Федеральное государственное автономное образовательное учреждение высшего образования

«НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

СОГЛАСОВАНО Директор ИШИТР	УТВЕРЖДАН	О образовательной
Д.М. Сонькин	деятельности	ооразовательной
	А	Р Вагнер
	<u> </u>	2018г.
Программа вступитель: по направлению подготовки 09.04.0		
Руководитель программы «Искусственный интеллект и машинное обучение»		Спицын В.Г.
·	подпись	
Руководитель программы «Разработка интернет-приложений»		Кочегурова Е.А.
	подпись	
СОСТАВИТЕЛИ:		
к.ф-м.н, доцент отделения информационных т	Рейзлин В.И.	
к.т.н., доцент отделения информационных тех	Шерстнев В.С.	
старший преподаватель отделения информаци	Дорофеев В.А.	
ассистент отделения информационных технол	Мыцко Е. А.	
к.т.н., доцент отделения информационных тех	нологий	Чудинов И.Л.

АННОТАЦИЯ

Направление подготовки магистров: 09.04.01 Информатика и вычислительная техника

Отделение информационных технологий, Школа информационных технологий и робототехники Демин Антон Юрьевич

Тел. +7 (3822) 606142, вн. 1163

E-mail: ad@tpu.ru

Программа вступительных испытаний основана на стандартизированном экзамене ТПУ, разработанном в качестве вступительного испытания для абитуриентов, поступающих в магистратуру. Целью экзамена является обеспечение межвузовской и межпрограммной мобильности выпускников бакалавриата при переходе на вторую ступень обучения (магистратура).

ОБЩИЕ ТРЕБОВАНИЯ К ПРОЦЕДУРЕ ПРОВЕДЕНИЯ

Экзамен проводится в компьютерной форме в on-line режиме. Продолжительность экзамена — 3 часа. Использование справочников, дополнительной методической литературы и средств связи не допускается в течение всего экзамена

Спецификация и демонстрационный вариант экзаменационного билета доводится до сведения студентов не менее, чем за 3 месяца до начала экзамена.

Ответы экзаменуемых проверяются автоматически по эталонам, хранящимся в информационно-программном комплексе.

Процедура апелляции предусмотрена в соответствии с общими правилами ТПУ.

СТРУКТУРА ЭКЗАМЕНАЦИОННОГО БИЛЕТА

Название модуля и темы	Кол-во заданий	Тестовый балл за задание	Весовой коэф- фициент зада- ния	Итоговый балл за эк- замен
1. Сети и телекоммуникации			1,22	100
1. Основные понятия компьютерных сетей	1	1		
2. Верхние уровни модели OSI	1	1		
3. Транспортный уровень модели OSI	1	1		
4. Сетевой уровень модели OSI	1	1		
5. Канальный уровень модели OSI	1	1		
6. Физический уровень модели OSI	1	1		
7. Адресация в сетях ІР	1	1		
8. Технология Ethernet	1	1		
9. Коммутация	1	1		
10. Маршрутизация	1	1		
	Итого: 10	10		
2. Базы данных				
1.1. Основные положения концепции баз данных	1	1		
1.2. Уровни архитектуры представления данных	1	1		
2.1. Структура данных	1	1		
2.2. Физическая структура данных				
2.3. Логическая структура данных				
2.5. Иерархическая древовидная структура данных	1	1		
2.7. Линейная структура данных				
2.4. Сетевая структура данных	1	1		
2.6. Реляционная модель данных				
3.1. Основные понятия реляционной модели данных	1	1	_	
3.1. Основные понятия реляционной модели данных	1	1	_	
3.1. Основные понятия реляционной модели данных	1	1	_	
4.1. Нормализация отношения	1	1	_	
4.2. 1 Нормальная форма	1	1		

