METHODS OF
OPTIMIZATION

Lecture 1: Linear Programming




Learning objectives:

The learning objectives of this chapter are

* Introduction to Optimization Techniques.
* Explaining some optimization techniques.
* Introduction to Linear Programming.

* How to solve Linear-programming problems by graphical
methods, problems with n — variable and how to overcome
that.




Introduction

What is optimization?

* “To optimize is to make as perfect, effective, or functional as
possible” ... Merriam-Webster dictionary.

* “In engineering domain, optimization is a collection of methods and
techniques to design and make use of engineering systems as
perfectly as possible with respect to specific parameters”

* “In industrial engineering, one typical optimization problem is in
inventory control. For this problem, we want to reduce the costs
associated with item stocking and handling in a warehouse”




Optimization problem:

* Maximizing or minimizing some function relative to some set;
often representing a range of choices available in a certain
situation. The function allows comparison of the different
choices for determining which might be “best.”

* Optimization requires the representation of the problem in a
mathematical model where the decision variables are the
parameters of the problem.

Common applications: Minimal cost, maximal profit, minimal
error, optimal design, optimal management, and variation
principles.




Mathematical Optimization:

* A mathematical optimization problem is one in which some
function is either maximized or minimized relative to a given
set of alternatives. The function to be minimized or maximized
is called the objective function and the set of alternatives is
called the feasible region

Linear programming:
* Linear programming is the name of a branch of applied

mathematics that deals with solving optimization problems of
a particular form.

* Linear programming problems consist of a linear cost function
(consisting of a certain number of variables), which is to be
minimized or maximized subject to a certain number of
constraints.




History:

 Linear programming is a relatively young mathematical
discipline dating from the invention of the simplex method by
G. B. Dantzig in 1947.

» Historically, development in linear programming is driven by
its applications in economics and management.

» Dantzig initially developed the simplex method to solve U.S.
Air Force planning problems, and planning and scheduling
problems still dominate the applications of linear
programming




Terminology:

* |In general case linear programming problem can be
formulated as following:

Minimize C1X, + Ca%; + -+ Cpxy
Subject to @y Xy + QX + o+ AypXy, = by

tl-uxl + ﬂ'EEIE + nea + ﬂznxﬂ ":_: b;

* noptimization (decision) variables x4, x5, ... ... Xy
* m linear inequality constraints.




Every linear programming problem falls into one of three
categories:

1. Infeasible. A linear programming problem is infeasible if a
feasible solution to the problem does not exist; that is, there is
no vector x for which all the constraints of the problem are
satisfied.

2. Unbounded. A linear programming problem is unbounded if
the constraints do not sufficiently restrain the cost function so
that for any given feasible solution, another feasible solution can
be found that makes a further improvement to the cost
function.

3. Has an optimal solution. Linear programming problems that
are not infeasible or unbounded have an optimal solution; that
is, the cost function has a unigue minimum (or maximum) cost
function value. This does not mean that the values of the
variables that yield that optimal solution are unique, however.




Application Examples of Linear
Programming :

1. A farmer has 240 acres of land to plant. He needs to decide
how many acres of corn to plant & how many of oats. He can
make 40S per acres profit for corn & 305 per acres for oats.
However corn takes 2 hours of labor per acre to harvest while
oats takes 1 hour per acre. He has only 320 labors he can invest.
To maximize his profit how many acres of corn & oats should he
plant.




Solution: Let x & y be number of acres of corn & oats
respectively. Our objective in this problem is to maximize the
profit P.

Therefore, P= 40x + 30y =2 max

Constraints: x20;y =0; ......... as land can't be negative

Another constraint we have how much land we can allot; we
have 240 acres of total land. So, x +y < 240;

Now, we have constraints on labor also. We have 320 hours of
labor to spend. So it can be represented as 2x +y < 320;




Hence, the linear equation of problem can be describes as
below:

Maximize: P=40x+ 30y
Subject to: X +vy < 240;
2x +y < 320;
Where with respect to problem x >0; y 20;




2.There are two kinds of feeds: feed | & feed Il, containing 3
different kinds of vital nutrients N1, N2 & N3. The table includes
the number of nutritional units per kilo for each feed & a
required minimum of nutrients

Nutrients | Requirements min. of No. Of nutritional units per kilo for
Nutrients each feed
| ]
Ny 8 3 1
N, 8 1 2
N; 12 1 6

1 Kilo of the 15t nutrition cost 4 rubles & 1 kilo of the 2"¢
nutrition costs 6. It is necessary to combine daily food
allowances having the smallest possible cost & satisfy
these nutritional requirements




Solution:

Let x & y be the quantities of feed | & II. The objective
function is to minimize the cost while satisfying the
nutritional requirements.

Therefore, Z (X)= 4x+ 6y = min

Constraints: From given table, daily food allowance
consists of (3x+y) units of nutrients of N1, (x+2y) units of
nutrients of N2 & (x+6y) units of nutrients of N3. The
nutrients N1, N2 & N3 must not be smaller than 9,8 & 12
correspondingly. Hence there is subject to constraints:
3x+y =9, x+y=8 & x+6y=>12.




Hence, the linear equation of problem can be describes as
below:

Minimize Z (X)= 4x+ 6y = min
Subject to: 3x+y =9

X+y=> 8

x+6y=>12

Where with respect to problem: x>0, y= 0.




Standard form of Linear
Programming problem:

We say that a linear program is in standard form if the following
are all true:

* 1. Non-negativity constraints for all variables.

* 2. All remaining constraints are expressed as equality
constraints.

* 3. The right hand side vector, b, is non-negative.
The given LP not in standard form:
Maximize: £=3x,+2x, — x5+ x4
Subjectto: x4+ 2x, + x; — x, 55 .....not equality
—2x, — 4x, + x5 + x, = -1... not equality and negative RHS

x,20,% 20 .cciiviieenn. X3 is required to be non-positive.

x5 and x, may be positive or negative.




Why do we need to know how to convert a linear program to
standard form? What’s so special about standard form?

* The main reason that we care about standard form is that this
form is the starting point for the simplex method, which is the
primary method for solving linear programs.

* In addition, it is good practice for students to think about
transformations, which is one of the key techniques used in
mathematical modeling.




Steps to follow to convert Linear-
programming problem to standard form:
Step 1:

If the objective function is minimization, just “negate” the
objective function.

For example. “minimize —a +b subjecttoa-b<2,a3,b>0"is
equivalent to “maximize a-b subjecttoa-b<2,a,b>0".




Step 2:

Converting “<” constraint into standard form. Consider a simple
inequality constraint is x, + 2x, + X, = x, €5,

To convert a “<” constraint to equality, add a slack variable. In this
case, the inequality constraint becomes the equality constraint:

I1_+2I3+ xg-:[.'4+51:5.

We also require that the slack variable is non-negative. That is s, 20.

