Федеральное государственное автономное образовательное учреждение высшего образования

«Национальный исследовательский Томский политехнический университет» Физико-технический институт

> **УТВЕРЖДАЮ** Директор ФТИ О.Ю. Долматов 2016 г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ «ПРОЦЕССЫ ИЗОТОПНОГО ОБМЕНА» НА УЧЕБНЫЙ ГОД

Направление ООП <u>14.03.02</u> «Ядерные физика и технологии»
Профиль подготовки (специализация) <u>Физика кинетических явлений</u> Квалификация (степень) <u>академический бакалавр</u>
Базовый учебный план приема <u>2016 г.</u> Курс <u>IV</u> семестр <u>7</u> Количество кредитов <u>3</u>

Код дисциплины Б1.ВМ5.4.8

Виды учебной	Временной ресурс	
деятельности	488 0.000	
Лекции, ч	16	
Практические занятия, ч	· <u> </u>	
Лабораторные занятия, ч	16	
Аудиторные занятия, ч	32	
Самостоятельная работа, ч	76	
ИТОГО, ч	108	

Jekigiii, i	10	
Практические занятия, ч		
Лабораторные занятия, ч	16	
Аудиторные занятия, ч	32	
Самостоятельная работа, ч	76	
ИТОГО, ч	108	
Вил промежуточной аттестации зачёт		

Вид промежуточной аттестации зачёт Обеспечивающее подразделение кафедра «Техническая физика» Заведующий кафедрой И.В. Шаманин

Руководитель ООП О.Ю. Долматов

Доцент Д.Г. Видяев

2016 г.

1. Цели освоения дисциплины

Формирование у студентов знаний теоретических основ процессов изотопного обмена и умений применять их в производственно-технической и научно-исследовательской деятельности, а также приобретения навыков использования компьютерно-информационных технологии для проведения математического моделирования разделительных процессов и поиска новой информации, необходимой для самообучения и решения конкретных инженерных задач.

2. Место дисциплины в структуре ООП

Дисциплина «Процессы изотопного обмена» (Б1.В.З.8) относится к дисциплинам вариативной части основной образовательной программы (ООП) по направлению 14.03.02 «Ядерная физика и технологии». Она непосредственно связана с дисциплинами базовой части (математика, информатика, химия, физика), вариативной части (материаловедение, уравнения математической физики) и опирается на освоенные при изучении данных дисциплин знания и умения. Кореквизитами для дисциплины «Процессы изотопного обмена» являются профессиональные дисциплины ООП по направлению подготовки 14.03.02: «Кинетика физико-химических явлений и процессов, методы их изучения» и «Теория каскадов для разделения двухкомпонентных изотопных смесей».

3. Результаты освоения дисциплины

В соответствии с требованиями ООП освоение дисциплины направлено на формирование у студентов следующих компетенций (результатов обучения), в т.ч. в соответствии с ФГОС:

Составляющие результатов обучения, которые будут получены при изучении данной дисциплины

			теции			1			
Результаты обучения		Составляющие результатов обучения							
(компетенции из ФГОС)	Код	Знания	Код	Умения	Код	Владение опытом			
P1 (OK-6,10,11)	3.1.1	Основных методов, способов и средств получения, хранения, переработки информации.	У.1.1	Самообучаться, повышать свою квалификацию и мастерство.	B.1.1	Обобщения, анализа, восприятия информации, постановки цели и выбора путей ее достижения.			
(01(0,10,11)			У.1.2	Работать с информацией в глобальных компьютерных сетях.	B.1.2	Работы с компьютером как средством управления информацией			
P3 (OK-3)					B.3.1	Кооперации с коллегами, работы в коллективе			
Р7 (ПК-1)	3.7.1	Основных законов естественнонаучных дисциплин	У.7.1	Использовать основные законы естественнонаучных дисциплин в профессиональной деятельности	B.7.1	Математического анализа и моделирования, теоретического и экспериментального исследования.			