4.3. 2 Нормальная форма	1	1
4.4. 3 Нормальная форма		
4.5. Нормальные формы	1	1
3.2. Операции реляционной алгебры	1	1
3.3. Содержание операций реляционной алгебры	1	1
3.3. Содержание операций реляционной алгебры	1	1
5.1. Связь типа 1:1	1	1
5.2. Связь типа 1:М	1	1
5.3. Связь типа М:1	1	1
5.4. Связь типа М:М	1	1
	Итого: 19	19
3. Организация ЭВМ		
1. Классификация архитектур компьютеров	1	1
1. Классификация архитектур компьютеров	1	1
2. Способы обработки команд в электронной вычислительной машине (ЭВМ)	1	1
2. Способы обработки команд в электронной вычислительной машине (ЭВМ)	1	1
3. Технические и эксплуатационные характеристики ЭВМ	1	1
3. Технические и эксплуатационные характеристики ЭВМ	1	1
4. Классификация ЭВМ	1	1
4. Классификация ЭВМ	1	1
5. Функциональная и структурная организация ЭВМ	1	1
5. Функциональная и структурная организация ЭВМ	1	1
6. Способы адресации в информации в ЭВМ	1	1
6. Способы адресации в информации в ЭВМ	1	1

7. Функциональная и структурная организация центрального процессора ЭВМ	1	1
7. Функциональная и структурная организация центрального процессора ЭВМ	1	1
8. Принципы организации подсистемы памяти ЭВМ	1	1
8. Принципы организации подсистемы памяти ЭВМ	1	1
9. Организация системного интерфейса и ввода-вывода информации	1	1
9. Организация системного интерфейса и ввода-вывода информации	1	1
10 Классификация многопроцессорных и многомашинных вычислительных систем (количество вопросов: 5)	1	5
	Итого: 19	23
4. Операционные системы		
1. Введение в ОС	1	1
1. Введение в ОС	1	1
1. Введение в ОС	1	1
1. Введение в ОС	1	1
1. Введение в ОС	1	1
2. Процессы и потоки	1	1
2. Процессы и потоки	1	1
2. Процессы и потоки	1	1

2. Процессы и потоки	1	1	
2. Процессы и потоки	1	1	
3. Управление памятью	1	1	
3. Управление памятью	1	1	
3. Управление памятью	1	1	
3. Управление памятью	1	1	
3. Управление памятью	1	1	
4. Файлы и файловые системы	1	1	
4. Файлы и файловые системы	1	1	
4. Файлы и файловые системы	1	1	
4. Файлы и файловые системы	1	1	
4. Файлы и файловые системы	1	1	
	Итого: 20	20	
5. Программирование			
1. Основы программирования	1	1	
2. Основы языка	1	1	
3. Операторы С++	1	1	

4. Область существования и видимости имен.	1	1	
5. Составные типы	1	1	
6. Функции	1	1	
7. Классы	1	1	
8. Функции-члены классов	1	1	
9. Классы и наследование	1	1	
10. Шаблоны функций и классов	1	1	
	Итого: 10	10	
Итого:	78 заданий	82 балла	

ПРОГРАММА И РЕКОМЕНДАЦИИ ПО ПОДГОТОВКЕ К ЭКЗАМЕНУ

Дисциплина программирование

1. Основы программирования

Структура программы. Компиляция, компоновка, библиотеки. Директивы препроцессора.

2. Основы языка

Имена. Базовые типы данных. Правила преобразования стандартных и производных типов. Операции С++ (Арифметические операции, операции отношения, логические операции, побитовые операции, сдвиги, операции автоувеличения и автоуменьшения ++ и --, тернарная или условная операция, операция следования и др.). Приоритеты операций и порядок вычисления.

- 3. Операторы С++ (Условные операторы, ветвление и циклы, переключатель, оператор безусловного перехода и т.д.).
- 4. Область видимости имен и время существования. Классы памяти (хранения) Виды областей существования имени: блок, функция, прототип функции, файл, класс. Область видимости. Классы памяти: статическая память, автоматическая память, динамическая память. Правила инициализации статических и автоматических объектов.

5. Составные типы

Массивы. Указатели, указатели и массивы. Адресная арифметика. Многомерные массивы. Символьные массивы и строки. Динамическое распределение памяти.