Note: s1 is called a slack variable, which measures the amount of
“unused resource.”




Step 3:

Converting a “2” constraint into standard form, and converting
inequalities with a negative RHS. Consider the constraint

—2% = 4x, + x5+ x,5-1

First we have to multiply the inequality by -1 in order to obtain a
positive RHS. Then we get

2, +4x, —x;—x, 21

Then we add a surplus variable and get

2%, + 4%, =Xy — X4 =5, =1

5, Is called a surplus variable, which measures the amount by which
the LHS exceeds the RHS




Step 4:

Getting Rid of Negative Variables. We have to transform the
constraint: x, < 0into standard form.

Let y,=-x,. Then y, 2 0. And we substitute <y, for x, wherever x,
appears in the LP.




Step 5:

Getting Rid of Variables that are Unconstrained in Sign. That Is, it can

be positive or negative. Such variables are also called as free
Variables. We replace a free variable by the difference of two non-
negative variables. For example, we replace X3 by Y3 = Wa, and

require Y3 and Wy t0 be non-negative. And Y3 20 W, 20,




Examples:

1.Convert the Linear-programming problem to the
standard form

Maximize: £=3x +2x, — x5+ x4
Subject to: X+ 2%, + X3 —x. £5;
—2.1:1 - 'q.'IE + :':3 + :':4 5'1;

X220 %, 20;




Solution:

Maximize: =3 =2V, =y +wy +9,-w,
Subject to: Xy =2V, 4 Va =Wy =Yg+ Wy +5,=5.
2 =4, = Vit Wy =Y tw-5=1

X 20;v,20;y,20;y,20,w; 20w, 20;5,20;5,20




2.Convert the Linear-programming problem to the
symmetrical form

Maximize: Z=4x,-5x,+ x5+ 2x,
Subject to: 3x, —2x, 4+ x;+4x,=6;
_TII + 1{]:':2 + 3.1:3 = 4‘:‘:4 :'E:

%20, j=1234.

Solution:

Let us transform the constraint system by Jordan-Gauss
Method & exclude pivot variables from the objective
function.

Note: Don’t choose the coefficient of the objective
function as pivot.







After that the problem can be written as the following
Z=-2x,—5x, +9 2 Max
Subject to the constraints: x; + x; + 2x, = 4;
-X, + X, — X, =-1;
x;20, j=1234.

As x, & x, variables are non-negative they can be eliminated and the
problem can be formulated in symmetrical form:

Z=-2x,-5x, +9 2> Max
subject to the constraints: x; + 2x, < 4;

x;20, j=14




Geometric Method

MANY PRACTICAL PROBLEMS involve maximizing or minimizing
a function subject to certain constraints.

For example, we may wish to maximize a profit function subject
to certain limitations on the amount of material and labor
available. Maximization or minimization problems that can be
formulated in terms of a linear objective function and
constraints in the form of linear inequalities are called linear
programming problems. In this chapter, we look at linear
programming problems involving two variables. These problems
are amenable to geometric analysis, and the method of solution
introduced here will shed much light on the basic nature of a
linear programming problem




Problem with two Variables:
Steps for Solving a Linear Programming Problem
1. Translate the problem into mathematical terms

2. Graph the feasible set described by the constraint inequalities
and finds the coordinates of all the corner points. If the region is
unbounded, determine whether it’s possible for the objective
function to obtain the desired extreme value. If not, write “no
solution”. Otherwise go to step 3.

3. Evaluate the objective function at each of the corner points.

4. Find the corner point that makes the objective function a
maximum (minimum). If there’s only one such corner point then
the value of the objective function at that point is the maximum
(minimum). If there are two adjacent corner points that
maximize (minimize) the objective function then the maximum
(minimum) value of the objective function occurs at any point
on the line segment joining the two corner points.




Examples:

1. Mike’s Famous Toy Trucks manufactures two kinds of toy
trucks—a standard model and a deluxe model. In the
manufacturing process each standard model requires 2 hours of
grinding and 2 hours of finishing, and each deluxe model needs 2
hours of grinding and 4 hours of finishing. The company has two
grinders and three finishers, each of whom works at most 40
hours per week. Each standard model toy truck brings a profit of
S3 and each deluxe model a profit of S4. Assuming that every
truck made will be sold, how many of each should be made to
maximize profits?




Solution:

First, we name the variables:

X = Number of standard models made

Y = Number of deluxe models made

The quantity to be maximized is the profit, which we denote by P:
P =S3x + S4y

This is the objective function. To manufacture one standard model requires
2 grinding hours and to make one deluxe model requires 2 grinding hours.
The number of grinding hours needed to manufacture x standard and y
deluxe modelsis 2x+ 2y

But the total amount of grinding time available is only 80 hours per week.
This means we have the constraint

2x + 2y < 80;
Similarly, for the finishing time we have the constraint

2x +4y <120




By simplifying each of these constraints and adding the non-negativity
constraintsx>0andy > 0.

we may list all the constraints for this problem:

X+y<40

X + 2y <60

x20

y= 0

Figure illustrates the set of feasible points, which is bounded.







The corner points of the set of feasible points are (0, 0) (0, 30)
(40, 0) (20, 20)

Table lists the corresponding values of the objective equation

Corner Points Value of Objective Function
P=253x+ 54y

(0, 0) P=0

(0, 30) P=5120

(40, 0) P=5120

(20, 20) P=3(20) + 4(20) = 5140

A maximum profit is obtained if 20 standard trucks and 20 deluxe
trucks are manufactured. The maximum profit is 5140.




2. Determine the graphical solution set for the following system
of linear inequalities:

2x + y=50;
x +2y =40
x20

y=20

Solution: The required solution set is unbounded region shown
in Figure







3. Determine graphically the solution set for the following system
of inequalities:

x +2y <10

5x +3y <30

x20

y= 0

Solution: The required solution set is shown in the following
figure:







The point P is found by solving the system of equations

5x+3y=30....(2)
Solving the first equation for x in terms of y gives
x=10-2y

Substituting this value of x into the second equation of the system gives




5(10-2y)+3y=30

50-10y+3y= 30

-7y =-20

So y= 2—70 Substituting this value of y into the expression

for x found earlier, we obtain

x=10- 2() =

30 20
Giving the point of intersection as (7 7)




Problem of n- Variables:

The graphical method is confined to two variables.
However, if the problem has standard form and satisfies
the condition n-r £ 2, where n is number of unknowns, & r
is rank of constraint vector system it can be solved. If
equations of a system are linear independent, then rank r
equals the number of equations m.




Example:

Solve the problem by graphical method.
Minimize Z = —x; — X, + X3+ 3%, + 7X¢
Subject to the constraints:
—X1 + X, + X3+ 2x, — 3x5 = 4
X1+ %, + 4x3+x,—8x5 =3
Xy + X3 —4x; = —4

x; 20,j=1,2,34,5




Solution:

Let’s check up whether the graphical method can be applied
to solve the problem. For what we find n-r=5-3=2. Hence,
method will be applied.