Р9 (ПК-10)			У.9.1	Проводить расчеты, проектировать детали и узы приборов, установок в соответствии с техническим заданием с использованием стандартных средств автоматизации проектирования.		Эксплуатации
Р10 (ПК-18)					B.10.1	современного физического оборудования и приборов.
P12 (ПК-5,7,8,9)	3.12.1	Методов математического моделирования процессов и объектов на базе стандартных пакетов автоматизированного проектирования и исследований.	У.12.1. У.12.2	Использовать информационные технологии при разработке новых установок, материалов и приборов. Использовать технические средства для измерения основных параметров объектов исследования.	B.12.2 B.12.3	Подготовки данных для составления обзоров, отчетов и научных публикаций. Составления отчета по выполненному заданию.
Р13 (ПК-4)					B.13.1	Использования научно-технической информации, отечественного и зарубежного опыта по тематике исследования, современных компьютерных технологий и базы данных в своей предметной области
Р14 (ПК-6,24)	3.14.1	Способов применения ядерно- энергетических, плазменных, лазерных, СВЧ и мощных импульсных установок, электронных, нейтронных и протонных пучков, методов экспериментальной физики в решении технических, технологических и медицинских проблем			B.14.1	Проведения физических экспериментов по заданной методике, составления описания проводимых исследований и анализа результатов

Р15 (ПК-15)	3.15.1	Методов организации рабочих мест, их технического оснащения, размещения		
		размещения технологического оборудования.		

В результате освоения дисциплины «Процессы изотопного обмена» студентом должны быть достигнуты следующие результаты:

Планируемые результаты освоения дисциплины

№ п/п	
1 1) / 1 1 / 1	Результат гудент должен: знать основные способы и установки для экспериментального
	сследования физико-химических свойств обменных систем и способы обработки
	олученной информации; терминологию используемая для описания обменных
	стодов разделения изотопов; уметь находить и использовать научно-техническую
	нформацию в исследуемой области из различных ресурсов, включая интернет;
	падеть опытом работы и использования в ходе проведения исследований научно-
	хнической информации, Интернет-ресурсов, баз данных, поисковых систем и др.
	области изотопного обмена, в том числе, на иностранном языке
	<u>-</u>
	гудент должен иметь опыт работы в коллективе в кооперации с коллегами
	гудент должен: знать специальные разделы математики, физики и химии,
	жащие в основе способов, применяемых для организации процессов изотопного бмена; уметь использовать основные законы естественнонаучных дисциплин при
	писании обменных процессов; владеть устойчивыми навыками проведения
	посании обменных процессов, владеть устоичивыми навыками проведения воретических расчетов и моделирования процессов изотопного обмена с
	пользованием компьютерной техники, обработки, систематизации и анализа
	олученных результатов
	лученных результатов гудент должен: уметь подбирать способы решения поставленной задачи по
	данным условиям работы разделительной установки; определять
	оследовательность и проводить расчет основных параметров установки для
	изделения изотопов; оптимизировать каскады с целью обеспечения
1	аксимального КПД их работы
-	гудент должен владеть приемами и методами практического определения ряда
	войств и термодинамических характеристик взаимодействующих фаз и опытом
	боты с научно-исследовательским оборудованием
	гудент должен: знать подходы к математическому моделированию изотопного
	бмена в наиболее часто используемых системах; уметь определять физико-
	имические характеристики разделительного процесса и критически их оценивать;
	спользовать прикладные программы для моделирования и расчета
	взделительных установок с использованием ЭВМ; владеть опытом подготовки
	инных и составления отчета по проделанной работе в соответствии с требования
	ррмативной документации
	гудент должен владеть опытом использования научно-технической информации
	гечественных и зарубежных авторов по тематике исследования, современных
	омпьютерных технологий и базы данных в своей предметной области
	гудент должен знать устройства основных элементов разделительного каскада;
	падеть приемами синтеза элементов и методиками расчета некоторых схем
	зделительных каскадов
РД15 Ст	гудент должен знать способы компоновки технологического оборудования
	скадов из колонн

4. Структура и содержание дисциплины

4.1. Содержание разделов дисциплины

ЧАСТЬ 1. ОСНОВЫ ТЕОРИИ ПРОЦЕССОВ ИЗОТОПНОГО ОБМЕНА Введение

Содержание и структура курса. Цели его преподавания и изучения. Связь с естественнонаучными и профессиональными дисциплинами. История и современное состояние в области разделения изотопов.

