Stochastic (sub)gradient descent 

 
 
 
 

• Equivalent to online learning (the weight 
vector w changes with every example) 

• Convergence guaranteed for convex functions 
(to local minimum) 
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Hybrid! 

• Stochastic – 1 example per iteration 
• Batch – All the examples! 
• Sample Average Approximation (SAA):  

– Sample m examples at each step and perform SGD 
on them 

• Allows for parallelization, but choice of m 
based on heuristics 
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SGD - Issues 

• Convergence very sensitive to learning rate  
(   ) (oscillations near solution due to probabilistic 
nature of sampling) 
– Might need to decrease with time to ensure the 

algorithm converges eventually 

• Basically – SGD good for machine learning 
with large data sets! 
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Problem Formulation 
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New Points 
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Limited Memory Quasi-Newton Methods 
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Limited Memory BFGS 
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Выступающий
Заметки для презентации
Paper presents the formulation of the dual coordinate descent for Logistic Regression Learning



Coordinate descent 

• Minimize along each coordinate direction in 
turn. Repeat till minimum is found 
– One complete cycle of coordinate descent is the 

same as gradient descent 
• In some cases, analytical expressions 

available: 
– Example: Dual form of SVM! 

• Otherwise, numerical methods needed for 
each iteration 
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Dual coordinate descent 

• Coordinate descent applied to the dual 
problem 

• Commonly used to solve the dual problem for 
SVMs 
– Allows for application of the Kernel trick 
– Coordinate descent for optimization 

• In this paper: Dual logistic regression and 
optimization using coordinate descent 
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Dual form of SVM 

• SVM 
 
 

• Dual form 
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Dual form of LR 

• LR: 
 
 

• Dual form (we let                         ) 
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Coordinate descent for dual LR 

 
 
 

• Along each coordinate direction: 
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Coordinate descent for dual LR 

 
 

• No analytical expression available 
– Use numerical optimization (Newton’s 

method/bisection method/BFGS/…)to iterate 
along each direction 

• Beware of log! 
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Выступающий
Заметки для презентации
Beware of logarithmic issues



Coordinate descent for dual ME 

• Maximum Entropy (ME) is extension of LR to 
multi-class problems 
– In each iteartion, solve in two levels: 

• Outer level – Consider block of variables at a time 
– Each block has all labels and one example 

• Inner level – Subproblem solved by dual coordinate 
descent 

• Can also be solved similar to online CRF 
(exponentiated gradient methods) 
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Выступающий
Заметки для презентации
Paper presents survey of recent linear methods (most of which we have covered) and compares performance to nonlinear classifiers



Large scale linear classification 

• NLP (usually) has large number of features, 
examples 
 

• Nonlinear classifiers (including kernel 
methods) more accurate, but slow 
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Large scale linear classification 

• Linear classifiers less accurate, but at least an 
order of magnitude faster 
– Loss in accuracy lower with increase in number of 

examples 

• Speed usually dependent on more than 
algorithm order 
– Memory/disk capacity 
– Parallelizability 
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Large scale linear classification 

• Choice of optimization method depends on: 
– Data property 

• Number of examples, features 
• Sparsity 

– Formulation of problem 
• Differentiability 
• Convergence properties 

– Primal vs dual 
– Low order vs high order methods 
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Comparison of performance 

• Performance gap goes down with increase in 
number of features 

• Training, testing time for linear classifiers is 
much faster 
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Выступающий
Заметки для презентации
Liblinear vs libsvm
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