We can use Jordan-Gauss method to solve this problem &
pivot unknowns are excluded from the objective function.




Using the last part of table. We rewrite the linear programming problem as

Z = —x4 +4x5 + 22 > Min,
Subject to the constraints:

Xy, — X4 — 3xXg = —9
X3 +x4 —x5 =05
X1 — 2x4 — x5 = —8

x; =0,j=1,2,3,4,5.

As pivot unknowns are non-negative we can drop them and change the
signs ‘=" by ‘<’. And we will get the auxiliary problem with two variables

Z = —x4 + 4x5 + 22 > Min,
Subject to the constraints:

—x4 — 3x5 < —9
—2x, — x5 < —8

.X'J = O, j=4,5.
It can be solved by graphical method:







From fig, it’s seems object function does not influence the finding of
optimal solution. It must be taken into account for evaluating of the
objective function value. The optimal solution of the auxiliary problem X’'=

L n O] :is

—0-30= -9
+ [O-0O=5
4] =4

J=1&[0[]=6 ,X=(6,1)

The optimal solution of the initial problem is evaluated from the system of

constraints in solved form
0-0-30=-9
O+0-0=5
O-20-0=-8




From which x,, x5 & x4:
Xp=-9+ X, + 3x5 = -9+6+3=0
X3 = 5- x4+xz = 5-6+1=0

X1 =-8+2x, + x5=-8+12+1=5
Thus X=(5,0,0,6,1).

Therefore, Z=20 at X=(5,0,0,6,1).




Lecture 2: Simplex Method for
Maximization




Learning objectives:

The learning objectives of this chapter are

* The simplex Method Algorithm.
* The simplex Method - Basic & non-basic variables.

* Application of simplex method to maximization & how to
deal with minimization problems.




Introduction:

The geometric method of solving linear programming
problems presented before. The graphical method is
useful only for problems involving two decision variables
and relatively few problem constraints.

What happens when we need more decision variables and more
problem constraints?

We use an algebraic method called the simplex method,
which was developed by George B. DANTZIG (1914-
2005) in 1947 while on assignment with the U.S.
Department of the air force.




Converting a linear program to Standard
Form

Before the simplex algorithm can be applied, the linear program must be
converted into standard form where all the constraints are written as
equations (no inequalities) and all variables are nonnegative (no
unrestricted variables). This process of converting a linear program to its

standard form requires the addition of slack variable s which represents
i

the amount of the resource not used in the ith <constraint. Similarly,
>constraints can be converted into standard form by subtracting excess

variablee .
i

The standard form of any linear program can then be represented by the
following linear system with n variables (including decision, slack and excess

variables) and m constraints.




max z =
e+ ot ot CX

(or min) Y
st.oax+ ax+ .+ ax =b
a, X+ apX,+ .+ a,x =b,
.
a X+ a,x+ .+ ax =b

.20 (i=12,.,n)




Algorithm for the Simplex Method

The simplex algorithm, instead of evaluating all basic feasible solutions
(which can be prohibitive even for moderate-size problems), starts with a
basic feasible solution and moves through other basic feasible solutions
that successively improve the value of the objective function. The
algorithm terminates once the optimal value is reached. Below we
present a step-wise description of the simplex algorithm.

1. Convert the linear program into standard form.

2. Obtain a basic feasible solution from the standard form.

3. Determine if the basic feasible solution is optimal.

4. If the current basic feasible solution is not optimal, select a non-basic

variable that should become a basic variable and basic variable which

should become a non-basic variable to determine a new basic feasible
solution with an improved objective function value.

5. Use elementary row operations to solve for the new basic feasible
solution. Return to Step 3

Steps 1 and 2 of the algorithm have been previously discussed. Steps 3, 4
and 5 of the algorithm are best executed with the help of a tableau which
is simply a table with a particular format that shows a summary of the

key information regarding the linear program.




Basic and Non-basic Variables, and Basic Feasible
Solutions:

I[f we define,
a, aQp a, X bl
a a a X b
g =| 52 22 2n x= 2 | and b=| 2 ’
_Hml ﬂmi Hm.‘r:_ _xn_ _bn_

the constraints of the standard form of a linear program can
be simply represented by a system of simultaneous equations

Ax=D.




Basic variables are selected arbitrarily with the
restriction that there be as many basic variables as there
are equations. The remaining variables are non-basic
variables.

This system has two equations, we can select any
two of the four variables as basic variables. The
remaining two variables are then non-basic variables. A
solution found by setting the two non-basic variables
equal to 0 and solving for the two basic variables is a
basic solution. If a basic solution has no negative values,
it is a basic feasible solution.




Examples:

The Cannon Hill furniture Company produces tables and
chairs. Each table takes four hours of labor from the
carpentry department and two hours of labor from the
finishing department. Each chair requires three hours of
carpentry and one hour of finishing. During the current
week, 240 hours of carpentry time are available and 100
hours of finishing time. Each table produced gives a
profit of $70 and each chair a profit of $50. How many
chairs and tables should be made?




Resource Table s ( Chairs () Constraints
Carpentry 4 3 240
(hrs.)
Finishing
(hrs.) 2 1 100
Unit Profit S70 S50
Objective Function: P =70x, +50x,

4x, +3X, < 240

Carpentry Constraint:

Finishing Constraint:

Non-negativity conditions:

2%, +1x, <100

X;; %, =20




The first step of the simplex method, requires that each
inequality be converted into an equality.

The standardized form

4x, +3X, +5,+0s, =240
2X, +X,+0s, +5, =100
P—70x,—50x, -0s,-0s, =0

Notes: All the variables are nonnegative Such a solution is called feasible.




X, X, S; S, P RHS

4 3 1 0 0 240
2 1 0 1 0 100
-70 -50 0 0 1 0

The table represents the initial solution;

X, =0, X,=0, s,=240, s,=100, P=0

The slack variables S; and S, form the initial solution mix. The initial
solution assumes that all avaliable hours are unused. i.e. The slack
variables takes the largest possible values.




Select the pivot column (determine which variable to
enter into the solution mix). Choose the column with
the “most negative” element in the objective function
row.

X4 X, S, S, P RHS

4 3 1 0 0 240
2 1 0 1 0 100




Select the pivot row (determine which variable to
replace in the solution mix). Divide the last element
in each row by the corresponding element in the
pivot column. The pivot row is the row with the

smallest non-negative result

X, X, S, S, RHS

z 3 1 0 240

2 1 0 1 100
-70 | -50 0 0 0

240/4 =60
100/2 =50




After Solving,

X, X, S, S, RHS
2 3 1 0 240
1 1/2 0 1/2 50

-70 | -50 0 0 0




X, X, S, S, RHS
0 1 1 -2 40
1 1/2 0 1/2 50
0 -15 0 35 3500

4R, +R
70.R, +R,




Now repeat the steps, till we will have not
negative element in the last row.