1. Основные сведения из теории процессов изотопного обмена

Основные понятия и классификация изотопов и методов их разделения. Изотопный обмен и его достоинства. Фаза и фазовое равновесие. Коэффициент разделения. Методы анализа изотопного состава.

Лабораторная работа №1. Определение характеристик насадочных элементов обменных колонн .

2. Физико-химические основы изотопного обмена

Химическое равновесие, константа равновесия и ее температурная зависимость. Скорость реакции. Зависимость скорости реакции от концентрации реагирующих фаз и температуры.

Лабораторная работа №2. Изучение кинетики разложения галламы лития.

3. Математическое описание процессов разделения изотолов в колоннах Колонны и виды контактных устройств. Режимы работы колонны. Материальный баланс. Фундаментальное уравнение обогащения. Число теоретических ступеней разделения. Формула Фэнске. Принципиальная схема процесса и ее оптимизация. Расчет времени достижения равновесного состояния.

ЧАСТЬ 2. ОРГАНИЗАЦИЯ ПРОЦЕССОВ ИЗОТОПНОГО ОБМЕНА В РАЗЛИЧНЫХ РАЗДЕЛИТЕЛЬНЫХ СИСТЕМАХ

4. Химический изотопный обмен (ХИО) в системах газ-жидкость

Движение фаз в колоннах. Термодинамический изотопный эффект. Уравнения формальной кинетики и массоперенос в противоточных колонах.

Лабораторная работа №3. Проведение элементного анализа на автоматическом фотометре ФПА-2.

5. Рабочие системы газ-жидкость для разделения изотопов методом химического изотопного обмена

Двухтемпературный метод разделения изотопов водорода. Разделение изотопов бора, углерода, азота и кислорода.

6. Изотопный обмен в системах жидкость-жидкость

Гидравлические особенности движения фаз. Экстракционные системы. Амальгамно-обменный метод.

Лабораторная работа №4. Деминерализация воды дистилляцией и электродиализом.

7. Изотопный обмен в системах с твердой фазой

Изотопный обмен водорода с гидридами металлов и интерметаллическими соединениями. Разделение изотопов на твердых ионообменниках. Изотопные эффекты при физической сорбции газов.

8. Разделение изотопов методом ректификации

Уравнение для коэффициента разделения. Ректификация жидкого водорода. Использование ректификации для разделения изотопов азота, кислорода и бора.

4.2. Структура дисциплины по разделам, формам организации и контроля обучения

№	Название	Аудиторная работа		CPC	Итого	Формы текущего	
	раздела/темы	(час)			(час)		контроля и
		Лек	Практ./	Лаб.			аттестации
		ции	семинар	зан.			
1	Введение	1			5	6	Устный отчет
2	Основные сведения из теории процессов изотопного обмена	2		4	8	14	Отчет по лабораторной работе.
3	Физико-химичес- кие основы изотопного обмена	2		4	12	18	Отчет по лабораторной работе.
4	Математическое описание процессов разделения изотопов в колоннах	2			12	14	Коллоквиум
5	Химический изотопный (ХИО) обмен в системах газ—жидкость	2		4	10	16	Отчет по лабораторной работе.
6	Рабочие системы газ-жидкость для разделения изотопов методом XИО	2			6	8	Устный отчет
7	Изотопный обмен в системах жид-кость-жидкость	1		4	9	14	Отчет по лабораторной работе
8	Изотопный обмен в системах с твердой фазой	2			6	8	Реферат
9	Разделение изотопов методом ректификации	2			8	10	Коллоквиум Экзамен
	Итого	16		16	76	108	

При сдаче отчетов и письменных работ проводится устное собеседование.