6. Функции

Определение и вызов функции. Формальные и фактические параметры (аргументы). Передача аргументов по значению. Ссылки. Передача аргументов по ссылке. Аргументы по умолчанию. Указатели на функции. Передача указателя на функцию в качестве аргумента. Рекурсивные функции. Аргументы по умолчанию.

7. Классы. Понятие абстрактных типов данных. Скрытые, общие и защищенные данные. Операции ".", "->".

8. Функции-члены классов

Функции-члены (методы). Конструкторы и деструкторы, их перегрузка. Порядок выполнения конструкторов и деструкторов. Статические члены класса. Указатель this. Статические функции-члены. Указатели на члены класса. Дружественные функции и дружественные классы.

9. Наследование

Построение производного класса. Защищенные члены. Раннее и позднее (динамическое) связывание. Виртуальные функции. Чисто виртуальные функции. Абстрактные классы. Переопределение (перегрузка) стандартных операций. Особенности переопределения операций new, delete, =, [], (), ->. Преобразования абстрактных типов. Оператор-функция преобразования типов.

10. Шаблоны функций и классов

Определение шаблона. Параметры шаблона.

Основная литература:

- 1. Т. А. Павловская. С/С++. Процедурное и объектно-ориентированное программирование. Учебник для вузов. Стандарт 3-го поколения. Санкт-Петербург: Питер, 2015. 496 с.
- 2. А. А. Тюгашев. Языки программирования: учебное пособие. СПб.: Питер, 2014. 334 с.
- 3. Н. И. Парфилова, А. Н. Пылькин, Б. Г. Трусов. Программирование. Основы алгоритмизации и программирования: учебник для вузов. 2-е изд., испр. М.: Академия, 2014. 240 с.
- 4. С. Б. Липпман, Ж. Лажойе, Б. Э. Му. Язык программирования С++. Базовый курс: пер. с англ. 5-е изд. М.: Вильямс, 2014. 1118 с.
- 5. Г. Шилдт. C++. Базовй курс: пер. с англ. 3-е изд.. М.: Вильямс, 2014. 620 с.

Дополнительная литература:

- 6. В.И. Рейзлин. Язык C++ и программирование на нём: учебное пособие. 2-е изд., перераб. Томск: Изд-во Томского политехнического университета, 2015 212 с. URL: http://portal.tpu.ru:7777/SHARED/v/VIR/Met/Tab/PROGRAMMING.pdf
- 7. Фридман А.Л. Язык программирования Си++. Изд. 2-е, испр. М.: Интернет-Университет Информационных Технологий, 2004. – 262 с. [Электронный ресурс]. – URL: http://biblioclub.ru/index.php?page=book&id=233058.

Дисциплина базы данных

- 1. История развития средств компьютерной обработки данных. Обоснование концепции баз данных, основные положения концепции. Архитектура представления информации в концепции баз данных. Понятие и роль схемы и подсхемы.
- 2. База данных как средство отображения информационной модели предметной области. Модели данных. Классические модели данных (плоская, иерархическая, сетевая)
- 3. Реляционная модель данных. Основные понятия. Нормализация отношений. Операции реляционной алгебры.
- 4. Реляционная модель данных. Основные понятия. Нормализация отношений. Операции реляционной алгебры.
- 5. Языки манипулирования данными SQL и QBE (общие сведения). Использование SQL для создания и обработки баз данных.
- 6. Системы управления базами данных. Общие свойства СУБД. Обобщенная схема обмена данных с использованием СУБД. Типовые информационные процедуры, реализуемые СУБД.
- 7. Информационные системы, основанные на БД и СУБД. Технология обработки фактографической информации.
- 8. Проектирование баз данных. Проектирование с использованием метода сущность связь. Формализованное определение типа связей.

- 9. Проблемы параллельного доступ к базам данных. Транзакции. Файл-серверная и клиент серверная технологии параллельной обработки.
 - 10. Распределенные базы данных и распределенная обработка.