Xy X, S, S, P RHS

40/1=40

1 1/2 0 1/2 0 50 50/0,5=100
0 -15 0 35 1 3500




X, X, S, S, RHS

1
0 1 1 -2 40 _E'RlJr R,
1 0 | -1/2 | 3/2 30 15.R +R,
0 0 15 5 4100

As the last row contains no negative numbers, this
solution gives the maximum value of P.




Result:

This simplex table represents the optimal solution
to the LP problem and is interpreted as:

x,=30, Xx,=40, s5=0, 5s,=0

and profit P=$4100.




Practice Examples:

1. Maximize: P = 3x + 4y
subjectto: x+y <4
2X+y <5

x=20,y=20
2. Maximize: P = 3x1 + 5x2

Subjectto: x1 <4
2x2 <12
3x1 + 2x2 <18
x120,x220




Notes:

1. When you solve a simplex problem & find that slack variable
takes on a positive value. Basically, it because of when one of
the slack variables takes on a positive value it means that in
maximizing our objective function we stayed "below” one of our
constraints.

For example, if u is the slack variable corresponding to a
constraint on labor hours used and the value of uis 12 in our
optimal solution, it means we have 12 remaining labor hours
available.

2. If the last row to the left of the vertical line in my simplex
table contains all zeros, then there are infinitely many solutions
to the optimization problem.




Minimization Problems:

* There are several ways to solve minimization problems. We
will see those in next chapter




Lecture 3: Minimization

Problems & Artificial Variable
Techniques.




Learning objectives:

The learning objectives of this chapter are

* The simplex Method Algorithm for minimization problems
* Overview of Artificial variable techniques for simplex Method.

* Application of simplex method to maximization &
minimization by using

The Big M Method or Method of Penalties.
The Two-phase Simplex Method.




Duality Theorem Concept:

Linear programming problems exist in pairs. That
is in linear programming problem, every
maximization problem is associated with a
minimization problem. Conversely, associated
with every minimization problem is a
maximization problem. Once we have a problem
with its objective function as maximization, we
can write by using duality relationship of linear
programming problems, its minimization version.
The original linear programming problem is
known as primal problem, and the derived
problem is known as dual problem




Thus, the dual problem uses exactly the same parameters
as the primal problem, but in different locations. To

highlight the comparison, now look at these same two
problems in matrix notation

Primal Problem - Dual Problem

w Z=cx Maximize W=yb
W Ax=b Subject to yA=c

x>0 And y=0

Primal problem Dual problem

a1 812 | G13
biy b | b3

| C11 C12 C13 ‘ ‘ a3 bz C13 |

A=

| a;; by C11

aiz by | 1




Minimization Problems

In Previous Examples, we applied the simplex method
only to linear programming problems in standard form
where the objective function was to be maximized. In
this section, we extend this procedure to linear
programming problems in which the objective
function is to be minimized.

A minimization problem is in standard form if the
objective function is:




max z =
cx it CXyt Lt CX

' nn
(ormin)
sthoaxt ax+ .t ax  =h
QX+ Ak, + .t a,x =D,
ot
a X+ ax,+ .+ ax =b

¥ 20 (i=12,.,1)




Von Neumann Duality Principle

“The objective value w of a minimization problem
in standard form has a minimum value if and only
if the objective value z of the dual maximization
problem has a maximum value. Moreover, the

minimum value of w is equal to the maximum
value of z. “




Solving a Minimization Problem

To solve this problem we use the following steps

Step 1. Use the coefficients and constants in the
problem constraints and the objective function to form a
matrix A with the coefficients of the objec-tive function
in the last row.

Step 2. Interchange the rows and columns of matrix A to
form the matrix AT, the transpose of A.

Step 3. Use the rows of A’ to form a maximization
problem with = problem constraints.




Example:

1. Minimize C=16x, +9x, + 21x,4
subject to X{ + X, +3%3 212
2X, + X, X3 2 16
X1, X5, X320




Solution:

ORIGINAL PROBLEM

Minimize C = 16x,; + 45X,

DUAL PROBLEM

Maximize P =50y, + 27y,

subject to 2x, +5x, > 50
X, + 3%, 2 27
Xy, X, 20

subjectto 2y, + y,=<16
5y, +3y, <45
Y1,¥22 0




X2
30+

204

10

20 (27,00 ™

(0,07

e B0M0

Corner Point

Corner Point

(X1, X5) C=16x,+45x%, |[(Yy Y,) P=50y,+27 vy,
(0,10) 450 (0,0) 0
(15,4) 420 (0,15) 405
(27,0) 432 (3,10) 420
(8,0) 400

Min C=420 at (15,4)

Max P=420 at (3,10)

15 %




For reasons that will become clear later, we will use the
variables x; and x, from the original problem as the slack
variables in the dual problem:

2y, +y,+5,=16 (initial system for the dual problem)

5y, +3y,+ 5,=45

-50y,-27y,+ P =0
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Since all numbers in the bottom row are nonnegative, the solution to the
dual problemis

v.=3, ¥,=10, s,=0, s,=0, P=420
Furthermore, examining the bot-tom row of the final simplex tableau, we
see the same optimal solution to the mini-mization problem that we
obtained directly by the geometric method:
MinC=420 at s,=15, s5,=4
This is not achieved with mistake.

An optimal solution to a minimization problem always can be obtained
from the bottom row of the final simplex tableau for the dual problem.

Note: In dual problem, we will choose slack Variable as solution.




Example 2: (For Practice)

Find the minimum value of
w = 3x, + 2x,
subject to the constraints
2x, + x, =6
x, T x, =4

where x, = 0 and x, = 0.




Example 3:

A small petroleum company owns two refineries.
Refinery 1 costs $20,000 per day to operate, and it can
produce 400 barrels of high-grade oil, 300 barrels of
medium-grade oil, and 200 barrels of low-grade oil each
day. Refinery 2 is newer and more modern. It costs
$25,000 per day to operate, and it can produce 300
barrels of high-grade oil, 400 barrels of medium-grade
oil, and 500 barrels of low-grade oil each day.

The company has orders totaling 25,000 barrels of high-
grade oil, 27,000 barrels of medium-grade oil, and
30,000 barrels of low-grade oil. How many days should it
run each refinery to minimize its costs and still refine
enough oil to meet its orders?




Artificial Variables Techniques

In order to use the simplex method, a BFS is needed. To remedy
the predicament, artificial variables are created. These variables
are fictitious and cannot have any physical meaning. The artificial
variable technique is a device to get the starting basic feasible
solution, so that simplex procedure may be adopted as usual until

the optimal solution is obtained. To solve such LPP there are two
methods.

e Ihe Big M Method or Method of Penalties.

e Ihe Two-phase Simplex Method.