4.3. Распределение компетенций по разделам дисциплины

Распределение по разделам дисциплины планируемых результатов обучения по основной образовательной программе, формируемых в рамках

поштоп п	исциплины	TIT	TITO CONTINUE TWO	DIT	
ланнои л	истинины	1/1	иказанных	к п	V H K I \square 1
дишон д		r.	MUJUITIDIA	$\boldsymbol{\nu}$	VIIILI J.
r 1		_	/	_	,

No	Формируемые		Разделы дисциплины							
	компетенции	1	2	3	4	5	6	7	8	9
1.	3.1.1		X		X	X		X	X	X
2.	3.7.1.	X	X	X	X	X	X	X	Х	X
3.	3.12.1.				X	X	X	X	X	X
4.	3.14.1.				X	X	X	X	X	X
5.	3.15.1.		X	X	X	X	X	X	X	X
6.	У.1.1.		X		X	X		X	X	X
7.	У.1.2.		X		X	X		X	X	X
8.	У.7.1.	X	X	X	X	X	X	X	X	X
9.	У.9.1.		X	X	X	X	X	X	X	X
10.	У.12.1.		X		X	X		X	X	X
11.	У.12.2.		X	X	X	X		X		
12.	B.1.1.		X	X	X	X		X	X	X
13.	B.1.2.		X	X	X	X		X	X	X
14.	B.3.1.		X	X	X	X		X		
15.	B.7.1.		X	X	X	X		X	X	X
16.	B.10.1.		X	X	X	X		X		
17.	B.12.3		X	X	X	X		X	X	
18.	B.13.1		X	X	X	X		X	X	X
19.	B.14.1		X	X	X	X		X		

5. Образовательные технологии

При освоении дисциплины используются следующие сочетания видов учебной работы с методами и формами активизации познавательной деятельности студентов для достижения запланированных результатов обучения и формирования компетенций.

Методы и формы	Виды учебной деятельности						
активизации	ЛК	ЛБ	CPC				
деятельности							
Дискуссия	X						
<i>IT</i> -методы	X	X	X				
Командная работа		X	X				
Опережающая СРС	X	X	X				
Индивидуальное		X	X				
обучение							
Проблемное обучение		X	X				
Обучение на основе		X	X				
опыта							

Для достижения поставленных целей преподавания дисциплины реализуются следующие средства, способы и организационные мероприятия:

- изучение теоретического материала дисциплины на лекциях с использованием компьютерных технологий;
- самостоятельное изучение теоретического материала дисциплины с использованием *Internet*-ресурсов, информационных баз, методических разработок, специальной учебной и научной литературы;
- закрепление теоретического материала при проведении лабораторных работ с использованием учебного и научного оборудования и приборов, выполнения проблемно-ориентированных, поисковых, творческих заданий.

6. Организация и учебно-методическое обеспечение самостоятельной работы студентов (СРС)

Самостоятельная работа студентов включает текущую и творческую проблемно-ориентированную самостоятельную работу

- 6.1 **Текущая СРС**, направленная на углубление и закрепление знаний, а также развитие практических умений заключается в:
- работе студентов с лекционным материалом, поиск и анализ литературы и электронных источников информации по заданной проблеме,
- выполнении домашних заданий,
- переводе материалов из тематических информационных ресурсов с иностранных языков,
- изучении тем, вынесенных на самостоятельную проработку,
- изучении теоретического материала к лабораторным занятиям,
- изучении инструкций к приборам и подготовке к выполнению лабораторных работ,
- подготовке к коллоквиуму, зачету и выходному контролю на лабораторных занятиях.

6.2 Творческая проблемно-ориентированная самостоятельная работа

(TCP), ориентированая на развитие интеллектуальных умений, комплекса универсальных (общекультурных) и профессиональных компетенций, повышение творческого потенциала студентов.

TCP может включать следующие виды работ по основным проблемам курса:

- поиск, анализ, структурирование и презентация информации,
- выполнение расчетно-графических работ;
- исследовательская работа и участие в научных студенческих конференциях, семинарах и олимпиадах;
- анализ научных публикаций по заранее определенной преподавателем теме;
- анализ статистических и фактических материалов по заданной теме, проведение расчетов, составление схем и моделей на основе статистических материалов.