Основная литература:

- 1. Базы данных: учебное пособие / И. Л. Чудинов, В. В. Осипова; Национальный исследовательский Томский политехнический университет (ТПУ), Институт дистанционного образования (ИДО). Томск: Изд-во ТПУ, 2012. 140 с.
- 2. Кузнецов, Сергей Дмитриевич Основы баз данных: учебное пособие / С. Д. Кузнецов.
- 2-е изд., испр. Москва: Интернет-Университет информационных технологий БИНОМ. Лаборатория знаний, 2012. 484с.
- 3. Туманов, Владимир Евгеньевич Основы проектирования реляционных баз данных: учебное пособие / В. Е. Туманов. Москва: БИНОМ. Лаборатория знаний Интернет-Университет информационных технологий, 2014. 420 с.
- 4. Кузин, Александр Владимирович. Базы данных: учебное пособие / А. А. Кузин, С. В. Левонисова. 5-е изд., испр.. Москва: Академия, 2012. 315 с.

Дополнительная литература:

- 5. Советов, Борис Яковлевич. Базы данных: теория и практика: учебник для бакалавров /
- Б. Я. Советов, В. В. Цехановский, В. Д. Чертовской. 2-е изд.. Москва: Юрайт, 2013.
- 6. Дейт, К. Дж. Основы будущих систем баз данных. Третий манифест. Детальное исследование влияния теории типов на реляционную модель данных, включая полную модель наследования типов / К. Дж. Дейт, Х. Дарвен; пер. с англ. С. Д. Кузнецова, Т. А. Кузнецовой; под ред. С. Д. Кузнецова. 2-е изд.. М: Янус-К, 2004. 656 с.
- 7. Илюшечкин, Владимир Михайлович. Основы использования и проектирования баз данных: учебное пособие / В. М. Илюшечкин. Москва: Высшее образование, 2009. 213 с.

Дисциплина организация ЭВМ

- 1. Классификация архитектур компьютеров
 - Понятие архитектуры компьютера. Компоненты архитектуры компьютера. Классификация однопроцессорных архитектур компьютеров с одним потоком команд и с одним потоком данных (SISD). Способы реализации архитектур с одним потоком команд и с множеством потоков данных (SIMD).
- Способы обработки команд в электронной вычислительной машине (ЭВМ)
 Конвейерная обработка команд, суперскалярная обработка и многопотоковая обработка.
- 3. Технические и эксплуатационные характеристики ЭВМ Виды производительности компьютера (пиковая, номинальная, системная, эксплуатационная). Методы определения производительности. Единицы оценки производительности. Энергоэффективность процессора.
- 4. Классификация ЭВМ

Классификация ЭВМ по назначению. Классификация ЭВМ по функциональных возможностям (супер компьютеры, мэйнфреймы, микро-ЭВМ). Классификация

микро-ЭВМ. Особенности организации, классификация серверов, рабочих станций, персональных компьютеров.

- 5. Функциональная и структурная организация ЭВМ Обобщенная структура ЭВМ и пути ее развития. Типы данных в компьютерах с ин
 - теловской архитектурой. Структура и форматы команд ЭВМ.
- 6. Способы адресации в информации в ЭВМ Абсолютные способы (непосредственная, прямая и косвенная адресация). Относительные способы адресации. Базирование и индексирование.
- 7. Функциональная и структурная организация центрального процессора ЭВМ Назначение и структура центрального процессора. Назначение, классификация и организация центрального устройства управления. Регистровые структуры центрального процессора. Особенности многоядерной микроархитектуры процессоров Intel Core. Микроархитектура Intel Nehalem. Микроархитектура процессоров Intel Sandy Bridge.
- 8. Принципы организации подсистемы памяти ЭВМ Иерархическая структура памяти компьютера. Способы организации кэш-памяти. Типовая структура кэш-памяти. Способы размещения данных в кэш-памяти. Методы обновления строк основной памяти. Методы замещения строк кэш-памяти. Принципы организации оперативной памяти. Организация виртуальной памяти.
- 9. Организация системного интерфейса и ввода-вывода информации Общая характеристика и классификация интерфейсов. Способы организации передачи данных (программно-управляемая передача и прямой доступ к памяти). Системная организация компьютеров на базе современных микропроцессоров Intel Core i3/i5/i7 с использованием наборов системной логики (чИСТетов).
- 10. Классификация многопроцессорных и многомашинных вычислительных систем Архитектуры вычислительных систем (BC) с множеством потоков команд и одним потоком данных (MISD) и множеством потоков команд и множеством потоков данных (МIMD). Классификация BC по способу построения памяти и классификация BC по способу передачи данных. Классификация МIMD систем по способу взаимодействия процессоров (сильносвязанные, слабосвязанные многопроцессорные системы).