Big M Method

1. Modify the constraints so that the RHS of each constraint
is nonnegative. Identify each constraint that is now an =or >
constraint.

2. Convert each inequality constraint to standard form (add
a slack variable for < constraints, add an excess variable for
> constraints).

3. For each > or = constraint, add artificial variables. Add sign
restrictiona > 0.

4. Let M derlote a very large positive number. Add (for each
artificial variable) Ma to min problem objective functions or
-Ma_to max problem'objective functions.

5. Sihce each artificial variable will be in the starting basis, all
artificial variables must be eliminated from row 0 before
beginning the simplex. Remembering M represents a very
large number, solve the transformed problem by the
simplex.




NOTE: If all artificial variables in the optimal solution equal
zero, the solution is optimal. If any artificial variables are
positive in the optimal solution, the problem is infeasible.

NOTE :
Why we have to subtract or add M from Objective function?

To prevent an artificial variable from becoming part of an optimal
solution to the original problem, a very large "penalty" is introduced
into the objective function. This penalty is created by choosing a
positive constant M so large that the artificial variable is forced to be
0 in any final optimal solution of the original problem.




Example:

Maximize
P=2x, +x,
subject to
x,+x,<10
Xt X,>2




We now express the linear programming problem as a system of
equations:

x,+x, ts, =10

Xyy Xy, 81,5, 0




It can be shown that a basic solution of a system is not feasible if
any of the variables (excluding P) are negative. Thus a surplus

variable is required to satisfy the nonnegative constraint.

An initial basic solution is found by setting the nonbasic variables
X and X> equal to 0. That iS, X = 0, Xa,= 0,, 51— ].0, S = '2, P=0.

This solution is not feasible because the surplus variable s, is
negative.




we introduce an artificial variable a into the equation

involving the surplus variable 52: s

X, +Xx, -5, ta; =2

To prevent an artificial variable from becoming part of an optimal
solution to the original problem, a very large “penalty” is
introduced into the objective function. This penalty is created by
choosing a positive constant M so large that the artificial variable is
forced to be 0 in any final optimal solution of the original problem.




We then add the term —Ma, to the objective function:
P=2x, +x, - Ma,
We now have a new problem, called the modified problem:
Maximize
P=2x,+x,-Ma,
subject to
X, t+x, +s, =10
X,tx, =5, ta,=2
X1y X2, 851,855, a; >0




The initial system for the modified problem is
X, +x; 5, =10
~X,tXx, =5, ta,=2
-2, -x;+Ma, +P=0
X1y Xpy 8,y 85 @y =0

We next write the augmented coefficient matrix for this system,
which we call the preliminary simplex tableau for the modified
problem.




1 1 1 0 O 0]10
-1 1 0 -1 1 0f2
-2 -1 0 0 M 1|0

To start the simplex process we require an initial simplex
tableau, described on the next slide. The preliminary simplex

tableau should either meet these requirements, or it needs to be
transformed into one that does.




For a system tableau to be considered an initial simplex
tableau, it must satisfy the following two requirements:

1. The requisite number of basic variables must be
selectable. Each basic variable must correspond to a
column in the tableau with exactly one nonzero element.
Different basic variables must have the nonzero entries in
different rows. The remaining variables are then selected
as non-basic variables.

2. The basic solution found by setting the non-basic
variables equal to zero is feasible.




The preliminary simplex tableau from our example
satisfies the first requirement, since s,, s,, and P can be
selected as basic variables according to the criterion stated.

However, it does not satisfy the second requirement since
the basic solution is not feasible (s, = -2.)

To use the simplex method, we must first use row
operations to transform the tableau into an equivalent
matrix that satisfies all initial simplex tableau
requirements. This transformation is not a pivot

operation.




If you inspect the preliminary tableau, you realize that the problem is that

s has a negative coefficient in its column. We need to replace s as a basic
2 2

variable by something else with a positive coefficient. We choose al.

We want to use a, as a basic variable instead of s,. We proceed
to eliminate M from the a, column using row operations:

1 1 10 0 0|10
(-M)R, + R, ->R, -1 1 0 -1 1 0[2
2 -10 0 M 1|0

1 1 1 0 00| 10
| -1 1 0-110 2
‘M-2 -M-1 0 M 0 1|2M




We now continue with the usual simplex process, using pivot

operations. When selecting the pivot columns, keep in mind that
M is unspecified, but we know it is a very large positive number.

1 1 1.0 00
-1 1 0 -110]| 2
‘M-2 -M-1 0 M 0 1|-2M

In this example, M — 2 and M are positive, and -M — 1 is
negative. The first pivot column is column 2.




If we pivot on the second row, second column, and then on the
first row, first column, we obtain:

X X § § a P
. 10+ L L ool
1] 2 2 2
2 o9 L1 gl

' 2 2 2

' 3 1 1

00 = = M-= 1|14
L 2 2 2

Since all the indicators in the last row are nonnegative, we have

the optimal solution:
MaxP=14atx,=4,x,=6,5,=0,5,=0,a,=0.




Example:

Use Big M method to solve the Turkey Feed Problem as given in
Table:

Turkey meal’s Data

Ingredient Compostitoin of each Pound Feed(Oz.) Minimum Monthly
Brand Feed 1 Brand Feed 2 Requirement Per
Turkey(Oz.)
A 5 10 90
B 4 3 48
C 1/2 0 3/2
Cost per pound Rs.2 Rs.3




From Table, We can Formulate our data like this:

Minimize z = 2x, +3x,

subject to these constraints:
5x, +10x, = 90 ounces (ingredient A constraint)
4x,+3x, 2 48 ounces (ingredient B constraint)
%x, > %ounces (ingredient C constraint)

x,20,x,20




After Converting into Standard Form:

Minimize z = 2x, +3x, +0s, +0s, +0s,
subject to these constraints:
5x,+10x, -s, =90
4x, +3x,-s, = 48
X, —8,=3

X,,X,,8,,8,,8;20




Find initial basic feasible solution

Putting x; = x, = 0, we get 5,=-90, s, =-48 and s; =-3 as the first basic solution but it is not feasible as s;
s)and s; have negative values that do not satisfy the non-negativity restrictions. Therefore, we introduce
artificial variables A, Ay, A; inthe constraints, which take the form
Minimize z = 2x, +3x, +0s, +0s, +0s,
subject to these constraints:
5x,+10x,-s, +A, =90
dx,+3x,-s,+A, =48
X, =8, +A,=3

X1,X5,8,,8,,81,A,,A,,A, 20




Now artificial variables with values greater than zero violate the equality in constraints established in step
1. Therefore, Aj,Ayand Ay should not appear in the final solution. To achieve this, they are assigned a
large unit penalty (a large postive value, +M) in the objective function, which can be written as
Minimize z = 2x, +3x, + 05, +0s, +0s, + MA, + MA, + MA,
subject to these constraints:
5%, +10x, -5, +A, =90
4x,+3x,-5,tA, =48
X, =8, tA,=3

Xy X,8,8,,8,,A,4,,A, 2




Eliminating A1,A2,A3from the first, second and third equations modified

objective function can be written as:
Minimize z =—-(10M -2)x, —(13M -3)x, + Ms, + Ms, + Ms; +14IM

z+(10M -2)x, +(13M -3)x, — Ms, —Ms, —Ms, =14IM

Problem, now, has eight variables and three constraints. five of the
variables have to be zeroised to get initial basic feasible solution to the
‘artificial system'. Putting,

X, =X, =8, =5, =5, =0, and A, =90,A, =48,A, =3 we get
The starting feasible solutionis A, =90,A, =48,A; =3 and z=141M.