- 6.2.1. Перечень научных проблем и направлений научных исследований:
- 1) моделирование и расчет параметров разделительных каскадов из обменных противоточных колонн;
- 2) изыскания в области перспективные системы для проведения изотопного обмена;
- 3) моделирование потоков жидкой и газовой фаз в насадочной колонне;
- 4) поиск и использование новых ионообменников в процессов изотопного обмена.
 - 6.2.2. Темы, выносимые на самостоятельную проработку:
- 1) Фаза и фазовое равновесие;
- 2) Колонны и виды контактных устройств;
- 3) Гидравлические особенности движения фаз в колоннах.

6.3 Контроль самостоятельной работы

Оценка результатов самостоятельной работы организуется как единство двух форм: самоконтроль и контроль со стороны преподавателей.

6.4 Учебно-методическое обеспечение самостоятельной работы студентов

- 1. Андреев Б.М., Зельвенский Я.Д., Катальников С.Г. Разделение стабильных изотопов физико-химическими методами. М.: Энергоатомиздат, 1982. 208 с.
- 2. Андреев Б.М., Зельвенский Я.Д., Катальников С.Г. Тяжелые изотопы водорода в ядерной технике. М.: ИздАТ, 2000. 344 с.
- 3. Изотопы : свойства, получение, применение : в 2 т. / под ред. В. Ю. Баранова. М. : Физматлит, 2005.
- 4. Розен А.М. Теория разделения изотопов в колоннах. М.: Атомиздат, 1960. 439 с.
- 5. Шемля М., Перье Ж. Разделение изотопов. М.: АИ, 1980. 169 с.

7. Средства текущей и промежуточной оценки качества освоения дисциплины

Оценка качества освоения студентами дисциплины производится выставлением рейтинговых баллов по результатам следующих контролирующих мероприятий:

Контролирующие мероприятия	Результаты обучения по дисциплине (баллы)
выполнение и защита лабораторных работ	20
защита индивидуальных заданий	20
коллоквиум	20
зачет	40
ИТОГО	100

Для оценки качества освоения дисциплины при проведении контролирующих мероприятий предусмотрены следующие средства (фонд оценочных средств:)

Вопросы входного контроля:

- 1. На какую величину различаются изобарно-изотермический потенциал от энтальпии?
- 2. Какой смысл имеют знаки "плюс" или "минус" перед термодинамическими функциями: теплотой, работой, изменением внутренней энергии?
- 3. Дайте определение теплоемкости. Запишите уравнение Кирхгофа в интегральной форме.
- 4. Какие выводы можно сделать о конкретной химической реакции, если изменение свободной энергии Гиббса отрицательно?
- 5. Напишите уравнение изотермы химической реакции. Как связаны энергия Гиббса и константа равновесия химической реакции?
- 6. Сформулируйте правило фаз Гиббса.
- 7. Что называется удельной теплотой испарения? Чем она отличается от мольной теплоты испарения?
- 8. Что называется скоростью химической реакции? Какова ее размерность?
- 9. Что называется периодом полупревращения?
- 10. Как зависит константа скорости реакции от температуры? Запишите уравнение Аррениуса и раскройте его смысл.

Вопросы текущего, промежуточного и самоконтроля:

- 1. Что такое изотопы? Дайте определение реакции изотопного обмена.
- 2. Приведите классификацию методов разделения изотопов.
- 3. Что понимают под методом изотопного обмена? В чем его достоинства?
- 4. Дайте определение фазы термодинамической системе? Системы из каких фаз наиболее используемы при организации изотопного обмена и почему?
- 5. Что такое фазовое равновесие и чем оно характеризуется?
- 6. Раскройте понятия коэффициента разделения изотопов, коэффициента обогащения и изотопного соотношения. Как они связаны?
- 7. Какие методы изотопного анализа вы знаете? Опишите один из них подробно.
- 8. Приведите выражение для константы равновесия реакции изотопного обмена. От чего зависит величина константы равновесия?
- 9. Какие величины характеризуют скорость реакции изотопного обмена? Как зависит скорость обмена от концентрации реагирующих фаз и температуры?
- 10. Опишите устройство обменной колонны. Какие виды контактных устройств в ней используются?
- 11. Какие режимы работы колонны Вы знаете? Чем они характеризуются?
- 12. Приведите систему уравнений материального баланса.
- 13. Напишите фундаментальное уравнение обогащения и раскройте его физический смысл.
- 14. Сформулируйте понятия теоретической ступени и высоты эквивалентной теоретической ступени.
- 15. Приведите формулу Фэнске. Что она позволят определить?
- 16. Какие схемы организации процесса разделения изотопов в двухфазных рабочих системах Вы знаете? Изобразите схему движения потоков фаз в одной из них.
- 17. Что используется в качестве критерия оптимизации в теории разделения изотопов для двухфазных систем? Приведите уравнение для величины оптимального относительного отбора.
- 18. Какой каскад называется идеальным?