Основная литература:

- 1. Чередов А.Д. Организация ЭВМ и систем: учебное пособие / А.Д. Чередов; Томский политехнический университет. 3-е изд., перераб. и доп. Томск: Изд-во Томского политехнического университета, 2011. 200 с.
- 2. Орлов С.А. Организация ЭВМ и систем: Учебник для вузов. 3-е изд. Стандарт третьего поколения/ С.А. Орлов, Б.Я. Цилькер. СПб.: Питер, 2014. 688 с. Доступ к URL: http://ibooks.ru/reading.php?short=1&isbn=978-5-496-01145-7
- 3. Новожилов О.П. Архитектура ЭВМ и систем. Учебное пособие для бакалавров. Люберцы: Юрайт-Издат, 2012. 527 с.
- 4. Бройдо В.Л. Вычислительные системы, сети и телекоммуникации: учебное пособие для вузов / В.Л. Брайдо, О.П. Ильина. 4-е изд. СПб.: Питер, 2011. 555 с.

Дополнительная литература:

- 5. Попов А.Ю. Организация ЭВМ. МГТУ им. Н.Э. Баумана (Московский государственный технический университет имени Н.Э. Баумана), 2010. 48 с. http://e.lanbook.com/books/element.php?pl1 id=52407
- 6. Новицкий А. Петрович. Курочкин Л. М. Организация ЭВМ и систем: учебное пособие. Спб.: Санкт-Петербургский политехнический университет Петра Великого, 2015. https://doi.org/10.18720/SPBPU/2/5298

Дисциплина операционные системы

- 1. Основные понятия операционных систем: назначения, функции, эволюция. Понятия и определения ОС; предназначение и основные функции ОС; ОС как виртуальная машина; ОС как система управления ресурсами, эволюция ОС, последовательная обработка данных; простые пакетные системы; многозадачные пакетные системы; системы, работающие в режиме разделения времени; особенности современного этапа развития ОС.
- 2. Архитектурные особенности и классификация ОС Монолитное ядро, микроядерная архитектура, многоуровневые системы, виртуальные машины, смешанные системы; классификация по режиму обработки задач, по вариантам реализации многозадачности, по критериям эффективности, по способу взаимодействия с компьютером, по организации работы с вычислительной системой, по наличию средств поддержки многопроцессорной обработки, по организации работы с вычислительной сетью; специализированные ОС и системы общего назначения.
- 3. Мультипрограммирование и планирование процессов и потоков в различных системах.

Критерии эффективности мультипрограммных систем; системы пакетной обработки; системы разделения времени; системы реального времени; симметричная и ассиметричная мультипроцессорная обработка. Мультипрограммирование на основе прерываний: назначение, типы и механизм прерываний, программные прерывания, диспетчеризация и приоритезация прерываний в ОС, системные вызовы. Понятия процесса и потока, создание процессов и потоков, управляющие структуры (идентификатор, дескриптор, контекст), переключение контекстов, планирование и диспетчеризация потоков, состояния потоков, критерии и виды планирования, вытесняющие и невытесняющие алгоритмы планирования, квантование, приоритетное обслуживание, смешанные алгоритмы планирования, планирование в системах реального времени.

4. Способы взаимодействия и синхронизации процессов и потоков. Проблемы синхронизации.