X, X, S1 S, S3 A |A, |A; |b B.V. | Ratio
5 10 1 (o (o |1 o o |90 [s [905-19
4 3 0 [-1 |0 |0 |1 |0 |48 |s; |48/4-12
1 0 o [0 |1 (o |o |1 |3 5| 3/1=3
I0M-2 |13M3 |-M |-M |-M |0 |0 |0 |14IM |z
x. |x, st |s2 |ss |A |A |[A; |b B.V. | Ratio -
5. o [t |0 [0 1 0 0 90 s i00028,
4 [377 7o a1 Jo o [1 [0 |48 [s 48516
o (o o |1 Jo [0 |1 |3 S
498 (647 |50 |50 [-50 |0 [0 [0 7050 |z

Entéring

Current z-value




X, X, | 8 S2 |83 ;A;l Az - A; |b - BV Ratio
1/2 1 | -1/10 |0 0 1/10 0 0 9 S| 9/0.5=18
52 0 (310 |-1 |O -3/10 1 0 21 82 42/5=8.4
S 0 |-1 |0 0 |1 |3 3 3/1=3
S Leaving variable
172.5 0 |147 |-50 |-50 |-64.7 0 0 1%27 z
Entering Current z-value
X 1 X 2 S S> S3 Al Az A3 b B.V. Ratio ]
0 1 |[-1/710 |O 12 |1/10 |0 -1/2 7.5 X3 7.5/0.5=15
0 |0 [310 |1 [, 1-310 |1 |52 [135 [A, |27/5-54
L Leaving variable
1 10 |0 0 -1 0 0 1 3 X
0 0 (147 |-50 |124 |-64.7 |0 -1745 | 703.5 |z
3 4
Entering Current z-value




X, X, |8 S> S3 A, A, Aj b B.V.

0 '1 |-0.16 |[020 'O 0.16 -0.20 |0 4.8 X2
0 0 |0.12 |-040 |1 -0.12 0.40 -1 5.4 S3
1 |0 |012 |-040 |0 -0.12 0.40 0 8.4 X1
0 0 |-024 |-020 |0 -49.76 | -49.8 |-50 |31.20 |z

Since all z coefficients are negative it becomes optimal solution with minimum
cost 31.20.

Hence, the minimum cost solution is to purchase 8.4 pounds of brand 1 feed
and 4.8 pounds of brand 2 feed per turkey per month.




Examples for Practice:

1. Minimize z = 12x; +20x>
Subject to
6x, +8x, 2100

7x, +12x, 2120

X, X, 20

[Ans: x, =15, x,= 4 and Min z =205]

2. Maximize z = 2x, +X, +3x,,
Subject to




X, +X, +2X, <5
2x, +3x, +4x, =12
X, Xy, X, 20
[Ans: x, =3, x,=2, X3,=0 and Max z = 8]




Two Phase Method

The two-phase method is another method to handle these
artificial variables. Here the L.P. problem is solved in two
phases.

PHASE |

In this phase we find an initial basic feasible solution to the
original problem. For this all artificial variables are to be
driven to zero. To do this an artificial (Auxiliary) objective

function (r) is created which is the sum of all the artificial

variables. This new objective function is then minimized,
subject to the constraints of the given (original) problem,
using the simplex method. At the end of phase |, two cases
arise:




TWO PHASE METHOD : NO FEASIBLE SOLUTION

If the minimum value of r > 0, and at least one artificial
variable appears in the basis at a positive level, then the given
problem has no feasible solution and the procedure terminates.

TWO PHASE METHOD: OPTIMALITY

If the minimum value of r =0, and no artificial variable appears
in the basis, then a basic feasible solution to the given problem
is obtained. The artificial column (s) are deleted for phase Il
computations.




PHASE Il

Use the optimum basic feasible solution of phase | as a starting
solution for the original LPP. Assign the actual costs to the variable
in the objective function and a zero cost to every artificial variable
in the basis at zero level. Delete the artificial variable column from
the table which is eliminated from the basis in phase |. Apply
simplex method to the modified simplex table obtained at the end
of phase | till an optimum basic feasible is obtained or till there is
an indication of unbounded solution.




Example:

Minimize z =12x,+18x, +15x,
Subject to
4x, +8x, +6x, =64
3x,+6x, +12x, 296

X5 Xy, X, 20




Solution:

The canonical form of the given problem is shown below:

Minimize z =12x, +18x, +15x,
Subject to
4x, +8x, +6x, —s,+A, =64
3x, +6x, +12x,—-s, + A, =96

X, X5, X3,8,,8,, A,A, 20




Phase 1

Auxilary objective function:
Minimize r=A, +A,
=160-7x, —14x, —18x, +s, +8,
subject to
4x, +8x, +6x, —s, +A =64
3x, +6x, +12x, —s, + A, =96

X, X5, X3,8,,8,, A,A, 20




X, X, X3 s1 | s2 | Al | A2 b B.V.
4 8 6 -1 10 1 0 64 | A
3 6 12 o |-1 [0 1 9% | A
7 14 18 -1 -1 10 0 160 |r
X, X, X3 st | 2 | Al | A b B.V.
4 6 -1 10 0 64 | A

6 ¢ 2 B R L N T h
7 14 1 ? -1 -1 10 0 IPO I

Entering

Current r-value




X, .4 X3 S1 S2 Ay As b B.V.
2.5 ;\' 5 :; 0 -1 0.5 1 0.5 64[ "néA‘v‘ariable
0.25 05 0 -0.093 0 -0.093 96 A,
2.5 5 0 -1 0.5 0 1.5 *16 r
Entering Current r-value
X, X, |X3 S1 S2 Ay As b B.V.
0.5 1 0 -0.2 0.1 -0.1 -0.1 3.2 X2
0 0 1 0.1 -0.13 | -0.093 0.13 6.4 X3
0 0 0 0 0 0 0 0 r

The set of basic variables in the optimal table of phase 1 does not
contain artificial variables. So, the given problem has a feasible
solution.