- 19. Что представляет собой графический метод нахождения величины оптимального относительного отбора? Приведите уравнения равновесной и рабочей линий.
- 20. Какое состояние колонны называется равновесным или стационарным? Приведите уравнение для нахождения времени достижения стационарного состояния.
- 21. Раскройте особенности движения фаз в колоннах для двухфазных систем газжидкость.
- 22. Уравнением какого вида можно представить зависимость коэффициента разделения от температуры в ограниченном температурном интервале?
- 23. Напишите экспоненциальное уравнение описывающее кинетику изотопного обмена в отсутствие термодинамических изотопных эффектов и раскройте смысл входящих в него переменных.
- 24. Из каких двух стадий складывается массообмен в противоточной колонне? Приведите уравнение аддитивности сопротивлений массообмену.
- 25. Приведите и опишите схему двухтемпературного метода разделения изотопов водорода.
- 26. Какие реакции изотопного обмена нашли практическое применение для разделения изотопов водорода двухтемпературным методом?
- 27. Какие рабочие системы используются для разделение изотопов азота? Какова величина коэффициента разделения достигаемая в этих системах?
- 28. Напишите уравнение реакции для разделения изотопов бора в системе "трехфтористый бор органический компонент". Что необходимо учитывать при практической реализации данной реакции?
- 29. Какие рабочие системы используются для разделение изотопов кислорода и углерода? Чему равна величина коэффициентов разделения для указанных изотопов?
- 30. Раскройте особенности движения фаз в колоннах для двухфазных систем жидкостьжидкость.
- 31. Какие рабочие системы используются при разделении изотопов экстракционным методом?
- 32. Приведите уравнения основных реакций протекающих при разделении изотопов лития амальгамным методом. Какова величина коэффициента разделения для данного метода при комнатной температуре?
- 33. В чем состоит особенность реакции гомомолекулярного изотопного обмена водорода?
- 34. Напишите общий вид реакций протекающих при разделении изотопов ионным обменном. Для разделения изотопов каких элементов созданы крупномасштабные установки?
- 35. При использовании каких веществ в качестве твердой фазы наблюдаются наибольшее коэффициенты разделения в процессе физической сорбции газов?
- 36. Напишите уравнение для определения величины коэффициента разделения в процессе ректификации при постоянной температуре.
- 37. Что используется в качестве исходного сырья при разделении изотопов водорода ректификацией? Какую предварительную очистку данной сырье проходит?
- 38. Приведите схему универсального модуля для очистки дейтерийсодержащей воды от трития и объясните ее работу.
- 39. Какие рабочие системы используются для разделение ректификацией изотопов азота, углерода и бора? Какой величины достигают коэффициенты разделения для указанных изотопов?
- 40. Опишите особенности процесса разделения изотопов кислорода при ректификации воды и оксида азота.

8. Рейтинг качества освоения дисциплины

Оценка качества освоения дисциплины В ходе текущей промежуточной аттестации обучающихся осуществляется в соответствии с «Руководящими материалами ПО текущему контролю успеваемости, промежуточной аттестации итоговой Томского студентов политехнического университета», утвержденными приказом ректора № 77/од от 29.11.2011 г.