Независимые и взаимодействующие вычислительные процессы, цели и средства синхронизации, необходимость синхронизации и механизмы синхронизации, тупики и борьба с ними, гонки, критические секции, блокирующие переменные и семафоры, вза-имные блокировки, сигналы. Каналы связи (конвейеры), именованные каналы, очереди сообщений, разделяемая память.

- 5. Управление памятью: задачи управления, типы адресации. Распределение памяти: общие принципы управления памятью в однопрограммных ОС.
 - Задачи управления памятью, типы адресации, схемы распределения памяти. Оверлейное распределение памяти в однопрограммных ОС.
- 6. Распределения памяти фиксированными, динамическими, перемещаемыми разделами.

Основные принципы Фиксированное распределение, динамическое распределение, распределение перемещаемыми разделами. Достоинства и недостатки этих подходов.

- 7. Сегментное, страничное и странично-сегментное распределение памяти. Схемы страничной, сегментной, страничная-сегментной организация виртуальной памяти, методы загрузки программ и связывание адресов логической, виртуальной и физической памяти.
- 8. Особенности эффективного использования таблицы страниц: многоуровневые таблицы страниц, ассоциативная память, инвертированная таблица страниц, хеширование.

Аппаратная поддержка и программное обеспечение ОС для виртуальной памяти, подкачка страниц (свопинг), управление памятью в ОС семейств Unix и MS Windows. Иерархия запоминающих устройств, кэш-память, проблема согласования данных, способы отображения основной памяти на кэш, схемы выполнения запросов в системах с кэш-памятью.

- 9. Физическая организация жесткого диска и функции файловой системы. Использование магнитных дисков, основные понятия; логическая структура диска, системный загрузчик. Дисковый кэш, буферизация, упреждающее чтение, отложенная запись. Цели и задачи файловой системы, типы файлов, атрибуты файла, доступ к файлам, операции над файлами, иерархическая структура каталогов, операции над директориями, физическая организация жесткого диска, особенности загрузки ОС, монтирование.
- 10. Принципы построения файловой системы. Способы выделения и управления дисковым пространством.

Интерфейс файловой системы, функциональная схема организации файловой системы, типовая структура файловой системы на диске, способы выделения дискового пространства (последовательное, связанным списком и т.д.), управление дисковым пространством.

Основная литература:

- 1. Операционные системы. Теория и практика. Учебное пособие. / А.В. Замятин / Томск.: Изд-во ТПУ, 2012 263 с.
- 2. Современные операционные системы, 3-е издание / Э. Таненбаум / СПб.: Питер, 2010-1120 с.
- 3. Основы современных операционных систем: учебное пособие / В.О. Сафонов / М.: БИНОМ, 2011-584 с.

Дополнительная литература:

- 4. Современные операционные системы: учебное пособие / С.В. Назаров, А.И. Широков /-M.: БИНОМ, 2011 280 с.
- 5. Операционные системы. Практикум. Учебное пособие. Практикум / С.В. Назаров, Л.П. Гудыно, А.А. Кириченко / М.: Проспект, 2013 374 с.
- 6. Операционные системы. Учебное пособие. Часть 1. Операционная система Linux. / С.Н. Мамойленко, О.В. Молдованова /— Новосибирск СибГУТИ, 2012. 128с.

Дисциплина сети и телекоммуникации

1. Основные понятия компьютерных сетей

Виды компьютерных сетей: WAN, LAN, MAN, PAN. Их особенности.

Сетевые стандарты. Организации, занимающиеся стандартизацией сетевых технологий.

Топология сети. Виды топологий, их преимущества и недостатки.

Элементы сети: конечные устройства, промежуточные устройства, передающие среды.

Характеристики канала.

Назначение и функции модели OSI.

Уровни модели OSI, назначение, примеры протоколов.

Стек протоколов.

Протокольная единица данных. Инкапсуляция. Мультиплексирование.

2. Верхние уровни модели OSI

Клиент-серверная и одноранговая сети.

Система доменных имен DNS. Рекурсивная и нерекурсивная схемы. Кириллические домены.

Типы записей DNS. Обратная зона. URL, FQDN.

Протокол DHCP.

Протокол НТТР.

Система электронной почты. Протоколы.