Phase 2:

The optimal results are presented by x =0, x =3.2=6/5,x =6.4
and min z=153.6 12 3

X, X, | X3 S1 S2 b B.V.

0.5 1 0 -0.2 0.1 3.2 X2
0 0 1 0.1 | -0.13 6.4 X3

-12 | -15 | -18 0 2.1 0 z

Initial Table of Phase 2




05 |1 [0 [-02 | o1 3.2 X
0 0 |1 |01 [-013 | 64 Xa
3 0 [0 | o | 21 | 1536 z

The optimal results are presented by x =0, x =3.2=6/5,x =6.4
and min z=153.6 1 2 3




Lecture 4: Transportation
Models & Optimization




Learning objectives:

The learning objectives of this chapter are

Introduction to Transportation model & applications.

North west Corner rule to solve transportation problem.

Least cost Method & application.

Vogel's approximation method.




Introduction:

A typical transportation problem is shown in Fig. It deals
with sources where a supply of some commodity is
available and destinations where the commodity is
demanded. The classic statement of the transportation
problem uses a matrix with the rows representing
sources and columns representing destinations. The
algorithms for solving the problem are based on this
matrix representation. The costs of shipping from
sources to destinations are indicated by the entries in
the matrix. If shipment is impossible between a given
source and destination, a large cost of M is entered. This
discourages the solution from using such cells. Supplies
and demands are shown along the margins of the
matrix.




As in the example, the classic transportation
problem has total supply equal to total

demand.
DI Dz D3 Supply
=1 3 1 M 5
Y 4 i 4 7
53 M 3 3 3
Demand 7 3 5

Matrix model of a transportation problem




The network model of the transportation problem is
shown in Fig. Sources are identified as the nodes on the
left and destinations on the right. Allowable shipping

links are shown as arcs, while disallowed links are not
included.

[External Flow]
(Cost)

[>] [-7]

[-3]

[->]




North West Corner Rule

The North West corner rule is a method for
computing a basic feasible solution of a
transportation problem, where the basic variables

are selected from the North — West corner ( i.e.,
top left corner).




Steps in North West Corner Rule

Select the upper left-hand corner cell of the transportation
table and allocate as many units as possible equal to the
minimum between available supply and demand, i.e., min(s1,
di).

Adjust the supply and demand numbers in the respective
rows and columns.

If the demand for the first cell is satisfied, then move
horizontally to the next cell in the second column.

If the supply for the first row is exhausted, then move down to
the first cell in the second row.

If for any cell, supply equals demand, then the next allocation
can be made in cell either in the next row or column.

Continue the process until all supply and demand values are
exhausted.




Application:

Find the initial basic feasible solution of the following
transportation problem using North — West Corner Method.

FACTORY WAREHOUSE SUPPLY
wi|w2|ws[ws
F1_ | 14 | 25 | a5 | 5 6
F2_| 65 | 25 [ 35 | 55 | 8

F3 35 3 65 15 16
DEMAND| 4 7 6 13 30




Solution:

Factory Warehouse Supply
W1 W2 W3 W4

F1 4 14 |2 25 45 5 6/2/0

F2 65 |5 25 |3 35 55 |8/3/0

F3 35 3 3 65 |13 |15 |16/13/0

Demand | 4/0 7/5/0 6/3/0 13/0 30




The initial basic feasible solution for the given problem is:

From To Units Cost per Total Cost
shipped Unit

F1 W1 4 14 56

F1 W2 2 25 50

F2 W2 5 25 125

F2 W3 3 35 105

F3 W3 3 65 195

F3 W4 13 15 195

726




Practice Example:

Find the initial basic feasible solution of the following
transportation problem using North — West Corner Method

W-—
F Factory
| Wi W Wa Weo |
F, 19 30 50 10 7
F> 70 30 40 60 9
Fi 40 8 70 20 18
Warehouse | 8 7 14 |34
Requirement

Solution: 1015




Least Cost Method:

This method usually provides a better initial basic
feasible solution than the North-West Corner
method since it takes into account the cost
variables in the problem.




Steps in Least Cost Method

Step1: Select the cell having lowest unit cost in the entire table
and allocate the minimum of supply or demand values in that
cell.

Step2: Then eliminate the row or column in which supply or
demand is exhausted. If both the supply and demand values
are same, either of the row or column can be eliminated.

In case, the smallest unit cost is not unique, then select the
cell where maximum allocation can be made.

Step3: Repeat the process with next lowest unit cost and
continue until the entire available supply at various sources
and demand at various destinations is satisfied.




Application:

Find the initial basic feasible solution of the following
transportation problem using Least Cost Method

FACTORY DISTRIBUTION CENTERS | SUPPLY ﬁ
| D1 D2 03 | .
i Fl 2 7/ 4 | 5 _

F2 3 3 1 &

F3 5 4 T B

A | 1 | 6 | 2 14
DEMAND| 7 | 9 | 18 34




Solution:

Factory Warehouse Supply
D1 D2 D3

F1 2 7 4 5

F2 * 3 * 3 8 1 8/0

F3 5 4 7 7

FA 1 6 2 14

Demand |7 9 18/10 34




Factory Warehouse Supply

D1 D2 D3
F1 * 2 7 4 5
F2 * 3 * 3 8 1 8/0
F3 * 5 4 7 7
F4 7 1 6 2 14/7
Demand | 7/0 9 18/10 34




Factory Warehouse Supply
D1 D2 D3

F1 * 2 7 4 5

F2 * 3 * 3 8 1 8/0

F3 * 5 4 7 7

FA 7 1 * 6 7 2 14/7/0

Demand | 7/0 9 18/10/3 | 34




Factory Warehouse Supply

D1 D2 D3
F1 * 2 7 3 4 5/2
F2 * 3 * 3 8 1 8/0
F3 * 5 4 * 7 7
F4 7 11 |* |6 |7 |2 14/7/0
Demand | 7/0 9 18/10/3/0 34




Factory Warehouse Supply

D1 D2 D3
F1 * 2 7 3 4 5/2
F2 * 3 * 3 8 1 8/0
F3 * 5 7 4 * 7 7/0
F4 7 11 |* |6 |7 |2 14/7/0
Demand | 7/0 9/2 18/10/3/0 34




Factory Warehouse Supply
D1 D2 D3

F1 * 2 2 7 3 4 5/2/0

F2 * 3 * 3 8 1 8/0

F3 * 5 7 4 * 7 7/0

FA 7 1 * 6 7 2 14/7/0

Demand | 7/0 9/2/0 18/10/3/0 34




The initial basic feasible solution for the given problem is:

From To Units Cost per Total Cost
shipped Unit

F1 D2 2 7 14

F1 D3 3 4 12

F2 D3 8 1 8

F3 D2 7 4 28

F4 D1 7 1 7

F4 D3 7 2 14

83




Vogel's Approximation Method

This method also takes costs into account in allocation.
The Vogel's approximation method (VAM) usually
produces an optimal or near- optimal starting solution.
One study found that VAM yields an optimum solution in

80 percent of the sample problems tested.