В соответствии с «Календарным планом изучения дисциплины»:

- текущая аттестация (оценка качества усвоения теоретического материала (ответы на вопросы и др.) и результаты практической деятельности (решение задач, выполнение заданий, решение проблем и др.) производится в течение семестра (оценивается в баллах (максимально 60 баллов), к моменту завершения семестра студент должен набрать не менее 33 баллов);
- промежуточная аттестация (зачет) производится в конце семестра (оценивается в баллах (максимально 40 баллов), на зачете студент должен набрать не менее 22 баллов).

Итоговый рейтинг по дисциплине определяется суммированием баллов, полученных в ходе текущей и промежуточной аттестаций. Максимальный итоговый рейтинг соответствует 100 баллам.

9. Учебно-методическое и информационное обеспечение дисциплины Основная литература:

- 1. Андреев Б.М., Зельвенский Я.Д., Катальников С.Г. Разделение стабильных изотопов физико-химическими методами. М.: Энергоатомиздат, 1982. 208 с.
- 2. Андреев Б.М., Зельвенский Я.Д., Катальников С.Г. Тяжелые изотопы водорода в ядерной технике. М.: ИздАТ, 2000. 344 с.
- 3. Изотопы : свойства, получение, применение : в 2 т. / под ред. В. Ю. Баранова. М. : Физматлит, 2005.
- 4. Розен А.М. Теория разделения изотопов в колоннах. М.: Атомиздат, 1960. 439 с.
- 5. Шемля М., Перье Ж. Разделение изотопов. М.: АИ, 1980. 169 с.

Дополнительная литература:

- 1. Андреев Б.М., Магомедбеков Э.П., Райтман А.А. и др. Разделение изотопов биогенных элементов в двухфазных системах. М.: ИздАТ, 2003 376 с.
- 2. Велихов Е.П. и др. Импульсные СО2-лазеры и их применение для разделения изотопов. М.: Наука, 1983. 304 с.
- 3. Высоцкий С.П. Мембранная и ионитная технология водоподготовки в энергетике. Киев: Техника. 1989. 175С.
- 4. Горшков В.И., Сафонов М.С., Воскресенский Н.М. Ионный обмен в противоточных колоннах. М.: Наука, 1981. 224 с.

- Литий / В. И. Субботин и др. М.: ИздАТ, 1999. 263 с.
- Остроушко Ю.И. и др. Литий, его химия и технология. М.: АИ, 1960. 199 с.
- Сысоев А.А., Артаев В. Б., Кащеев В.В. Изотопная масс-спектрометрия. М.: ЭАИ, 1993. – 288 с.
- Тихомиров И.А, Орлов А.А., Видяев Д.Г. Разделение изотопов и элементов электрохимическими и обменными методами. – М.: Энергоатомиздат, 2003. – 204 с.
- Тремийон Б. Разделение на ионообменных смолах. М.: изд-во ин. лит-ры, 1967. – 431 с.

Программное обеспечение: стандартное программное обеспечение компьютерного класса — Microsoft Office (Excel, Word, PowerPoint); редактор для программирования на языке СИ++; Mathcad; Mathlab и т.д.

Интернет-ресурсы:

http://www.rosatom.ru/ http://www.lib.tpu.ru/ http://window.edu.ru/

10. Материально-техническое обеспечение дисциплины

При изучении основных разделов дисциплины, выполнении лабораторных работ студенты используют различное оборудование и персональные компьютеры, применяя навыки компьютерной обработки экспериментальных результатов.

При освоении дисциплины используются технические средства компьютерного класса кафедры ТФ ауд. 242 и лабораторное оборудование ауд. 247 и 001 10 уч. корпуса ТПУ.

Программа составлена на основе Стандарта ООП ТПУ в соответствии с требованиями ФГОС и ООП по направлению 14.03.02 «Ядерные физика и технологии» и профилю подготовки «Физика кинетических явлений»

Программа одобрена на заседа ФТИ ТПУ (протокол № <u>& /</u> от « <u>& /</u>)	нии кафедры ТЕХНИЧЕСКАЯ ФИЗИКА » <i>©</i>
Доцент кафедры ТФ ФТИ	Д.Г. Видяев
Рецензент	Л.И. Дорофеева