3. Транспортный уровень модели OSI

Назначение, протоколы.

Сетевой порт. Виды портов.

Протокол UDP. Назначение, формат пакета. Псевдозаголовок.

Протокол ТСР. Назначение, формат пакета.

Логическое соединение. Установка и завершение логического соединения.

Метод скользящего окна.

4. Сетевой уровень модели OSI

Технологии трансляции сетевых адресов.

IPv6. Преимущества перед IPv4, решаемые задачи. Типы адресов.

Протокол ІСМР. Формат пакета.

Утилиты tracert (traceroute) и ping. Назначение, принципы работы.

5. Канальный уровень модели OSI

Подуровни канального уровня, их задачи.

Адрес канального уровня. Адресные пространства.

Протокол разрешения адресов ARP.

Разделяемая и неразделяемая среда. Полудуплексный и дуплексный режимы.

Вероятностный метод доступа к среде. Технологии CSMA/CD и CSMA/CA.

Детерминированный метод доступа к среде. Передача маркера.

6. Физический уровень модели OSI

Характеристики линий связи: гармоника, спектральное разложение, затухание, волновое сопротивление, помехоустойчивость, полоса пропускания, пропускная способность.

Представление дискретной информации в виде сигнала. Такт, несущая, бод.

Витая пара. Состав, типы.

Коаксиальный кабель. Состав, типы.

Волоконно-оптический кабель. Мода.

Модуляция. Виды модуляции.

Потенциальные коды NRZ, AMI, NRZI. Избыточный код 4В5В.

Самосинхронизирующиеся коды. Манчестерское кодирование. Скремблирование.

7. Адресация в сетях ІР

Типы IP-адресов. Особые IPv4-адреса.

Формат адреса IPv4. Разграничение номеров сети и узла.

Классовая и бесклассовая адресация. Маска сети, префикс.

8. Технология Ethernet

Формат кадра.

Процесс передачи данных. Коллизия.

Физическая среда технологии Ethernet.

Технология FastEthernet.

Технология Gigabit Ethernet.

9. Коммутация

Логическая сегментация сети. Задачи. Устройства.

Алгоритм прозрачного моста. Особенности алгоритма в коммутаторах.

Неблокирующие режимы работы коммутаторов. Управление перегрузками.

Алгоритм покрывающего дерева. Быстрый алгоритм.

Агрегирование линий связи. Распределение кадров.

Виртуальные локальные сети. Способы организации. Транки.

Иерархическая модель сети. Уровни, их задачи.

10. Маршрутизация

Маршрутизатор. Таблица маршрутизации. Алгоритм маршрутизации.

Статическая и динамическая маршрутизация. Преимущества и недостатки.

Классификация протоколов маршрутизации.

Сравнение дистанционно-векторных алгоритмов и алгоритмов состояния связей.

Таблица маршрутизации: назначение, состав. Метрика.

Протоколы RIP и OSPF: построение таблицы маршрутизации, виды метрик.

Автономные системы. Протокол BGP.

Основная литература:

- 1. Олифер В. Г., Олифер Н. А. Компьютерные сети. Принципы, технологии, протоколы: Учебник для вузов. 4-е изд. СПб.: Питер, 2014. 943 с.
- 2. Таненбаум Э., Уэзеролл Д. Компьютерные сети. 5-е изд. СПб.: Питер, 2014. 955 с.
- 3. Кульгин, М. В. Компьютерные сети: Практика построения. 2-е изд. СПб.: Питер, 2013. 462 с.

Дополнительная литература:

- 4. Самуйлов К.Е., Шалимов И.А., Кулябов Д.С. Сети и телекоммуникации. Учебник и практикум для академического бакалавриата. М: Юрайт, 2018, 363 с. https://biblio-online.ru/book/62D90F22-24F9-44CF-8D1F-2F1D739047C2
- 5. Гриценко Ю.Б. Вычислительные системы, сети и телекоммуникации: учебное пособие. Томск: ТУСУР, 2015. 134 с. http://www.biblioclub.ru/book/480639