Steps to solve Vogel’s Approximation method:

Step1: Calculate penalty for each row and column by taking the
difference between the two smallest unit costs. This penalty or
extra cost has to be paid if one fails to allocate the minimum
unit transportation cost.

Step2: Select the row or column with the highest penalty and
select the minimum unit cost of that row or column. Then,
allocate the minimum of supply or demand values in that cell. If
there is a tie, then select the cell where maximum allocation
could be made.

Step3: Adjust the supply and demand and eliminate the satisfied
row or column. If a row and column are satisfied
simultaneously, only of them is eliminated and the other one is
assigned a zero value. Any row or column having zero supply
or demand, can not be used in calculating future penalties.

Step4: Repeat the process until all the supply sources and
demand destinations are satisfied.




Application:

Find the initial basic feasible solution of the following transportation problem
using VAM (Vogel’s Approximation Method ) .

W-—
F Factory
| Wi W2 W W Capacity
F, 19 30 50 10 7
F 70 30 40 60 9
Fs 40 8 70 20 18
Warchouse |5 g 5 4 |34
Requirement




Solution:

Factory Warehouse Supply
W1 W2 W3 W4
F1 19 30 50 10 |7
F2 70 30 40 60 |9
F3 40 8 70 |13 |20 |18
Demand 14 34
21 22 10 10

10

12




Factory Warehouse Supply
W1 W2 W3 W4
F1 19 | * 30 50 10 |7
F2 70 | * 30 40 60 |9
F3 40 |8 8 70 |13 |20 |18/10
Demand 8/0 14 34
21 22 10 10

10

12




Factory Warehouse Supply
W1 W2 W3 W4
F1 5 19 |* 30 50 10 |7/2
F2 * 70 | * 30 40 60 |9
F3 * 40 |8 8 70 |13 |20 |18/10
Demand |5/0 8/0 14 34
21 10 10

20

20




Factory Warehouse Supply
W1 W2 W3 W4
F1 5 19 |* 30 50 10 |7/2
F2 * 70 | * 30 40 60 |9
F3 * 40 |8 8 70 |10 |20 |18/10/0
Demand |5/0 8/0 14/4 34
10 10

40

20

50




Factory Warehouse Supply
W1 W2 W3 W4
F1 5 19 |* 30 50 |2 10 |7/2/0
F2 * 70 | * 30 40 60 |9
F3 * 40 |8 8 70 |10 |20 |18/10/0
Demand |5/0 8/0 14/4/2 34
10 50

40

20




Factory Warehouse Supply
W1 W2 W3 W4

F1 5 19 |* 30 | * 50 |2 10 |7/2/0

F2 * 70 | * 30 |7 |40 60 |9/2

F3 * 40 |8 8 * 70 |10 |20 |18/10/0

Demand |5/0 8/0 7/0 14/4/2 34

20




Factory Warehouse Supply
W1 W2 W3 W4

F1 5 19 |* 30 | * 50 |2 10 |7/2/0

F2 * 70 | * 30 |7 |40 |2 60 |9/2/0

F3 * 40 |8 8 * 70 |10 |20 |18/10/0

Demand | 5/0 8/0 7/0 14/4/2/0 |34




The initial basic feasible solution for the given problem is:

From

F1
F1
F2
F2
F3
F3

To

W1
W4
W3
W4
W2
W4

Units
shipped

0O N NN O

Cost per
Unit

19
10
40
60
8

20

Total Cost

95
20

280
120
64

200
779




Lecture 5:
Optimization Techniques for

Transportation Model




Learning objectives:

The learning objectives of this chapter are

Introduction to Optimality tests unbalanced problems for
transportation problem .

Stepping Stone Method for finding optimal Solution
Distributed Modified Problem for prohibited route problem.
Degeneracy




Optimality Tests.

There are two tests to check whether basic feasible solution fit
for optimality test or not:

1. If there are m number of rows & n number of columns then
number of allocation must be ((m+n)-1)

2. All allocations should be in independent positions i.e. there
should not be able to make closed loop from allocations.




Which one Optimal Solution?

In last lecture, we learn about Northeast corner method, Least
cost method & VAM out of which found VAM generate more
optimal solution but it’s not always better:

Solutions method to get Optimal solution:
1. Stepping-stone method

2. Modified distributed method (MODI




Stepping Stone Method

Is the following an optimal solution for the transportation
problem?
If not, how to modify it?




Solution:

Lecture Handouts. (For better understanding solutions for
this chapter provided in lecture Handouts)




Modified Distribution Method:;:

A company has three factories which supply their products to four warehouses.
Monthly capacities of the factories are 120, 200 and 180 units respectively.
Monthly requirements of warehouses are 100, 140, 110 and 120 respectively. Unit
shipping costs are as follows:

Shipment from 1to Q, Il to P and Il to R is not possible due to certain unavoidable
reasons. Find the optimum distribution program to minimize shipping costs.




Solution:

Lecture Handouts. (For better understanding solutions for
this chapter provided in lecture Handouts)




Degeneracy

Table B-11 To
The Minimum Cell  From A B C Supply
Cost Solution 5 3 0
1 25 125 150
7 Il Il
2 175 175
! 5 12
3 200 75 275
Demand 200 100 300 600

m rows + n column — 1 = the number of cells with allocations
3 +3-1=25

It satisfied.

If failed? ...... considering .....




Total demand # total supply

To
From

Note that, total demand=650, and total supply = 600
How to solve it?

We need to add a dummy row and assign o cost to each cell as such ..




Extra row, since Demand > supply

To
From A B C Supply
8 10
1 150
1 1
2 175
5 |2
3 275
0 0
Dummy 50
Demand 200 100 350 650




Extra Column, since Demand < supply

Table B-30
An Unbalanced Model
{Supply = Demand)

From - A B C Dummy Supply

6 3 10 0

1 150
7 Il I 0

2 175
1 5 12 0

3 375

Demand 200 100 300 100 700




Practice Example: Degeneracy

We have three reservoirs with daily supplies of 15, 20 and 25 miillion ktres of water
respectively. On each day, we must supply four cities A, B, Cand D whose
demands are 8,10, 12 and 15 million litres respectively. The cost of pumping in Rs.
per million litre is as given below:

Reservoirs Cities
o B C D
R1 2 3 4 S
R2 3 2 5 2
R3 a 1 2 3

Use the transportation algorithm to determine the cheapest pumping schedule if
excess water can be disposed off at no extra cost.
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